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BACKGROUND: Organophosphate esters (OPEs) are common endocrine-disrupting chemicals, and OPE exposure may be associated with type 2 diabe-
tes (T2D). However, greater knowledge regarding the biomolecular intermediators underlying the impact of OPEs on T2D in humans are needed to
understand biological etiology.
OBJECTIVES: We explored the associations between OPE exposure and glycometabolic markers among older Chinese adults 60–69 years of age to
elucidate the underlying mechanisms using a multi-omics approach.
METHODS: This was a longitudinal panel study comprising 76 healthy participants 60–69 years of age who lived in Jinan city of northern China. The study
was conducted once every month for 5 months, from September 2018 to January 2019. We measured a total of 17 OPEs in the blood, 11 OPE metabolites
in urine, and 4 glycometabolic markers (fasting plasma glucose, glycated serum protein, fasting insulin, and homeostatic model assessment for insulin re-
sistance). The blood transcriptome and serum/urine metabolome were also evaluated. The associations between individual OPEs and glycometabolic
markers were explored. An adverse outcome pathway (AOP) was established to determine the biomolecules mediating the associations.

RESULTS: Exposure to five OPEs and OPE metabolites (trimethylolpropane phosphate, triphenyl phosphate, tri-iso-butyl phosphate, dibutyl phosphate,
and diphenyl phosphate) was associated with increased levels of glycometabolic markers. The mixture effect analysis further indicated the adverse
effect of OPE mixtures. Multi-omics analyses revealed that the endogenous changes in the transcriptional and metabolic levels were associated with
OPE exposure. The putative AOPs model suggested that triggers of molecular initiation events (e.g., insulin receptor and glucose transporter type 4)
with subsequent key events, including disruptions in signal transduction pathways (e.g., phosphatidylinositol 3-kinase/protein kinase B and insulin
secretion signaling) and biological functions (glucose uptake and insulin secretion), may constitute the diabetogenic effects of OPEs.
DISCUSSION: OPEs are associated with the elevated risk of T2D among older Chinese adults 60–69 years of age. Implementing OPE exposure reduc-
tion strategies may help reduce the T2D burden among these individuals, if the relationship is causal. https://doi.org/10.1289/EHP11896

Introduction
Diabetes mellitus, mainly type 2 diabetes (T2D), is one of the four
most prevalent noncommunicable diseases.1,2 In 2021, 536.6
(10.5%) million adults 20–79 years of age worldwide were esti-
mated to have diabetes, which resulted in 6.7 million deaths and
health expenditures totaling USD $966 billion.3 Diabetes impacts
aging societies, affecting an estimated 19.3% of adults 65–99 years
of age worldwide.4 Most of the diabetes burden falls on low- and
medium-income countries, such as China and India.5 In the past
decade, the number of diabetic patients in China increased from 90
(age-adjusted prevalence: 8.8%) to 140 million (10.6%),3 and the

number of older individuals (>65 years of age) with diabetes was
35.5 million, ranking first globally and accounting for 25% of the
elderly diabetes patients worldwide.4

The risk of T2D is multifactorial and determined by an interplay
of genetic and environmental factors.6 Family history of diabetes,
older age, unhealthy diet, physical inactivity, smoking, and over-
weight and obesity are associated with an increased risk of T2D; of
these, overweight and obesity was found to be the strongest risk
factor.7 Of note, the age-standardized prevalence of general obesity
amongChinese adults, is 14.0%,8 considerably lower than that among
American adults (43.3%).9 However, the estimated age-standardized
prevalence of diabetes is almost the same among Chinese and
American adults (12.4%vs. 14.3%).10,11 Genetic factors, a thrifty phe-
notype,12–14 and unique dietary patterns (e.g., low intake of whole
grains but high intake of refined grains)15 are suspected to be responsi-
ble for the increased risk of T2D in the Chinese population. In addi-
tion, since industrialization advancements and immense growth took
place after the 1980s, chemical pollution has been the leading envi-
ronmental cause of diseases and deaths in China.16 Emerging pollu-
tants are ever-evolving and are widely used in the industry and for
daily necessities worldwide, and their production is gradually shifting
to China owing to the increasingly strict regulations in Europe and
America. Extensive evidence suggests that disproportionate exposure
to environmental pollutants may be an underappreciated contributor
to disparities in the incidence of T2D.17

Long-term exposure to environmental pollutants combined
with frailty and a decline of immune function makes the elderly
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population particularly susceptible to T2D.18 Cohort studies have
revealed that exposure to endocrine-disrupting chemicals (EDCs)
disturbed the onset and progression of T2D among older Swedish
and Korean adults.19–21 As a substitute for polybrominated di-
phenyl ethers, organophosphate esters (OPEs) are commonly used
as flame retardants and plasticizers,22 and the global annual con-
sumption of OPEs exceeded 680,000 tons in 2015, with 30% of the
usage was reported in China.23 As a result, OPEs are ubiquitously
detected in Chinese individuals in the microgram to milliliter
range.24 Such high OPE exposure levels adversely impact the
reproductive, endocrine, cardiovascular, and nervous systems.25,26
In vivo and in vitro studies have reported that OPEs may cause dia-
betogenic effects27–29; however, evidence confirming these find-
ings at the population level is relatively scarce,30,31 and the
mechanisms underlying the indicated association remain largely
unknown. Further research and intervention are required to reduce
the individual and societal burden of diabetes among the Chinese
elderly population. Such studies should incorporate a comprehen-
sive clarification of modifiable diabetogenic OPEs and the mecha-
nistic standpoints in terms of the etiology of T2D. Furthermore,
high-throughput multi-omics (e.g., transcriptomics and metabolo-
mics) approaches can be used to fill in the knowledge gaps between
exposure to pollutants and the pathophysiology of T2D.32–34

The present study was part of a well-characterized longitudinal
multi-omics study, the China Biomarkers of Air Pollutant Exposure
(BAPE) Study, conducted among Chinese individuals 60–69 years
of age, with monthly longitudinal monitoring conducted over
5 months.35 The study aimed to a) explore the associations between
internal OPE exposure and glycometabolic markers, b) identify the
key OPEs associated with glycometabolic markers using mixture
effect analysis, and c) elucidate the potential biological perturba-
tions and mechanisms underlying the associations between key
OPEs and glucose homeostasis using multi-omics approaches and
an adverse outcome pathways (AOPs)model.

