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Abstract: Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment.
Although previous study demonstrated the neuroprotective effects of Hericium erinaceus (H.E.),
the mechanisms of H.E. treatment on the neuroinflammatory response, neurotransmission, and
related metabolites remain largely unknown. We demonstrated that 3-AP rats treated with 25 mg/kg
H.E. extracts had improved motor coordination and balance in the accelerated rotarod and rod
tests. We showed that the H.E. treatment upregulated the expression of Tgfb1, Tgfb2, and Smad3
genes to levels comparable to those in the non-3-AP control group. Interestingly, we also observed
a significant correlation between Tgfb2 gene expression and rod test performance in the 3-AP saline
group, but not in the non-3-AP control or H.E.+3-AP groups, indicating a relationship between Tgfb2
gene expression and motor balance in the 3-AP rat model. Additionally, we also found that the H.E.
treatment increased mitochondrial COX-IV protein expression and normalized dopamine-serotonin
neurotransmission and metabolite levels in the cerebellum of the H.E.+3-AP group compared to
the 3-AP saline group. In conclusion, our findings suggest that the H.E. treatment improved motor
function in the 3-AP rat model, which was potentially mediated through neuroprotective mechanisms
involving TGFB2-Smad3 signaling via normalization of neurotransmission and metabolic pathways.

Keywords: Hericium erinaceus; cerebellar ataxia; incoordination; brain inflammation; neuroprotective
agents; neurotransmission

1. Introduction

Cerebellar ataxia is a progressive motor disorder characterized by dyssynergia, dys-
metria, balance impairment, and gait instability [1,2]. The etiology of this disorder can be
sporadic or hereditary [1,3], with the majority of cases showing neurodegeneration in the
cerebellum leading ataxia [4,5]. The ataxic motor dysfunctions are associated with alter-
ations in cerebellar circuit connectivity and Purkinje cell functions [6–9]. Lesions in Purkinje
cells and connected region have been shown to induce motor and balance impairments in
ataxic-like animal models [10,11]. Currently, there are no effective treatments for cerebellar
ataxia due to its complex pathophysiology [12]. Existing physical therapy or training offer
only limited therapeutic effects against motor and balance deterioration. Therefore, an
effective treatment is needed to improve or alleviate the ataxic symptoms [12].

A growing number of studies have shown that medicinal mushrooms can have ben-
eficial effects in neurodegenerative diseases [13–17]. These mushrooms contain various
bioactive compounds with anti-inflammatory and antioxidative properties that can tar-
get multiple therapeutic pathways [16,18]. Although studies have shown that extracts
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of medicinal mushroom can improve motor function in ataxia models, there is a lack of
mechanistic study on their therapeutic effects [19,20]. Hericium erinaceus (H.E.) or lion’s
mane mushroom is a medicinal mushroom that has long been used as a traditional Chi-
nese medicine. It is well known for its diverse beneficial effects on the brain, including
neurotrophic [21,22], antiaging [17,23], and antioxidative [24,25] activities. Recent studies
have reported that H.E. has therapeutic potential against neurological disorders includ-
ing Alzheimer’s disease [17,26,27], Parkinson’s disease [18,28,29], frailty [23,30], depres-
sion [31,32], and obesity-induced neurodegeneration [33]. Furthermore, H.E. has also
been suggested to have neuroprotective activity against cerebellar ataxia [19,24]. Our
recent study showed that H.E. had neuroprotective effects in a rat model of neurotoxin
3-acetylpyridine (3-AP)-induced cerebellar ataxia [19]. We observed that H.E. treatment in
3-AP rats normalized the altered Purkinje cell morphology and enhanced the expression
of neuroplasticity-related proteins including pERK1/2, pCREB, and postsynaptic density
protein 95 (PSD95) [19]. Although these studies show that H.E. has neuroplasticity-related
activities, the mechanisms of the anti-inflammatory and neurotransmission effects of H.E. in
cerebellar ataxia remain obscure. In this study, we investigated the effects of H.E. on genes
related to pro- and anti-inflammatory pathways, proteins related to mitochondria and
neurotransmission, and metabolites related to glycolysis, tricarboxylic acid cycle, sugars,
and amino acids.

