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Abstract: Under physiological and stress conditions, mitochondria act as a signaling platform to
initiate biological events, establishing communication from the mitochondria to the rest of the cell.
Mitochondrial adenosine triphosphate (ATP), reactive oxygen species, cytochrome C, and damage-
associated molecular patterns act as messengers in metabolism, oxidative stress response, bystander
response, apoptosis, cellular senescence, and inflammation response. In this review paper, the
mitochondrial signaling in response to DNA damage was summarized. Mitochondrial clearance
via fusion, fission, and mitophagy regulates mitochondrial quality control under oxidative stress
conditions. On the other hand, damaged mitochondria release their contents into the cytoplasm and
then mediate various signaling pathways. The role of mitochondrial dysfunction in radiation carcino-
genesis was discussed, and the recent findings on radiation-induced mitochondrial signaling and
radioprotective agents that targeted mitochondria were presented. The analysis of the mitochondrial
radiation effect, as hypothesized, is critical in assessing radiation risks to human health.

Keywords: mitochondrial signaling; DNA damage response; oxidative stress; inflammation response;
radiation carcinogenesis

1. Introduction

Excessive ionizing radiation (IR) exposure is hazardous to human health because it
causes tissue or organ function loss due to cell death and cellular senescence. Furthermore,
radiation-induced genetic damage contributes significantly to the radiation carcinogenesis
process. Radiation defense mechanisms in cells include cell cycle checkpoints, DNA repair,
and cell death [1,2]. DNA double-strand breaks (DSBs) have been extensively studied
in radiation biology research because nuclear DNA is thought to be the biological target
of radiation. IR effects have been observed in cellular organelles other than the nucleus,
such as the plasma membrane, cytoskeleton, mitochondria, endoplasmic reticulum, Golgi
apparatus, and lysosome [3–6]. As an example of the scientific basis for IR effects on
these cytoplasmic organelles, the bystander effect has been reported in the case of cyto-
plasmic irradiation of alpha particles using microbeam irradiation [7,8]. Mitochondria,
like nuclei, contain their own genetic material and are thought of being IR targets [6,9,10].
Another paper discusses the role of mitochondria in radiation response [6]. Mitochondrial
DNA (mtDNA) is devoid of a nucleosome structure containing histone proteins. Fur-
thermore, due to the lack of some DNA repair machinery, the efficiency of mitochondrial
DNA repair is lower than that of nuclear DNA. Because radiation-induced oxidized DNA,
8-hydroxydeoxyguanosine (8-OHdG), is more abundant in mtDNA than in nuclear DNA [11],
the IR effects of mtDNA are expected to be stronger than those of nuclear DNA. Mitochon-
dria are organelles that store cellular energy. Mitochondrial oxidative phosphorylation
(OXPHOS) consumes oxygen and transfers electrons via substrate oxidation, resulting
in an electrochemical gradient of protons (H+) between the mitochondrial membrane’s
inner and outer sides. This mitochondrial membrane potential (∆Ψm) is used to gener-
ate adenosine triphosphate (ATP) as cellular energy [12]. Mitochondria are the primary
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source of reactive oxygen species (ROS) in the cell. During the electron transport chain
reaction, superoxide (O2

−) is produced by electron leak from complexes I and III [10,13,14].
As a result, ROS are produced in mitochondria. ROS are also produced after radiation
exposure by radiolysis of water and endogenously during energy demand reactions in
the mitochondria of eukaryotic cells. Because ROS are highly reactive and have a short
lifecycle, it is thought that IR-induced delayed ROS production is caused by mitochondrial
OXPHOS [15]. ROS are signaling pathway transmitters that also play physiological roles in
cell proliferation. As a result, glutathione (GSH)-mediated redox control keeps ROS levels
constant (Figure 1). Manganese superoxide dismutase (MnSOD) is an enzyme that converts
O2
− to hydrogen peroxide (H2O2). Glutathione peroxidase (GPx) converts glutathione

disulfide (GSSG) and water using H2O2 and GSH as substrates [16,17]. Nicotine amide
adenine dinucleotide reduced form (NADPH)-dependent GSH reductase works to reduce
GSSG in order to recover GSH. The GSH/GSSG ratio is used for assessment as a marker for
oxidative stress. The MnSOD and nuclear factor κ-light-chain-enhancer of activated B-cells
(NF-kappaB) cell signaling pathways are also involved in the radiation adaptation response
and bystander effects seen with low-dose radiation [18–20]. MnSOD scavenges ROS to
protect mitochondria from oxidative stress and is involved in tumor prevention. However,
mitochondrial dysfunction and redox deregulation cause an increase in ROS levels, which
leads to oxidative stress by oxidizing nuclei, proteins, lipids, and other substances [21].
As a result of O2