Methods

Study Design and Population
This investigation draws on the China BAPE longitudinal panel
study that included a visit each month for 5 months to healthy
older Chinese adults 60–69 years of age. In brief, 76 healthy
adults 60–69 years of age (50% males, 100% Chinese Han nation-
ality) were recruited from within the Jinan megacity, China. Each
participant was assessed five times over a 5-month period from
10 September 2018 to 19 January 2019, with a 1-month interval
between each assessment. To minimize the potential impact of
different dietary patterns, all participants were freely provided
three standardized and nutritionally balanced meals (e.g., rice,
meat, vegetable, and fruit; in line with local dietary habits) per
day for 5 continuous days before bio-sample collection and phys-
ical examination. All of the participants were required to finish a
questionnaire regarding family information, personal informa-
tion, and time–activity patterns prior to the physical examination.
During the physical examination, fasting venous blood samples
and midstream urine samples were collected from the participants
at 0700 hours and immediately stored at −80�C until further
processing. Of the 76 participants, 58 (76%) finished 5 visits;
12 (16%) finished 4 visits; 3 (4%) finished 3 visits; and 3 (4%) fin-
ished 2 visits. A total of 353 person-visits were included in our
analyses. The study protocol was approved by the ethics commit-
tee of the National Institute of Environmental Health (NIEH,
Chinese Center for Disease Control and Prevention, No. 201816).
Explicit written informed consent was acquired from all the par-
ticipants. The detailed protocol of the China BAPE Study has
been described in a previous publication.35

Characterization of OPE Exposure
SeventeenOPEsweremeasured in the blood samples (n=352), and
11 OPE metabolites (m-OPEs) were evaluated in the urine samples
(n=353) (Table S1). Analytical procedures for the measurement of
OPEs and the internal concentrations of OPEs were previously
reported.36 Urine creatinine (Cr) was measured using a Flex reagent
cartridge in a modified kinetic Jaffe assay (model RxL; Dade
Behring). Cr-adjusted concentrations of urine m-OPEs were used in
further analyses. Concentrations less than the limit of detection
(LOD)were imputed using the LOD divided by 2 for eachOPE bio-
marker. The pairwise correlations of the OPE exposures were calcu-
lated using the Spearman coefficient. All participants were self-
reported nonsmoking participants; thus, plasma cotinine levels were
measured using Hypersil GOLD C18 Selectivity HPLC Columns
(ThermoFisher Scientific) interfaced with an LC-Q-Exactive
Orbitrap Mass Spectrometer (ThermoFisher Scientific) to assess
whether the participants were either actively or passively exposed to
tobacco.

Assessment of Glycometabolic Markers
Glycometabolic marker levels, including fasting plasma glu-
cose (FPG) and glycated serum protein [GSP, an indicator of
short-to-medium–term (latest 2–3 wk) average blood glucose
levels], were measured in all blood samples (n=353) at Calibra
Diagnostics Co. Ltd. using the Cobas 8000 c702 and Cobas 6000
c501 (Roche) modular analyzer series, respectively. Fasting insulin
(FINS) levels were determined using a Millipex Human Metabolic
Hormone Panel V3 (HMHEMAG-34K-07; Merck) with a flu-
orescence detection system (Magpix; Luminex Corporation)
and the xPonent 4.2 (Luminex Corporation) and Bio-Plex
Manager (version 6.1; Bio-Rad) software, according to the
manufacturer’s protocol. Homeostatic model assessment for
insulin resistance (HOMA-IR) was performed using the fol-
lowing formula: [FPG ðin millimoles=literÞ×FINS ðin micro units=
milliliterÞ�=22:5.37

Transcriptome Analysis
Total RNAwas extracted from the leukocytes of venous blood sam-
ples (n=346). In brief, leukocytes were isolated from 5 mL of
whole blood. After centrifugation at 3,000 rpm for 5 minutes, the
leukocytes aggregated in the medium were extracted and washed
two times with phosphate-buffered saline. The leukocytes were then
lysed in 1 mL TRIzol Reagent (Invitrogen Corp.). Next, the total
RNA was assessed for quality and quantified using a NanoDrop
ND-2000 (ThermoFisher Scientific) and Agilent 2100 Bioanalyzer.
Library preparation with 100 ng of the extracted RNA was con-
ducted through the TruSeq Stranded Total RNA Library Prep Kit
(Illumina, Inc.). Last, the RNA was sequenced using the Illumina
Hiseq X Ten System (Novogene). Genes were identified by using
HISAT2 software and comparing the data with the human data-
base.38 Gene expression quantification was conducted using the
featureCounts read summarization program in the Subread software
package.39

Nontargeted Metabolome Assessment
Nontargeted metabolomics analyses were performed in serum
(n=353) and urine (n=346) samples. Sample processing, qual-
ity control and data extraction, metabolite identification, data
curation, data quantification, and data normalization were con-
ducted according to previously published protocols.40 In brief,
the samples were precipitated with methanol for 2 min under
severe vibration (GenoGrinder 2000), and then the metabolites
were extracted by centrifugation. The supernatant was then
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separated into five fractions: Two fractions were analyzed by two
different reverse phase/ultra-performance liquid chromatography–
mass spectrum (RP/UPLC-MS/MS) methods using positive ion
mode electrospray ionization (ESI). The remaining three fractions
were analyzed by hydrophilic interaction liquid chromatography
(HILIC)/UPLC-MS/MS with negative ion mode ESI, RP/UPLC-
MS/MS with negative ion mode ESI, or kept for backup, respec-
tively. The samples were put in TurboVap (Zymark) for a short
time to remove the organic solvent and then kept at –80�C over-
night until subsequent analysis.