2. Results
2.1. H.E. Treatment Rescues Body Weight Loss and Motor Deficits

In the assessment of baseline body weight, one-way ANOVA (F(2,17) = 1.622, p = n.s.)
showed no remarkable differences among groups (Supplementary Figure S7A) on the day
before 3-AP administration. On day 2 and on weeks 1, 2, and 3 after 3-AP injection, we
found a significant reduction in body weight in the 3-AP group compared to the control
group (all p < 0.001). At 1, 2, and 3 weeks, the body weight of H.E.+3-AP animals increased
compared to 3-AP animals (all p < 0.041). Accelerated rotarod and rod tests were conducted
to investigate motor coordination and balance deficits. A non-parametric Kruskal–Wallis
test showed a significantly increased percentage deficit in the accelerated rotarod test in
3-AP animals, indicating impaired performance compared to control animals (all p < 0.001;
Supplementary Figure S7C). After H.E. treatment, there was a remarkable improvement
in the percentage deficit observed at 2 weeks (p = 0.039) and a marginal decrease in the
percentage deficit at 3 weeks (p = 0.053) in the H.E.+3-AP group compared to the 3-AP
group. In the rod test, we found that motor balance was impaired in the 3-AP group
compared to the control group at 2 and 3 weeks (all p < 0.022; Supplementary Figure S7D).
Interestingly, H.E. treatment significantly restored the balance and motor deficits to levels
comparable to those of control animals at 2 and 3 weeks (all p < 0.039).

2.2. H.E. Treatment Enhances Anti-Inflammatory and Tgfb-Smad3 Genes

To investigate the neuroprotective effects of H.E. in the 3-AP model, qPCR was car-
ried out to analyze changes in glial-(Figure 1A), inflammatory-(Figure 1B,C), and TGF-β
signaling-related genes (Figure 1D). We found a significant reduction in the expression
of Gfap (p = 0.012) in 3-AP animals compared to controls. The H.E. treatment remarkably
increased the mRNA level of Gfap (p = 0.006) to a level comparable to that of the con-
trols (Figure 1A). No remarkable changes were found for Iba1 when comparing all groups
(p = n.s.). In addition, we found that the 3-AP group had significantly reduced expression of
Trem2 (p = 0.004), Tgfb1 (p = 0.005), and Tgfb2 (p = 0.001) compared to the controls (Figure 1C).
Interestingly, H.E. treatment normalized the expression of these genes to levels comparable
to those of the control (all p < 0.04; Figure 1B), indicating that H.E. has anti-inflammatory
effects in the 3-AP model. No significant difference was found in the expression of Il6
among all groups (p = n.s.). We also found that 3-AP animals had remarkably decreased
expression of Tnf -α (p = 0.015) and Nfkbp65 (p = 0.001) compared to the controls (Figure 1C).
Notably, the H.E.+3-AP group showed restored expressions of Tnf -α (p = 0.04) and Nfkbp65
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(p = 0.02) compared to the 3-AP group. There were no remarkable differences in the gene
expression of Il1b, Il18, or iNos among all groups (all p = n.s.). Moreover, the 3-AP group
had a decreased expression of Smad2, Smad3, Tak1, and jmjd3 compared to the control
group (all p < 0.027; Figure 1D). The H.E.+3-AP group showed upregulated Smad3 levels
(p = 0.006) but no significant changes in Smad2 and jmjd3 compared to the 3-AP group (all
p = n.s.). In the correlational analysis, we found that the rod test performance was negatively
correlated with the expression of Tgfb2 in the 3-AP group (r2 = 0.511, p < 0.001; Figure 1E),
indicating a relationship between Tgfb2 and motor balance impairment in the 3-AP model.
No remarkable correlation was found between Tgfb2 expression and percentage deficit in
the rotarod test when comparing all groups.
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Figure 1. Effects of 3-AP and H.E. treatment on the relative expression of inflammatory genes in the
cerebellum. (A) Relative expression of glial-related genes: Gfap and Iba1. (B) Relative expression of
anti-inflammatory genes: Il6, Trem2, Tgfb1, and Tgfb2. (C) Relative expression of pro-inflammatory
genes: Il1b, Tnf -α, Il18, iNos, and Nfkbp65. (D) Relative expression of TGF-β signaling-related genes:
Smad2, Smad3, Tak1, Jmjd3, and Gsk3b. (E) Correlational analysis between Tgfb2 genes and latency to
fall in the rod test. Indicators: * p-values ≤ 0.05, ** p-values ≤ 0.01, # Non-3-AP SAL group,
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2.3. H.E. Enhances COX-IV and pAkt/Akt Ratio