− leakage during the energy production process, mitochondria become
toxic rather than detoxifying oxygen [16]. The effect of radiation on redox control was
studied in normal human fibroblasts. We recently discovered that IR increased ROS levels
by inhibiting GPx’s ability to scavenge ROS [22]. As a result, the GSH redox potential is
critical in maintaining redox homeostasis after radiation. Mitochondria are vulnerable
to ROS attack under these conditions [23]. IR damages the respiratory chain and causes
mtDNA mutations. Abnormal mitochondrial metabolism increases the number of ROS pro-
duced during the OXPHOS process, causing oxidative damage to mitochondria yet again,
resulting in a vicious cycle of mitochondrial oxidative stress. Perturbation of cellular redox
control causes oxidative stress-related human diseases such as cancer, neurodegenerative
diseases, and cardiac diseases [16,24–27].
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In this review, the role of mitochondrial signaling in radiation carcinogenesis is dis-
cussed and our recent findings on mitochondrial signaling in response to DNA damage
are highlighted.
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2. Mitochondria-Mediated Various Signaling Pathways and Carcinogenesis
2.1. Nucleus to Mitochondria Signaling

Processing stalled replication forks under replicative stress conditions can result in
DSB [28], as can exogenous exposure to DNA-damaging agents such as IR, UV light, and
anticancer drugs. DSBs immediately activate multiple molecular signaling pathways in
order to carry out the DNA damage response (DDR) and maintain genomic stability. The
trimeric MRE11-RAD50-NBS1 (MRN) complex recognizes, processes, and protects DNA
ends [29]. Ataxia telangiectasia (AT) is an autosomal recessive disorder caused by the inac-
tivation of the DNA damage sensor kinase ataxia telangiectasia mutated (ATM). The MRN
complex recruits and aids in the activation of ATMs. ATM is the master DSB sensor, and
the DNA damage signal spreads to other intracellular organelles, activating downstream
effectors [30,31]. ATM recognizes IR-induced DNA DSBs via auto-phosphorylation [32].
The histone variant H2AX, which serves as a landmark for DNA repair proteins and
regulates DNA repair, cell cycle progression, and cell death, is then phosphorylated by
ATM [33–37]. Figure 2 depicts the damaged nucleus to mitochondria signaling. DNA
damage signals are transported to mitochondria by the adenosine monophosphate (AMP)-
activated protein kinase (AMPK) [38,39]. ATM-mediated AMPK signaling is currently
being investigated because ATM has been shown not to directly phosphorylate AMPK [40].
The ATM/AKT/mammalian target of rapamycin (mTOR) pathway is another route to
enhance mitochondrial biogenesis via transcriptional activation of PGC1 (Figure 2) [41].
The mitochondria contribute significantly to DDR by producing cellular energy in the
form of ATP via OXPHOS. ATP appears to be required for DNA repair and chromatin
remodeling [42]. When intracellular ATP is depleted and AMP levels rise, AMPK acts as an
energy sensor, coordinating metabolic pathways [43]. When the internal ATP/ADP ratio
falls, the AMPK/mTOR pathway suppresses cell growth [44]. AMPK is activated via Thr-
172 phosphorylation in response to cellular energy depletions, such as nutrient deprivation,
hypoxia, and mitochondrial respiration inhibition. LKB1 and Ca2+/calmodulin-dependent
protein kinase (CaMKK) have been identified as AMPK upstream kinases [45,46]. Acti-
vated AMPK inhibits ATP-consuming pathways such as lipid, carbohydrate, and protein
synthesis, while encouraging ATP production including mitochondrial biogenesis. AMPK
activates the transcription factor nuclear respiratory factors 1 and 2 (NRF-1 and -2), as well
as transcription factor A (TFAM), to activate transcription of nuclear-encoded mitochon-
drial genes [47–49]. IR increases mitochondrial mass and mtDNA copy number, which
helps to meet the increased energy demands of DDR [50,51]. Radiation-induced bystander
factors also increase mitochondrial mass [52]. Cells in the G2/M phase contained more
mitochondrial than cells in the G1 or S phases. The presence of more mitochondria is linked
to IR-induced G2/M cell cycle arrest [53].