The metabolomics analysis was conducted using Waters
ACQUITY UPLC and Q-Exactive high resolution/accurate mass
spectrometer (Thermo Fisher), which were connected to an
Orbitrap mass analyzer running at 35,000 mass resolution and a
heated ESI source. The first and second aliquots of sample extracts
were analyzed following acidic positive ion conditions that were
chromatographically optimized for more hydrophilic and hydro-
phobic compounds, respectively. The third aliquot of sample
extracts was gradient eluted from a separate dedicated C18 column
and analyzed using basic negative ion–optimized conditions. The
fourth aliquot of sample extracts was eluted from a HILIC column
and analyzed via negative ionization. The mass spectrum analysis
used dynamic exclusion that alternated between MS or data-
dependent multistage mass spectrometry (MSn) scans with scan
range covering 70–1,000 m/z.

After the raw mass spectrum data extraction and peak recog-
nition, the metabolites were identified by comparison with an in-
ternal library. The library was based on certified standards that
included a) m/z, b) retention time, and c) chromatographic data of
all molecules. In addition, metabolite identifications were based
on the following three criteria: a) retention time within 100 ms
tolerance, b) accurate mass match to the internal library (10-ppm
mass tolerance), and b) MS/MS fractions based on the ions pres-
ent in the experimental spectrum compared with the ions present
in the library spectrum. To ensure data quality, all peaks were
manually checked. Then the area under the curve was used to
quantify and all data were normalized before further analysis.

For quality control (QC) purposes, three types of controls were
analyzed in concert with the experimental samples: a) process
blanks, b) mixed matrix samples (10 lL of each sample), and c) a
cocktail of QC standards spiked into samples. All the experimental
samples were randomly distributed on the platform and QC sam-
pleswere also evenly distributed among the injections.

Statistical Analyses
All datawere analyzed according to the following pipeline: a) a lin-
ear mixed-effects model (LMM) was conducted to explore the
associations between OPE exposures and the glycometabolic
markers; b) quantile g-computation (qgcomp)41 was used to assess
the effects of OPE mixtures on the glycometabolic markers and to
identify the most important OPEs with relative positive weights
>10% within the OPE mixtures; c) the associations between each
key OPE and each biomolecule (transcripts and metabolites
obtained using multi-omics profiling) were examined using LMM,
and the biomolecules mediating the impact of each key OPE on a
specific glycometabolic marker were determined using the causal
inference test (CIT)42; and d) Integrative Pathway Analysis (IPA)
of the biomolecular intermediators was conducted to investigate
the underlying biological mechanisms43 (Figure 1). The detailed
processes are described in the following sections.

LMM
Themeasurement values of certain OPE exposures and glycometa-
bolic markers were logarithm (base 10)-, square root-, power one-

third-, square-, or cubic-transformed to approach Gaussian distri-
bution (Table S1). The maximummissing rate for certain exposure
variables (blood OPEs) was 0.28% owing to the runout of one
blood sample. After imputing the missing data for exposures using
a chained equation (mice package with the predictive mean match-
ing method),44 the exposures were standardized through z-score
normalization to denote a change of 1 standard deviation (SD) in
the glycometabolic marker values to facilitate their comparisons.
A LMMwith participant-specific intercepts and “unstructured” co-
variance structure was used to independently assess the associa-
tions between exposure to each OPE and each glycometabolic
marker. Each main model was adjusted for the set of predefined
adjustment factors according to previous studies45,46: age (continu-
ous), sex (female/male), body mass index [BMI; continuous; cal-
culated as weight divided by height squared (in kilograms per
meter squared)], education level (below primary school, primary
school, junior school, senior high school, and university), financial
income [continuous; annual household income (in 10,000 CNY)],
plasma cotinine concentration (continuous), and other diet (the
total frequency of extra food consumption in addition to the pro-
vided standardized meals during the 3-d investigation). Among
them, information on age, sex, education level, and financial
income was assessed at the first visit for all of the participants,
whereas other time-varying factors (BMI, plasma cotinine concen-
tration, and other diet) were assessed at all five visits. Other diet in-
formation was recorded using a daily time–activity questionnaire
at each visit, and the summarized results are shown in Table S2.
Stratification analysis of the associations between OPE exposures
and glycometabolic markers were conducted by sex. Multiple hy-
pothesis testing-corrected p-values were obtained by calculating
the false discovery rate (FDR) and the estimated proportion of false
discoveries made vs. the number of total discoveries made at a
given significance level (a).47 In multiple testing corrections, FDR
was statistically significant at <5%. b estimates and standard errors
from the models were converted to percentage change values with
the 95% confidence intervals (95% CIs) associated with 1-SD
increases in individualOPE concentrations.

qgcomp
The OPEs that were found to be significantly associated with each
glycometabolic marker after multiple testing using LMM were
packed as a chemical mixture. The qgcompmethodwas performed
to assess the effects of the OPE mixtures on the glycometabolic
markers based on parameter inference via the qgcomp package in
R. This approach combined the inferential simplicity of weighted
quantile sum regression (WQS) with the flexibility of g-computa-
tion.41 The advantage of qgcomp was that exposures could interact
with outcomes in any directions. Gaussian distributions were
specified as link functions, and parameter q was set to four in the
linear model. Five hundred bootstrap iterations were performed to
calculate the 95%CI for eachmixture.With the exception of prede-
fined adjustment factors, visit time was included as an adjusting
covariate for qgcomp analysis. OPEs with positive weights of
>10%were identified as key components.

