Table 8.
Fusion Features | Classifier | Type of Lesion | AUC % | Sensitivity % | Accuracy % | Precision % | Specificity % |
---|---|---|---|---|---|---|---|
AlexNet-GoogLeNet | RF | Scc | 88.5 | 77.4 | 77 | 80.2 | 99.5 |
Akiec | 90.5 | 85.2 | 85.1 | 82.2 | 98.8 | ||
Bcc | 97.5 | 96.3 | 95.8 | 95.6 | 99.2 | ||
Bkl | 96.2 | 95.7 | 95.8 | 93.8 | 99.6 | ||
Df | 78.5 | 60.4 | 60.4 | 69 | 100 | ||
Mel | 97.5 | 96.1 | 96.1 | 93.1 | 97.9 | ||
Nv | 98.3 | 97.8 | 97.6 | 98.8 | 98.2 | ||
Vasc | 86.5 | 71.3 | 70.6 | 76.6 | 100 | ||
GoogLeNet-VGG16 | RF | Scc | 92.1 | 87 | 86.5 | 84.5 | 99.6 |
Akiec | 91.4 | 83.1 | 82.8 | 86.2 | 99.5 | ||
Bcc | 97.2 | 96.9 | 96.7 | 93.9 | 98.7 | ||
Bkl | 96.4 | 94.2 | 94.1 | 94.5 | 99.1 | ||
Df | 79.6 | 69.3 | 68.8 | 75 | 100 | ||
Mel | 97.5 | 96.2 | 95.6 | 93.4 | 99.3 | ||
Nv | 98.5 | 97.3 | 97.2 | 98.4 | 98.2 | ||
Vasc | 86.5 | 76.1 | 76.5 | 76.5 | 100 | ||
AlexNet-VGG16 | RF | Scc | 85.2 | 82.4 | 81.7 | 79.8 | 99.1 |
Akiec | 82.5 | 80.1 | 79.9 | 83.7 | 99.4 | ||
Bcc | 98.1 | 96.3 | 96.1 | 94.4 | 98.8 | ||
Bkl | 96.4 | 93.8 | 93.5 | 95.5 | 99.1 | ||
Df | 81.6 | 73.2 | 72.9 | 64.8 | 100 | ||
Mel | 97.1 | 93.4 | 93.4 | 90.9 | 97.8 | ||
Nv | 98.1 | 97.1 | 96.5 | 97.6 | 98.4 | ||
Vasc | 88.1 | 78.2 | 78.4 | 76.9 | 100 | ||
AlexNet-GoogLeNet-VGG16 | RF | Scc | 86.2 | 81.4 | 81 | 86.4 | 99.5 |
Akiec | 88.3 | 87.8 | 87.9 | 81.8 | 99.1 | ||
Bcc | 98.2 | 96.2 | 95.8 | 95.8 | 98.8 | ||
Bkl | 97.5 | 95.4 | 96 | 94.7 | 99 | ||
Df | 75.1 | 65.3 | 64.6 | 66 | 100 | ||
Mel | 98.2 | 97.2 | 96.6 | 93.7 | 99.4 | ||
Nv | 98.9 | 98.1 | 97.7 | 99.1 | 98.6 | ||
Vasc | 80.2 | 70.9 | 70.6 | 76.6 | 100 |