2.2. Mitochondria as Regulators of Signal Transduction

Mitochondria are double-membrane structures found in the cytoplasm of eukaryotic
cells. Each eukaryotic cell may contain hundreds of mitochondria, with each mitochon-
drion containing 2–10 copies of the mtDNA. Apart from nuclei, maternally inherited
mitochondria are thought to be descendants of ancient bacteria and control their replication,
transcription, and protein translation independently. The mitochondrial protein encoded
by mammalian mtDNA is required for OXPHOS and the expression of mitochondrial genes
such as transfer RNAs and ribosomal RNAs. To ensure survival and adaptation, mitochon-
drial functions include energy sensor and cellular defense systems against oxidative stress.
Mitochondria have evolved signaling functions to communicate with the rest of the cell
in order to adapt to toxic environmental insults. Cells do not initiate biological responses
before integrating mitochondrial regulatory inputs. The ability of the mitochondria, for
example, influences metabolic pathway choices in response to the cell’s energy demand.
In the physiological response to hypoxia, mitochondria serve as the oxygen sensor. The
generation of mitochondrial ROS leads to the activation of the transcriptional factor NRF2,
which results in the expression of antioxidant and anti-inflammatory proteins. As a result,
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the release of second messengers from mitochondria causes a protective antioxidant re-
sponse, which provides health benefits both in the short and long term. Morphological
changes to mitochondria trigger nuclear DDR and DNA repair as retrograde signals [54].
On the contrary, mitochondrial components released from dysfunctional mitochondria
trigger stress responses.
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2.3. Mitochondrial ROS Signaling in Bystander Response

Various mitochondrial signaling pathways are depicted in Figure 3. It is widely
accepted that IR causes bystander effects in cells that are indirectly traversed by a ra-
diation track. It has been proposed that mitochondrial-derived ROS, such as hydroxyl
radicals (OH−) and O2

−, act as bystander signals in the radiation-induced bystander effect
(RIBE) [55,56]. Thus, the delayed production of mitochondrial ROS mediates the long-term
effects of IR in neighbor non-irradiated cells [23]. Mitochondria play an important role
in the early stages of RIBE as well as the release of ROS generated during OXPHOS. The
primary cause of oxidative stress is increased levels of ROS. Reactive nitrogen species
(RNS), particularly NO, have been implicated in Nuclear Factor-κB–mediated signaling
and are thought to contribute to RIBE [20,57]. RNAs, miRNAs, DNA, and cell transfers
are all found in exosome-like vesicles (ELV). In RIBE, irradiated cells’ mtDNA migrates to
non-irradiated cells, “spreading” the oxidative stress signal across a population of cells [58].

2.4. Mitochondria-Mediated Apoptosis

Apoptosis is caused by IR-induced severe DNA damage. It acts as an anticancer
agent by killing tumor cells. To prevent tumor development, the tumor suppressor p53
is involved in numerous signaling pathways and induces apoptosis [59]. Neuronal apop-
tosis, on the other hand, has been linked to neurodegenerative diseases by loss of tissue
function [60]. DDR, including the activation of mitochondrial-mediated apoptosis signaling,
plays an important role in maintaining the integrity of genetic information by eliminating
abnormal cells. Apoptosis is induced by mitochondrial outer membrane permeabilization
(MOMP), which is induced by the pro-apoptotic effectors BAX and BAK [61]. In conjunction
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with apoptotic protease activating factor (Apaf), mitochondrial signaling, including the
release of cytochrome C into the cytosol, promotes caspase cascade activation including
effector caspases-3 and -7 [62]. Caspases are proteases that can cleave a variety of pro-
teins. Caspase-activated DNase (CAD) is a caspase substrate involved in the cleavage
of chromosomal DNA during apoptosis. Other cell death pathways, such as necrosis,
pyroptosis, and ferroptosis, involve mitochondrial function in addition to apoptotic cell
death [63,64]. Caspase-independent pathways control necrosis. During the early stages of
necrosis, opening permeability transition pores disrupt mitochondrial plasma membrane
integrity [65].
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2.5. Role of Mitochondria on Cellular Senescence