CIT
To identify the biomolecular intermediates, the causal relationship
inference of OPEs–biomolecular intermediators–glycometabolic
markers was assessed using the CIT.42 In brief, eachOPE–metabo-
lite/transcript–glycometabolic marker relationship was individu-
ally analyzed to classify the components as consequential to/
mediated by/independent of expression of gene or metabolite. In
this study, causal inference was defined by the following four cri-
teria: a) the OPEs and glycometabolic markers were significantly
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correlated, b) the OPEs were significantly associated with the
expression of biomolecules after adjusting for the glycometa-
bolic markers, c) the expression of biomolecules was signifi-
cantly associated with the glycometabolic markers after
adjusting for OPEs, and d) the OPEs were independent of the
glycometabolic markers after adjusting for the expression of
biomolecules. In addition to predefined adjustment factors, visit
time (month of sample collection) was included as an adjust-
ment covariate for the CIT model. To summarize the p-values
for the whole CIT, the intersection–union test framework was
used as the maximum p-value of the four test components.42

IPA
IPA canonical pathway analysis of all the significant biomolecular
intermediators (both genes and metabolites) of the causal relation-
ship between each OPE and glycometabolic markers was per-
formed using IPA software (version 68752261; Qiagen; https://
digitalinsights.qiagen.com/IPA). The corresponding biological
pathways of these transcripts and metabolites were identified for
each OPE independently. Canonical pathways with a p<0:05
(Fischer’s exact test) were regarded as statistically significant. IPA
helps to uncover new biological insights and interpretations by
combining an enormous schemata of existing knowledge from the
literature with a massive collection of gene and metabolite expres-
sion measurements.

Sensitivity Analysis
Sensitivity analysis was performed to assess various models by
controlling for one of the following covariates in the main
model: month of sample collection, tea consumption (number
of cups over 3 d), and frequency of alcohol consumption (over
3 d). A two-sided p<0:05 in sensitivity analysis indicated sta-
tistical significance. All statistical evaluations were conducted
using R (R Development Core Team) with the lme4 and
qgcomp packages.

Results

Overview of OPE Exposure and Glycometabolic Markers
Participant characteristics are presented in Table 1. Of all partici-
pants, 38 (50%) were women, and the mean±SD participant age
was 64:5± 4:5 y. The concentrations of the 17 blood OPEs and 11
urinary OPE metabolites over five longitudinal visits are summar-
ized in Figure 2A and Table S1 (see also Excel Table S1). The con-
centrations of tributyl phosphate (TBP), triphenyl phosphate
(TPHP), and tri(1-chloro-2-propyl) phosphate (TCPP) were rela-
tively high in the blood samples, whereas those of bis(2-
chloroethyl) phosphate (BCEP), di(2-ethylhexyl) phosphate
(DEHP), and bis(1,3-dichloro-2-propyl) phosphate (BDCPP) were
relatively high in the urine samples. The pairwise Spearman corre-
lations of the OPE exposures are shown in Figure S1. Meanwhile,

Figure 1. Overview of the study design. Diagram of the present study design. Internal OPE exposure of 76 healthy older Chinese adults 60–69 years of age
with five monthly longitudinal sample (blood and urine) collections was characterized previously. Glycometabolic markers (FPG, GSP, FINS, and HOMA-IR)
were measured, and multi-omics profiling (peripheral blood transcriptome, serum metabolome, and urine metabolome) was conducted. Exposure–health out-
come associations and multi-omics integrative analyses were further used to identify the key OPEs and to interpret the biological mechanisms underlying the
perturbations of glycometabolic markers, respectively. Note: CIT, causal inference test; FINS, fasting insulin; FPG, fasting plasma glucose; GSP, glycated se-
rum protein; HOMA-IR, homeostatic model assessment for insulin resistance; IPA, Ingenuity Pathway Analysis; LMM, linear mixed-effects model; OPE, or-
ganophosphate ester; qgcomp, quantile g-computation.
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four glycometabolic markers (FPG, GSP, FINS, and HOMA-IR)
reflecting the status of insulin resistance and glycometabolic home-
ostasis are shown in Figure 2B (see also Excel Table S2).

Association between OPE Exposure and Glycometabolic
Markers
The percentage change in estimates and 95% CIs of the glycome-
tabolic markers for a 1-SD increase in the concentration of each
OPE are shown in Figure 3A and Excel Table S3. After multiple
testing corrections, 6, 7, 3, and 9 OPEs were found to be signifi-
cantly associated with FPG [TPHP, trimethylolpropane phosphate
(TMPP), 2-ethylhexyl diphenyl phosphate (EHDPP), diphenyl
phosphate (DPHP), dibutyl phosphate (DBP), and BCEP], GSP
[TPHP, TMPP, EHDPP, hydroxyphenyl 2-ethylhexyl diphenyl
phosphate (EHDPP-OH), DPHP, DBP, and BCEP], FINS (TPHP,
DPHP, and DBP), and HOMA-IR [TPHP, tri-n-butyl phosphate
(TnBP), TMPP, tri-iso-butyl phosphate (TiBP), TBP, EHDPP,
DPHP, DBP, and BCEP], respectively. Of these OPEs, blood
TPHP and urinary DBP, and DPHP showed an undesirable posi-
tive influence on all four glycometabolic markers. The results of
the sensitivity analysis were consistent with the findings of the
main model (Figure S2 and Excel Table S4). A stratification analy-
sis of effect modification of sex was conducted (Figure S3 and
Excel Table S5), and the correlation directions and significance
between OPE exposure and glycometabolic marker changes in dif-
ferent sex were generally consistent.

Identification of the Key OPEs
After multiple testing corrections, OPEs that were associated with
the four glycometabolic markers were grouped as four different mix-
tures for subsequent qgcomp analyses. Figure 3B shows the log-

Blood Urine

.

FINS(µU/m ) 
HOMA−IR

GSP(µmol/L)

10−1 103100 102101

A

B

Figure 2. Characterization of the internal exposure of OPEs and glycometabolic markers as part of this study (n=76 with 353 measurements). (A) Profiling of
the internal exposures (blood and urine) of OPEs among healthy older adults over the five monthly longitudinal visits (see also Excel Table S1). (B)
Distribution of glycometabolic markers among healthy older adults over the five monthly longitudinal visits (see also Excel Table S2). Note: Cr, creatinine;
Dec, December; FINS, fasting insulin; FPG, fasting plasma glucose; GSP, glycated serum protein; HOMA-IR, homeostatic model assessment for insulin resist-
ance; Jan, January; Nov, November; Oct, October; OPE, organophosphate ester; Sep, September.