Proteins related to mitochondrial apoptosis were analyzed to investigate the effects
of H.E. on apoptotic functions. A non-parametric Kruskal–Wallis test showed that the
H.E. treatment significantly increased COX-IV protein expression compared to both 3-
AP and control animals (all p < 0.013; Figure 2A). There was also significantly reduced
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BAX expression compared to the control group (all p < 0.021; Figure 2B). There were no
significant differences in the protein expression of PDHe1α, VDAC, or Lamin B1 when
comparing all groups (all p = n.s.; Figure 2A,B). Considering that a previous study reported
that Akt induces the phosphorylation of a mitochondrial ATP synthase beta-subunit [34],
we found that the H.E. treatment significantly increased the pAkt/Akt ratio in 3-AP animals
compared to the control group (p = 0.048; Figure 2C).
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2.4. H.E. Normalizes Metabolic Pathways Related to Dopamine-Serotonin Neurotransmission

Given that H.E. has been previously reported to modulate hippocampal neurotrans-
mission [35], we next investigated the effect of H.E. treatment on neurotransmitter levels.
The administration of 3-AP significantly increased phenylalanine (p = 0.047) and tyrosine
(p = 0.005), and decreased dopamine (p = 0.014), DOPAC (p = 0.014), and the dopamine/
tyrosine ratio (p = 0.014) compared to the control group (Figure 3C). Interestingly, H.E.
treatment normalized phenylalanine, dopamine, DOPAC, and the dopamine/tyrosine ratio
compared to the 3-AP group (all p < 0.047). Additionally, H.E. treatment also elevated nore-
pinephrine levels compared to both 3-AP and control groups (all p < 0.014). No significant
differences were found for HVA when comparing all groups (p = n.s.).
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5-HIAA/serotonin. Indicators: * p-values ≤ 0.05, # Non-3-AP SAL group,
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2.4. H.E. Normalizes Metabolic Pathways Related to Dopamine-Serotonin Neurotransmission 

Given that H.E. has been previously reported to modulate hippocampal neurotrans-

mission [35], we next investigated the effect of H.E. treatment on neurotransmitter levels. 

The administration of 3-AP significantly increased phenylalanine (p = 0.047) and tyrosine 

(p = 0.005), and decreased dopamine (p = 0.014), DOPAC (p = 0.014), and the dopamine/ty-

rosine ratio (p = 0.014) compared to the control group (Figure 3C). Interestingly, H.E. treat-

ment normalized phenylalanine, dopamine, DOPAC, and the dopamine/tyrosine ratio 

3-AP H.E. group.

Administration of 3-AP increased tryptophan (p = 0.014) and decreased 5HIAA, 5-
HT/Trp turnover, and 5HIAA/5-HT ratio compared to control animals (all p < 0.047)
(Figure 3D). Remarkably, H.E. treatment normalized tryptophan, 5HIAA, 5-HT/Trp turnover,
and 5HIAA/5-HT ratio (all p < 0.047). No significant differences in glutamate and GABA
levels were detected when comparing all groups (p = n.s.; Figure 3B).