Exogenous and endogenous stress and damage cause irreversible cell cycle arrest,
which is a hallmark of cellular senescence [66]. Senescent cells limit cell proliferation’s
replicative capacity via the p53/p21 and p16/pRb pathways, which halt cell cycle
progression [66]. Tissue regeneration allows for the repair or replacement of damaged
tissue through the renewal and growth of stem cells and progenitor cells. Senescent cells
with a senescence-associated secretory phenotype, on the other hand, secrete inflammatory
cytokines, growth factors, and proteases that can prevent neighboring cells from growing.
The accumulation of senescent cells with age is linked to the promotion of aging and a
number of age-related diseases [67]. Mitochondrial damage, excessive mitochondrial ROS,
and DDR all occur sequentially, forming a mitochondrial ROS-mediated positive feedback
loop that disrupts mitochondrial homeostasis. According to the free radical theory of aging,
free radical damage is the primary driving force behind the aging process [68]. Aside from
ROS, metabolic signaling pathways play a role in the induction of cellular senescence [69].
Mitochondrial dysfunction has been linked to the promotion of cellular senescence. Ab-
normal mitochondrial signatures and mitochondrial dysfunction are associated with
age-related disease.
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2.6. Mitochondrial Signaling in Inflammation

Mitochondria act as a master regulator of the metabolic switch in immune cell acti-
vation and immune response. A metabolic shift toward glycolysis and loss of OXPHOS
capacity causes the activation of T cells, macrophages, and dendritic cells [70–72]. Instead of
OXPHOS, activated macrophages use oxygen to produce NADPH oxidase-mediated ROS
that are responsible for bacterial killing [73]. Under physiological conditions, mitochondrial-
derived molecules play an important role as second messengers. In contrast, mitochon-
drial damage-associated molecular patterns (mtDAMPs) are endogenous danger signals
produced by a variety of components that are normally sequestered in the mitochon-
dria. Invading pathogens are defended against by innate immune responses in mam-
malian cells. Mitochondrial signaling, by acting as an initial signal, promotes immune
responses. Mitochondrial dysfunction and increased ROS production result from mitochon-
drial injury. MOMP causes inflammatory signaling to be activated. Damaged cells release
mitochondrial-derived intracellular molecules, such as mtDAMPs, into the cytoplasm or
extracellular environment to initiate a pro-inflammatory response [74,75]. Immune systems
recognize unmethylated CpG motifs in mtDNA as bacteria DNA. The cytosolic DNA sensor
cyclic GMP-AMP synthase (cGAS) recognizes mtDNA in the cytoplasm and generates
the second messenger 2′,3′-GMP-AMP (cGAMP), which activates the adaptor stimulator
of interferon genes (STING)-mediated type interferon (IFN) response [76]. mtDNA is
released into the cytosol when the mitochondrial outer membrane is permeabilized during
apoptosis [64]. Meanwhile, caspase activation inhibited the activation of the mtDNA-
mediated immune response activation [76]. Pathogen recognition receptors (PRRs) and
pathogen-associated molecular patterns (PAMPs) are activated when mtDAMPs are re-
leased as a result of tissue injury. The presence of mtDAMPs has been linked to a number
of diseases, including infection, asthma, ischemic heart disease, and cancer [77]. Measuring
circulating mtDAMPS levels in patients may be useful as a biomarker for predicting disease
severity and prognosis [77]. Indeed, mtDNA levels in plasma have been linked to patient
mortality in medical intensive care units [78].