Table 1. Demographics of the study participants in the China BAPE Study
2018–2019 (n=76 with 353 measurements).

Variables n (%) or mean±SD

Age (y) 65:1± 2:8
Sex (male) 38 (50.0)
BMI (kg=m2) 25:0± 2:4
Highest education level
Primary school or below 8 (10.5)
Junior middle or high school 54 (71.1)
College graduate or beyond 14 (18.4)
Annual financial income ( × 10,000 CNY)
≤7 25 (32.9)
7–10 26 (34.2)
>10 25 (32.9)

Tea consumption (number of cups/3 d) 8:0± 10:4
Alcohol consumption (frequency/3 d) 0:02± 0:2
Plasma cotinine concertation (ng/mL) 1:0± 5:7
Other diet (frequency/3 d) 2:2± 2:6
Month of sampling (n samples)
September 66 (18.7)
October 74 (21.0)
November 71 (20.1)
December 71 (20.1)
January 71 (20.1)

Note: BAPE, Biomarkers of Air Pollutant Exposure; BMI, body mass index; SD, stand-
ard deviation.
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B

C

Figure 3. OPE exposure–glycometabolic marker association and qgcomp analyses–determined exposure to the key OPEs among healthy older Chinese adults
60–69 years of age. (A) Forest plots of the results of the LMM between OPE exposure and glycometabolic markers (FPG, GSP, FINS, and HOMA-IR). The
FDR-adjusted p-values of each predictor are given as *FDR <0:05 (see also Excel Table S3). (B) Effect diagrams of the changes in the z-scores of glycometa-
bolic markers with a quantile increase in the mixture concentration (see also Table S3). (C) Bar plots of the relative weight of each pollutant within four chem-
ical mixtures constructed to assess their effects on glycometabolic markers (see also Table S4). Note: FDR, false discovery rate; FINS, fasting insulin; FPG,
fasting plasma glucose; GSP, glycated serum protein; HOMA-IR, homeostatic model assessment for insulin resistance; LMM, linear mixed-effects model;
OPE, organophosphate ester; qgcomp, quantile g-computation.

Environmental Health Perspectives 047009-6 131(4) April 2023



transformed concentrations of four OPE mixtures that were posi-
tively associated with the z-scores of FPG (p<0:001), GSP
(p=0:001), FINS (p=0:002), and HOMA-IR (p=0:005), respec-
tively (see also Table S3). Each quartile increment in the mixture
concentration was associated with elevated z-scores of 0.06 (95%
CI: 0.03, 0.08), 0.04 (95% CI: 0.02, 0.05), 0.06 (95% CI: 0.02,
0.09), and 0.12 (95% CI: 0.04, 0.20) for FPG, GSP, FINS, and
HOMA-IR, respectively. In Figure 3C and Table S4, the weight
of each OPE reflects the contribution of the correlated compo-
nents to the overall mixture effect. Within the mixtures, TMPP

had the highest weight (54%) for elevated FPG, followed by
DBP (24%) and TPHP (14%), whereas exposure to BCEP and
DPHP contributed minimally (<10%) to the overall mixture
positive effect. TMPP contributed to 46% of the overall positive
mixture effect of elevated GSP, followed by DBP and TPHP
(26% and 19%, respectively). TPHP and TiBP had the highest
weights of contribution to FINS and HOMA-IR for positive
weight, at 44% and 29%, respectively. For negative weight,
EHDPP had the highest weights for FPG, GSP, and HOMA-IR
with 100%, 97%, and 57%, respectively. Ultimately, five OPEs
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Figure 4. Serum and urine metabolome profiling of exposure to the key OPEs among healthy older Chinese adults 60–69 years of age. (A) The number of en-
dogenous metabolites based on metabolic classifications in the serum and urine. (B,C) Volcano plots of the coefficient estimates of the key OPEs vs. the FDR
values in the associations of the exposure–serum metabolome (B; see also Excel Table S6) and exposure–urine metabolome (C; see also Excel Table S7).
Coefficient estimates are expressed as percentage changes (%) in FPG, GSP, FINS, and HOMA-IR per 1-SD change in each exposure, which was previously
transformed to approach normality. The dashed horizontal line shows where the FDR value equals 0.05. (D,E) Network diagram of the association analysis
between exposure to the key OPEs and the serum/urine metabolome (only metabolites with associations of FDR <0:001 are shown; see also Excel Tables S6
and S7). The size of the node represents the degree of the exposure–metabolite connection, and the color of the edge represents the coefficient estimate of the
exposure–metabolite association. (F,G) Stacking histograms of the percentages (%) of positively and negatively associated metabolites within each class, as
well as the overall average for the serum and urine metabolomes with an FDR value of <0:05 (see also Tables S5 and S6). Note: FDR, false discovery rate;
FINS, fasting insulin; FPG, fasting plasma glucose; GSP, glycated serum protein; HOMA-IR, homeostatic model assessment for insulin resistance; OPE, or-
ganophosphate ester; SD, standard deviation.
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(TMPP, TPHP, TiBP, DBP, and DPHP) with positive weights
of >10% were considered the key OPEs and were suspected to
be responsible for the increased risks of glycometabolic disor-
der and therefore were included in further analyses.

