Table 7.
Fusion Features | Classifier | Type of Lesion | AUC % | Sensitivity % | Accuracy % | Precision % | Specificity % |
---|---|---|---|---|---|---|---|
AlexNet-GoogLeNet | ANN | Scc | 87.8 | 84.4 | 84.1 | 84.1 | 99.5 |
Akiec | 85.6 | 83.9 | 84.5 | 89.1 | 99.6 | ||
Bcc | 97.6 | 97.3 | 97.1 | 96.3 | 98.7 | ||
Bkl | 98.2 | 96.8 | 96.6 | 95.1 | 98.5 | ||
Df | 79.6 | 56.4 | 56.3 | 71.1 | 100 | ||
Mel | 94.2 | 92.9 | 93.3 | 91.7 | 97.8 | ||
Nv | 95.4 | 97.4 | 97.2 | 97.2 | 97.4 | ||
Vasc | 88.2 | 69.3 | 68.6 | 83.3 | 99.6 | ||
GoogLeNet-VGG16 | ANN | Scc | 87.2 | 86.4 | 85.7 | 83.7 | 99.5 |
Akiec | 82.4 | 78.3 | 78.2 | 87.7 | 99.7 | ||
Bcc | 95.7 | 96.2 | 96.4 | 93 | 98.8 | ||
Bkl | 96.2 | 94.4 | 93.9 | 96 | 98.7 | ||
Df | 82.1 | 71.3 | 70.8 | 70.8 | 100 | ||
Mel | 96.1 | 93.8 | 94.4 | 91.8 | 97.8 | ||
Nv | 97.8 | 96.9 | 96.7 | 97.8 | 98.4 | ||
Vasc | 87.9 | 78.4 | 78.4 | 74.1 | 99.7 | ||
AlexNet-VGG16 | ANN | Scc | 92.1 | 88.2 | 88.1 | 86 | 99.8 |
Akiec | 93.1 | 87.8 | 87.9 | 89.5 | 100 | ||
Bcc | 97.6 | 98.1 | 97.9 | 97.2 | 99.5 | ||
Bkl | 98.9 | 98.4 | 97.5 | 95.7 | 98.8 | ||
Df | 89.4 | 71.3 | 70.8 | 79.1 | 99.7 | ||
Mel | 95.2 | 93.2 | 92.9 | 90.2 | 97.6 | ||
Nv | 97.1 | 96.4 | 96.5 | 97.6 | 98.4 | ||
Vasc | 91.6 | 74.9 | 74.5 | 84.4 | 100 | ||
AlexNet-GoogLeNet-VGG16 | ANN | Scc | 91.9 | 86.2 | 85.7 | 83.7 | 99.6 |
Akiec | 94.5 | 87.1 | 86.8 | 88.3 | 100 | ||
Bcc | 96.8 | 96.3 | 96.2 | 97 | 100 | ||
Bkl | 97.4 | 95.8 | 96.4 | 95.5 | 98.7 | ||
Df | 88.3 | 73.4 | 72.9 | 74.5 | 99.5 | ||
Mel | 97.8 | 96.2 | 96.3 | 93.2 | 98.3 | ||
Nv | 98.2 | 98.1 | 97.8 | 98.9 | 99.4 | ||
Vasc | 90.4 | 78.1 | 78.4 | 78.4 | 100 |