2.7. Mitochondrial Quality Control by Fusion, Fission, and Mitophagy

When mitochondria are damaged, cells have a mitochondrial homeostasis mainte-
nance system that prevents mitochondrial components from leaking into the cytosol or
extracellular matrix. There are thousands of mitochondria in somatic cells. The dynamic
morphological change of fission and fusion events excludes damaged mitochondria and
restores healthy mitochondria [79,80]. The fusion of mitochondria allows for the com-
plementation of mitochondrial defects with mutant DNA by mixing mitochondria with
wild-type DNA. The fusion proteins mitofusin 1 (Mfn1), Mfn2, and optic atrophy 1 (OPA1)
are dynamin-related GTPases that are responsible for mitochondrial fusion in mammals.
Drp1 (dynamin-related protein 1), on the other hand, mediates mitochondrial fission. Drp1
is phosphorylated [81] and recruited to the outer mitochondrial membrane to interact with
mitochondrial receptor proteins, resulting in the division of a mitochondrion into two dis-
tinct organelles. Mitochondrial fission also helps with quality control. The fusion of healthy
mitochondria with damaged mitochondria induced by IR causes significant changes in
mitochondrial morphology for maintaining mitochondrial quality control [82–84]. In rat
neurons, mitochondrial fusion was found to protect against low-dose IR [85]. IR induces
Drp1-mediated mitochondrial fission in normal human fibroblasts [15]. On the other hand,
mitophagy is the selective removal of damaged and dysfunctional mitochondria while
leaving healthy mitochondria alone [86]. The loss of mitochondrial ∆Ψm is primarily a sign
of mitophagy in mammalian cells. The phosphoinositide 3-kinase (PI3K)–phosphatase with
tensin homology (PTEN)-induced kinase 1 (PINK1) is normally unstable, but it becomes
stabilized on the dysfunctional mitochondrial surface, where it recruits the E3 ubiquitin
ligase Parkin. PINK1 phosphorylates both ubiquitin and Parkin at serine 65, increasing
Parkin’s E3 activity on damaged mitochondria [87–89]. Parkin then promotes mitochondria
degradation to maintain mitochondrial quality [90,91]. ATM promotes mitophagy activa-
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tion by regulating the Pink1–Parkin pathway [92]. Meanwhile, PINK1 or Parkin deficiency
impairs mitophagy’s ability to clear damaged mitochondria, resulting in mtDNA-mediated
activation of inflammatory responses via cGAS-STING signaling [93].

2.8. Mitochondrial Dysfunction and Carcinogenesis

Mitochondrial dysfunction has been linked to a variety of diseases, including metabolic
diseases, neurodegenerative diseases, and cancer [16,94–96]. Defects in mitochondrial func-
tion alter the cellular metabolism of cancer cells [97]. To achieve their high proliferation
rate, cancer cells consume a much higher amount of glucose via glycolysis. Mitochondrial
ROS play a role in tumor development through a variety of mechanisms, including oxida-
tive stress, tumor cell proliferation, and chronic inflammation [98,99]. High ROS levels
in cancer cells have been suggested as a cause of mitochondrial dysfunction [100]. ROS
are genotoxic agents that can promote the initiation and progression process of multistage
carcinogenesis [101]. These findings suggest a link between mitochondria-mediated ox-
idative stress and carcinogenesis [6,102]. Mutations in mtDNA have been discovered in a
variety of human cancer cells [103–105]. Impaired mitochondrial functions such as ATP
production, metabolism, calcium homeostasis, and apoptotic regulation promote tumor
development [106]. Because of mitochondrial dysfunction (Warburg effect), cancer cells,
unlike normal cells, use aerobic glycolysis for glucose metabolism [107]. In the absence of
mitochondrial respiration defects, changes in energy metabolism caused by mitochondrial
dysfunction allow cancer cells to acquire and tolerate proliferative potential. This modifi-
cation is thought to be a tumor development marker [108]. Mitochondrial ROS enter the
nucleus and damage nuclear DNA, contributing to genomic instability [109,110]. Because
of genetic changes in nuclear DNA, cells gain a proliferative advantage.