Longitudinal Correlations of OPEs–Metabolites
The numbers of endogenous metabolites, based on metabolo-
mics classifications in the serum and urine samples, are shown
in Figure 4A. The numbers and directions of the associations

between the five key OPEs and the respective serum and urine
metabolomes are presented in Figure 4B,C. A total of 1,354
associations were found (710 and 644 for the serum and urine
metabolomes, respectively; FDR <0:05; Excel Tables S6 and
S7). The network diagram shows the exposure–metabolite pair-
wise associations with FDR <0:001 for the serum and urine
metabolomes (Figure 4D,E; Excel Tables S6 and S7; raw serum
and urine metabolome data in Excel Tables S8 and S9).
Specifically, for the serum metabolome, the top three OPEs of
high connective degree included TPHP, TMPP, and DBP. The
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top three metabolite classes with positive associations were
peptides (20%), cofactors and vitamins (12%), and energy
(12%), whereas those with negative associations were peptides
(18%), carbohydrates (15%), and nucleotides (12%) (Figure 4F;
Table S5). For the urine metabolome, DBP, DPHP, and TPHP
were the three OPEs with the highest connective degree and
were found to have mostly negative correlations. The top three
metabolite classes with positive associations were carbohy-
drates (10%), secondary metabolites (10%), and cofactors and
vitamins (8%), whereas those with negative associations were
nucleotides (17%), global metabolites (12%), and cofactors and
vitamins (11%) (Figure 4G; Table S6).

Longitudinal Correlations of OPEs–Transcripts

The associations between five key OPEs and the blood transcrip-
tome were also explored, and the numbers and directions of the
associations are displayed using volcano plots (Figure 5A; Excel
Table S10). A total of 16,585 associations (8,673 positive and
7,912 negative) were significant. The network diagram shows the
OPE–transcript pairwise associations of the top 100 transcripts
selected for absolute effect value, with an FDR of <0:001 for each
OPE (Figure 5B; Excel Table S10). Specifically, the top three
OPEs correlated with gene expressions of high connective degree
were TPHP (3,875 positive and 3,476 negative associations), DBP

A

B C

Figure 5. Transcriptome profiling of exposure to the key OPEs among healthy older Chinese adults 60–69 years of age. (A) Volcano plots of the coefficient
estimates for exposure to the key OPEs vs. the FDR values among the exposure–transcriptome associations (see also Excel Table S10). Coefficient estimates
are expressed as percentage changes (%) of FPG, GSP, FINS, and HOMA-IR per 1-SD change in each exposure, which was previously transformed to
approach normality. The dashed horizontal line shows where the FDR value equals 0.05. (B) Network diagram of the association analysis between exposure to
the key OPEs and the blood transcriptome (only the top 100 transcripts of each exposure with associations of FDR <0:001 are shown). The size of the node
represents the degree of exposure–transcript connection, and the color of the edge represents the coefficient estimates of exposure–transcript association (see
also Excel Table S10). (C) Stacking histograms of the counts of the positively and negatively associated transcripts for each exposure with an FDR value of
<0:05. (D) Tripartite network of the inferred causal relationships (top 150 genes selected for the absolute effect value for each OPE with an FDR value of
<0:1) of exposure to the key OPEs to the outcome (FPG and GSP) through transcriptome mediators (see also Excel Table S12). The size of the node represents
the degree of exposure–transcript–outcome connection. (B,D) share a common legend. Note: FDR, false discovery rate; FINS, fasting insulin; FPG, fasting
plasma glucose; GSP, glycated serum protein; HOMA-IR, homeostatic model assessment for insulin resistance; OPE, organophosphate ester; SD, standard
deviation.
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(3,056 positive and 2,653 negative associations), and TMPP
(1,741 positive and 1,783 negative associations) (Figure 5C).

Biomolecules Mediating the Effects of OPEs on
Glycometabolic Markers
A tripartite network plot of OPEs–metabolites–glycometabolic
markers constructed using all of the significant metabolites and
transcripts as potential biomolecular intermediators is presented
in Figure 6A (see also Excel Table S11). A total of 106 serum
and 29 urinary metabolites were inferred as biomolecular inter-
mediators, with an FDR of <0:2. Specifically, 87, 60, 31, and 10
metabolites were inferred as biomolecular intermediators of the
effects of TMPP, TPHP, DPHP, and DBP on glycometabolic
markers, respectively (the number of common and specific
metabolites of each OPE are shown in Figure S4A). In addition,
1,651 transcripts were inferred as biomolecular intermediators,
with an FDR of <0:1, and a network plot of OPEs–transcript–
glycometabolic markers is presented in Figure 5D (top 150 genes
selected for the absolute effect value for each OPE; see also
Excel Table S12). Specifically, 1,248, 649, and 116 transcripts
were inferred as biomolecular intermediators of the effects of
TMPP, TPHP, and DBP on glycometabolic markers, respectively
(the number of common and specific transcripts of each OPE are
shown in Figure S4B).

IPA for Biomolecular Intermediators
Biomolecular intermediators of the diabetogenic effects of TPHP,
TMPP, DBP, and DPHP were included in the IPA analysis.
Representative canonical pathways (p<0:05) shared by at least two
OPEs are presented in Figure 6B and Excel Table S13. Among
these, several pathways [e.g., peroxisome proliferator-activated
receptor alpha (PPARa)/retinoid X receptor alpha (RXRa) activa-
tion pathway, leptin signaling in obesity, G-protein alpha-s (Gas)
signaling, myelocytomatosis viral oncogene (MYC)-mediated apo-
ptosis signaling, and pyroptosis signaling] simultaneously appeared
in the analysis results of at least three key OPEs. Core perturbed
genes and metabolites within the abovementioned representative
pathways were integrated to propose putative AOPs for impaired
glucose homeostasis after OPE exposure (Figure 7A). These AOPs

began with possible molecular initiation events (MIEs): activation
of first apoptosis signal ligand (FasL) and protease-activated recep-
tor (PAR), as well as inhibition of tumor necrosis factor (TNF), TNF
receptor (TNFR), insulin receptor (IR), lysophosphatidic acid recep-
tor (LPAR), and glucose transporter type 4 (GLUT4). Alterations of
these ligands and membrane receptors caused a series of key events
(KEs) at the molecular/cellular levels, such as KE-1, those involved
in aberrant expression of kinases [phosphatidylinositol 3-kinase
(PI3K), protein kinase B (AKT), and glycogen synthase kinase-3
(GSK3)], the apoptosis/autophagy regulator Bcl2-antagonist of cell
death protein (BAD), the transcription factor nuclear factor kappa B
(NF-jB), metabolic enzymes (e.g., citrate synthase and succinate
dehydrogenase), and tricarboxylic acid (TCA) cycle–related
metabolites (e.g., citrate and succinate). The downstream KEs at
the organ/system levels (KE-2; e.g., those involved in glucose
uptake, glycogen synthesis, insulin secretion, energy metabolism,
oxidative stress, and inflammation) were subsequently altered
and were responsible for perturbations in glucose homeostasis
eventually leading to T2D. In general, the up-regulation or down-
regulation trends of most MIEs and KEs were consistent among the
key OPEs, except for certain molecules (e.g., PAR, PPARa, BAD,
andGSK3) for urinaryDBP andDPHP.

Discussion
OPEs are widely used as a substitute for polybrominated di-
phenyl ethers and are ubiquitously detectable in environmental
matrices and human bodies, which has caused considerable con-
cern in terms of their adverse effects worldwide. The present
study, for the first time, comprehensively profiled the associations
between OPE exposure and insulin resistance and glycometabolic
homeostasis among healthy older Chinese adults 60–69 years of
age and systematically explored the underlying biological mecha-
nisms using multi-omics profiling.

Identification of the Key OPEs
In this study, exposure to five key OPEs and m-OPEs (TMPP,
TPHP, TiBP, DBP, and DPHP) was found to be associated with
elevated levels of glycometabolic markers, independent of the tra-
ditional risk factors for T2D (e.g., age, sex, BMI, and diet). To the

D

Figure 5. (Continued.)
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best of our knowledge, the observed associations were first
reported at the population level; moreover, some associations had,
to varying extents, a priori credibility based on the previous exper-
imental literature (Table S7).28,29,48–62 Specifically, although
TMPP, TPHP, and DPHP were widely detected in the Chinese
population at concentration ranges of 0:24–1:68 ng=mL,24,63,64 to
the best of our knowledge, our study is the first to reveal the adverse
correlations between bloodTPHP and itsmetabolite DPHP in urine
and glucose homeostasis within humans. These findings are in line
with those of previous experimental studies reporting the diabeto-
genic effects of TPHP and DPHP in vivo and in vitro. For instance,
exposure to TPHP results in a higher glucose level and HOMA-IR
index and inhibits the level of adiponectin, an insulin-sensitizing
hormone, in adult male mice49 and pubertal mice.27 Likewise,

numerous in vitro studies have confirmed the diabetogenic effects
of TPHP and DPHP on 3T3-L1 adipose and HepG2 cells.59–61
However, no previous studies have yet reported the relationships
between exposure to TMPP, TiBP, andDBP and abnormal glucose
metabolism. Thus, further health hazard assessments through epi-
demiological studies or in vivo and in vitro experiments are war-
ranted. In addition, it is noteworthy that the dominant pollutants
differed between specific glycometabolic markers. For instance,
TMPP and TPHP were the leading contributors of elevated FPG
and FINS levels, respectively, possibly because of their different
diabetogenic potential in triggering MIEs or downstream KEs.
Therefore, subsequent CIT and multi-omics analyses were con-
ducted to determine the biomolecular intermediators and obtain
mechanistic insights into specific exposure–outcome associations.

A

B

Figure 6. Inferred biomolecular intermediators of insulin resistance and glycometabolic disorders and the results of Integrative Pathway Analysis among
healthy older Chinese adults 60–69 years of age. (A) A tripartite network of the inferred causal relationships (causal inference analysis with an FDR value of
<0:1) between exposure to the key OPEs and the outcomes (FPG, GSP, FINS, and HOMA-IR) through serum and urine metabolite mediators. The size of the
node represents the degree of the exposure–metabolite–outcome connection (see also Excel Table S11). (B) Bar plots of the representative canonical pathways
of the statistically significant biomolecular intermediators (genes and serum/urine metabolites) for TMPP, TPHP, DBP, and DPHP (p<0:05, see also Excel
Table S13). The negative logarithm of the p-value is displayed on the x-axis, and the color of the bar represents the gene/metabolite ratio. The dashed vertical
line shows where p=0:05. The red and blue texts represent the pathways previously reported in experimental studies and reported for the first time, respec-
tively. Note: DBP, dibutyl phosphate; DPHP, diphenyl phosphate; FINS, fasting insulin; FPG, fasting plasma glucose; GSP, glycated serum protein; HOMA-
IR, homeostatic model assessment for insulin resistance; OPE, organophosphate ester; TMPP, trimethylolpropane phosphate; TPHP, triphenyl phosphate.
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Determination of Biomolecular Intermediators and Relevant
Pathways

In this study, we comprehensively characterized the biomolecular
changes in genes and metabolites induced by the key OPEs in
healthy older adults for the first time. Some endogenous changes
were first unveiled at the population level, including PI3K/AKT
signaling [PI3K, AKT, and mitogen-activated protein kinase
kinase kinase 8 (MAP3K8) inhibition], IR signaling [IR and
growth factor receptor-bound protein 2 (GRB2) inhibition and IR
substrate activation], PPARa=RXRa signaling (protein kinase A
and PPARa activation, and RXRa and NF-jB inhibition), insulin
secretion signaling [eukaryotic initiation factor 2 (EIF2) activa-
tion], and TCA cycle processes (citrate synthase, succinate dehy-
drogenase, and citrate inhibition). Our results were consistent with

those of a previous in vitro study that reported that PI3K, AKT, and
PPARa mRNAs were significantly down-regulated after TPHP
treatment of L02 cells.65 Dysregulation in PI3K/AKT signaling,
especially AKT activity inhibition, increases insulin resistance
among patients with T2D.66 Besides, an in vivo study conducted in
mice, showed that TPHP reduces the abundance of citrate and suc-
cinate within the TCA cycle52; moreover, the down-regulation of
succinate dehydrogenase can impair glucose metabolism in islet
cells in T2D.67 Similar to our findings, previous toxicological stud-
ies have reported that TPHP could induce cell apoptosis,68,69
autophagy,70 oxidative stress,71 and glucocorticoid regulation dis-
ruption72–74 (Table S8).48,60,68,75–93 Alterations of some other
pathways (e.g., leptin signaling,94 relaxin signaling,95 and Ga12=13
signaling96) are also closely related to insulin resistance and glu-
cose metabolism, although they have not yet been reported to