Because it provides a nurturing environment for the malignant process, the tumor
microenvironment plays critical roles in cancer development and progression. In addition
to cancer cells, the tumor microenvironment includes stromal cells such as myofibrob-
lasts and/or cancer-associated fibroblasts (CAFs), vascular endothelial cells, and tumor-
associated immune cells. Fibroblasts mechanically support tissues by interacting between
cells and remodeling excess extracellular matrix (ECM). CAFs are a major cellular compo-
nent of tumor stroma with distinct properties from their normal counterparts. CAFs express
α-smooth muscle actin (α-SMA), which is used to identify CAFs [111]. ROS-mediated mito-
chondrial signaling is thought to play a role in tumor microenvironment formations, which
contribute to tumor development [112]. We recently discovered that IR-induced mito-
chondrial ROS activate transforming growth factor-β (TGF-β) signaling, which stimulates
fibroblast activation via induction of α-SMA protein expression [113]. Fibroblast activation
is used to repair and regenerate connective tissue after radiation injury. In an acute cel-
lular immune response, activated fibroblasts modulate ECM production and accumulate
lymphocytes, macrophages, and dendritic cells through the secretion of various growth
factors, cytokines, and chemokines. When the healing process is complete, the activated
fibroblasts vanish and return to their dormant state. However, persistent pro-fibrotic and
pro-inflammatory cytokine and chemokine production by activated fibroblasts prevents the
transition from an innate immune response to an acquired immune response, resulting in
chronic inflammation and fibrosis [7]. DNA damage leads to incomplete wound healing by
the induction of chronic inflammation and cellular senescence, which have been associated
with fibrosis [114]. Radiation-induced fibrosis is a serious side effect of radiation treatment.
We previously reported that activated fibroblasts with α-SMA expression survived follow-
ing high doses of IR with >5 Gy for at least 24 h. Surprisingly, these activated fibroblasts
appeared by exposure to low-doses with >0.1 Gy in the growth-restricted conditions in
which cells were cultured in 0.5% or 0% fetal calf serum (FCS) [115]. Thus, when fibroblast
cell growth is inhibited due to severe DNA damage or insufficient growth factor, activated
fibroblasts may be retained for an extended period of time after irradiation. The interaction
between IR-activated fibroblasts and malignant cancer cells promotes the growth and
invasion of cancer cells through the release of paracrine growth factors [113]. Activated
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fibroblasts, for example, produce a variety of growth factors such as basic fibroblast growth
factor (bFGF), TGF-β, and vascular endothelial growth factor (VEGF). Tumor cells, on
the other hand, retain CAF properties that promote angiogenesis, ECM remodeling, and
metastasis. Mitochondrial oxidative stress may be important in the radiation-induced
carcinogenic process by promoting the formation of CAF, which is a cancer tissue [116–118].
Mitochondrial ROS are thought to influence tumor microenvironment formation and to
promote cancer cell growth [113]. As a result, mitochondrial dysfunction contributes to the
development of radiation-induced cancer [109].

2.9. Mitochondrial Signaling in Resistance to Cancer Treatment

Radioresistance of cancer cells remains a major limitation for radiotherapy. Alterations
in mitochondrial function and metabolism confer tumor radioresistance [119–121]. Tumor
immune escape is the barrier in cancer therapy. Programmed death ligand-1 (PD-L1), an
immune checkpoint molecule, has a critical role in immune self-tolerance of cancer cells
by binding to its receptor, programmed cell death protein-1 (PD-1), on T cells [122]. DNA
damaging agents trigger DDR, which leads to upregulation of PD-L1 expression in cancer
cells [123]. PD-L1 promotes increases in the mRNA stability of DNA repair proteins, so that
cancer cells are resistant to DNA damage [124]. Together with PD-L1, TGFβ is thought to
be a target molecule for overcoming the immune evasion of tumor cells [125]. PD-L1/PD-
1 blockade by AMPK activation significantly enhances cancer immunotherapy [126,127].
Pink1 regulates mitochondrial localization of PD-L1 for its degradation via mitophagy [128].

2.10. Human Cancer Risks Attributable to Radiation

Radiation cancer risks are a major public health concern. The Life Span Study cohort’s
epidemiological data among Hiroshima and Nagasaki atomic bomb survivors is the most
reliable scientific evidence in radiation risk assessment for radiological protection. This
cohort’s large sample size, which includes a wide range of ages and individual radiation
exposure doses, has greater statistical power than other smaller radiation studies. Excess
radiation risk of leukemia appeared ~2 years after the bombing and peaked 6–7 years
later [129,130]. A surplus of solid cancers, on the other hand, became apparent a few
decades later [131]. Throughout life, the incidences of leukemia and solid cancer increase
linearly in proportion to the radiation dose. Radiation-induced cancer is classified as a
stochastic effect with no dose threshold level based on the absorbed dose, age at exposure,
and gender. There is concern about radiation exposure among people causing physical
and mental health issues in the Fukushima nuclear accident, which occurred on 11 March
2011. Chronic physical diseases such as depression and alcoholism have been reported
in Fukushima nuclear accident victims [132,133]. As a result, the health risks associated
with low-dose radiation (below ~100 mSv) must be clarified. Basic science studies and
radiation risk knowledge acquisition can help to deepen the general public’s understanding
of radiation.