Figure 7. AOP linking OPE exposure and adverse outcome and schematic of the putative biological mechanisms of OPEs exposure–induced type 2 diabetes
outcome. (A) An AOP diagram depicting the MIEs in response to exposure to the key OPEs and the subsequent series of KEs, for example, multiple signal
transduction and metabolic pathway perturbations (KE-1 at the molecular/cellular level) and impaired biological functions (KE-2 at the organ/system level),
which ultimately induced glycometabolic disorder-related adverse outcomes. Alterations of genes (blue) and metabolites (purple) are represented with colored
boxes. (B) Schematic of the putative biological mechanisms that mediate the linkages between OPEs exposure and apical type 2 diabetes outcome. Note: AOP,
adverse outcome pathway; KEs, key events; MIEs, molecular initiating events; OPE, organophosphate ester; T2DM, type 2 diabetes mellitus.
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induce diabetogenic effects upon OPE exposure. In addition, to a
certain extent, bloodTMPP andTPHP share themost common bio-
molecular intermediators and pathways. In contrast, urinary DBP
and DPHP have relatively unique molecular characteristics, sug-
gesting differential modes of action and diabetogenic potentials,
which are perhaps caused by their different chemical structures.

PutativeAOPsLinkingOPEExposure and theOutcomes ofT2D
AOPs can address the existing gaps in biological knowledge and
provide evidence-based mechanistic insights into the associations
between environmental exposure and health outcomes. To the best
of our knowledge, our study is the first to present a putative net-
work of AOPs linking OPE exposure with possible MIEs to down-
stream KEs that ultimately manifest as outcomes of T2D. The
AOPs presented herein revealed that OPE exposure could trigger
various MIEs, for example, aberrant alterations of ligands and
membrane receptors (TNF/FasL, IR, TNFR, and GLUT4) that can
subsequently disturb the downstream signal transduction and
metabolic pathways [e.g., PI3K-AKT signaling, IR signaling,
PPARa=RXRa activation, and TCA cycle (as KE-1)] and biologi-
cal processes [e.g., glucose metabolism (as KE-2)]. These path-
ways primarily communicate through the PI3K-AKT signaling
hub, which is a well-recognizedmajor effector of metabolic insulin
action. Specifically, IRs stimulate a signaling cascade, leading to
the phosphorylation/activation of IR substrates and the subsequent
activation and phosphorylation of the PI3K cascade and AKT,
respectively.97 This further regulates GSK3 activation98 and
GLUT4 expression on the cell membrane,99 contributing to glyco-
gen synthesis and glucose transportation, respectively. Moreover,
we observed broad perturbations in the downstream events of AKT
phosphorylation, with abnormal pathophysiological functions
(e.g., apoptosis, autophagy, oxidative stress, and inflammation),
resulting in the outcome of T2D.100 Our findings are also in line
with those of previous in silico and in vitro analyses showing that
TPHP exposure can trigger the PI3K/AKT pathway as a KE,65

highlighting its potential role as a promising preventive interven-
tion or pharmacological target for OPE-associated T2D.

Strengths and Limitations
The main strength of this study is the multidimensional integration
of the transcriptome and metabolome using two different biologi-
cal markers (i.e., blood and urine), providing a reliable assessment
of OPE exposure and endogenous biomolecular perturbations
while considering the critical aging window.101 Besides, the five
longitudinal repeated measurements helped avoid biases intro-
duced by exposure measurement errors of one-time sampling
and presented the molecular scenarios of the effects of differential
exposure at individual levels, with the potential to explore causal
associations. In addition, the availability of detailed and longitudi-
nal data pertaining to participant demographics and time–activity
helped us adjust for confounding factors in the statistical analyses
andminimize the effects of other risk factors on our findings.

This study also has some limitations. First, the complete exclu-
sion of potential uncontrolled confounders was impossible because
reliance on uncontrolled longitudinal associations limits the ability
to make causal determinations. Second, the population representa-
tion and sample size of our study could be inadequate, warranting
further evaluations among different ethnic groups and larger popu-
lation sizeswith a nested case–control design or validations in toxi-
cological research in vivo. Third, as potential EDCs, OPEs may
have sexually dimorphic effects on glucose metabolism. Given the
relatively small sample size and complex mixture of OPE expo-
sures, it was underpowered to assess sex-stratified analyses in our
exploratory study statistically. Future studies with a larger sample

size may evaluate the sex-specific effects of these OPEs on glucose
metabolism. Last, owing to the observational design of this study
and the high dimensional feature of multi-omics data, caution is
warrantedwith regard to whether these associations are causal.

Conclusions and Implications
The present exploratory study suggests that several OPEs may be
independently and jointly associated with abnormal glycometabo-
lism. High production volumes and the broad applications of OPEs
in China, combined with the persistence and mobility characteris-
tics, have led to the ever-increasing bioaccumulation of OPEs, pos-
sibly contributing to the high risk of T2D among the Chinese
population. The putative AOPs linking OPE exposure to T2D,
including the activation of a series of MIEs (e.g., IR, TNFR, and
PAR) and the disruption of multiple downstream KEs (e.g., PI3K/
AKT, PPARa=RXRa activation, and insulin secretion), were also
established (Figure 7B). Our findings advance the existing knowl-
edge on the environmental bases of the etiology of T2D among
older Chinese adults 60–69 years of age and shed light on the evi-
dence linking chemical safety and noncommunicable disease in
public health.
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