2.11. Radiation Protection by Targeting Mitochondria

Acute radiation syndrome (ARS) is caused by a short period of whole-body or signifi-
cant partial-body irradiation of more than 0.5 Gy [134]. It is widely accepted that rapidly
dividing hematopoietic stem cells and bone marrow progenitor cells are extremely sensi-
tive to IR. Excessive 0.5 Gy exposure resulted in a significant decrease in the number of
peripheral blood cells. Lymphocytes and monocytes are quickly cleared from the blood-
stream at first. The granulocyte and platelet count then decreases over time. Red blood
cells have a slower clearance rate over a longer time period. Clinical symptoms, such as
hematopoietic and gastrointestinal sub-syndromes, appear within the first two months
of exposure [135]. To improve care for radiation victims in a radiation emergency, the
development of appropriate radiation protective agents is urgently needed. Antioxidants,
nutrients, and phytochemicals are candidates for use as radiation protective agents in
a variety of radiation exposure scenarios [136]. For example, potassium iodide is used
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as a thyroid blocking agent in the presence of I-131 radioiodine [137]. The ability of
cysteine to scavenge free radicals plays a role in radiation protection from whole-body
irradiated animals [138]. By mitigating the hematopoietic sub-syndrome of ARS, gran-
ulocyte colony-stimulating factor (G-CSF) induces hematopoiesis and improves mouse
survival from lethal total-body gamma-irradiation [139]. Radioprotective agents have thus
far been developed by providing pre-administration treatment for radiation workers or
cancer patients who are likely to be exposed to radiation [140]. However, in nuclear or
radiological accidents, unforeseeable consequences of radiation exposure may occur among
large populations. As a result, radioprotective agents should be developed under different
radiation exposure scenarios, including post-radiation treatment. Serious side effects of
radiation-protective agents are major issues in clinical trials [136]. It is truly important to
translate scientific findings from animal studies into practical clinical applications. Hu-
man health effects of radiation include both acute radiation injury clinical symptoms and
late-onset radiation carcinogenesis [141]. In the case of acute radiation injury, mitochon-
drial signaling is linked to tissue and organ function loss via induction of apoptotic cell
death. Furthermore, radiation-related carcinogenesis is linked to impaired mitochondrial
function and mitochondria-mediated oxidative stress. Therefore, mitochondria play an
important role in radiation responses in both acute and late effects of carcinogenesis. It
is critical to protect mitochondria in order to mitigate radiation effects throughout life. A
new radioprotective agent that targets mitochondria was recently investigated [142]. In
irradiated normal human fibroblasts, IR has been shown to prevent GSH-mediated ROS
scavenging by inactivation of GPx, resulting in damage to mitochondria, mitochondrial
dysfunction, metabolic oxidative stress, and prolonged cell injury [22]. N-acetyl-5-methoxy-
tryptamine (Melatonin) and MitoEbselen-2, a mitochondria-targeted GPx mimic, were used
to stimulate GPx, which maintains mitochondrial-derived ROS levels. Some ROS indicators
include 2′,7′-dichlorofluorescin diacetate (DCFDA: intracellular ROS levels), MitoSOX-red
(mitochondrial-delivered ROS), and OxiORANGE (hydroxyl radicals). Even after radiation
exposure, melatonin or MitoEbselen-2 can maintain GPx activity and intracellular ROS
levels. Pre- and post-radiation treatment with melatonin or MitoEbselen-2 suppressed
radiation responses such as γ-H2AX, Nrf2, Tom20 (mitochondria marker), parkin, and
α-SMA. As a result, both drugs are effective in mitigating radiation-induced DSB, mito-
chondrial damage, and fibroblast activation. Concurrent administration of melatonin or
mitoEbselen-2 with radiation resulted in no metabolic oxidative stress or mitochondrial
injury. These drugs are potentially effective countermeasures for mitochondria-mediated
oxidative stress.

3. Conclusions

Mitochondrial-to-nuclear communication regulates a variety of biological responses
such as metabolism, oxidative stress response, bystander response, apoptosis, and inflam-
mation response. Mitochondria serve as a signaling platform by the release of mitochondrial
components to the cytoplasm and ECM to modulate cellular communication. Mitochon-
drial signaling regulates not only physiological responses but also causes the detrimental
effects of oxidative damage. Mitochondrial dysfunction promotes the initiation of radiation-
related tumors through a variety of signaling pathways. Mitochondrial-targeted agents can
mitigate mitochondrial-mediated tumor microenvironment formation by suppressing the
appearance of activated fibroblasts after radiation A better understanding of the underlying
mechanisms will hopefully lead to a better understanding of radiation risks. Understanding
how radiation affects mitochondria and their roles in radiation carcinogenesis is critical
for understanding how radiation affects human health. More research into the role of
mitochondrial stress signaling in the onset and progression of radiation carcinogenesis is
needed in the future to better understand radiation risk.
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