2.5. H.E. Normalizes Glycolysis-Related Metabolites

Next, we investigated the effects of H.E. treatment on metabolites related to amino
acids (Figure 4B), glycolysis (Figure 4E), TCA cycle (Figure 4F), and sugars (Figure 4H).
We found that H.E. significantly increased levels of lysine and proline in 3-AP treated
animals compared to the control group (p < 0.047; Figure 4B). The H.E.+3-AP group also
had reduced levels of serine compared to both control and 3-AP groups (all p < 0.047). No
remarkable differences in threonine were detected when comparing all groups (p = n.s.).
In 3-AP animals, we found altered respiratory pathway-related metabolites including
increased levels of glucose (p = 0.014), phosphoenolpyruvic acid (p = 0.014), isocitric acid
(p = 0.047), and mannose (p = 0.014) compared to the control group (Figure 4E–H). The H.E.
treatment normalized the changes in glucose (p = 0.014), glucose-6-phosphate (p = 0.008),
fructose-1,6-diphosphate (p = 0.047), pyruvic acid (p = 0.042), isocitric acid (p = 0.047), and
mannose (p = 0.008) to levels similar to those in the controls. No remarkable changes were
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detected for ribose, xylose, arabinose, galactose, and fructose when comparing all groups
(all p = n.s.; Figure 4H).
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The administration of 3-AP significantly increased phenylalanine (p = 0.047) and tyrosine 

(p = 0.005), and decreased dopamine (p = 0.014), DOPAC (p = 0.014), and the dopamine/ty-

rosine ratio (p = 0.014) compared to the control group (Figure 3C). Interestingly, H.E. treat-

ment normalized phenylalanine, dopamine, DOPAC, and the dopamine/tyrosine ratio 

3-AP
H.E. group.

2.6. Correlational Analysis of Neuroinflammatory Genes in Cerebellar Tissues

Both 3-AP and H.E.+3-AP groups showed a significant correlation between the expres-
sions of Gfap and Tgfb1 (all r2 < 0.946, p < 0.004; Figure 5A,C). We also observed significant
correlations between Gfap and Tgfb2 (r2 = 0.914, p < 0.001), Trem2 (r2 = 0.848, p = 0.001), and
Nfkbp65 (r2 = 0.826, p = 0.002) in the H.E.+3AP group, but not in the 3-AP and control groups
(Figure 5D–F). Spearman correlational analysis showed significant positive correlations
between the expressions of Tnf -α, Smad3 (r2 = 0.960, p = 0.001), and Nfkbp65 (r2 = 0.977,
p < 0.001) in the 3-AP group (Figure 5G,H). Compared to the 3-AP and control groups,
the H.E.+3-AP group showed a significant correlation between Tnf -α and Tak1 (r2 = 0.813,
p = 0.002; Figure 5I); significant gene correlations of Tgfb1 with Tgfb2 (r2 = 0.787, p = 0.003),
Smad3 (r2 = 0.844, p = 0.001), Nfkbp65 (r2 = 0.793, p = 0.003), and Tak1 (r2 = 0.883, p = 0.001)
(Figure 6A–D); significant gene correlations of Tgfb2 with Trem2 (r2 = 0.838, p = 0.001) and
Nfkbp65 (r2 = 0.749, p = 0.005) (Figure 6E,F); and significant gene correlations of Nfkbp65
with Trem2 (r2 = 0.895, p < 0.001) and Tak1 (r2 = 0.767, p = 0.004) (Figure 6G,H). Additionally,
we also found that the H.E+3-AP group had remarkable gene correlations between Smad3
and Tak1 (r2 = 0.918, p < 0.001), and the 3-AP group had gene correlations between Smad3
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and Nfkbp65 (r2 = 0.977, p < 0.001) (Figure 6I,J). The control group showed no significant
correlations among the analyzed genes, suggesting that 3-AP and H.E. treatments induced
specific neuroinflammatory responses.
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(Lower-left), and control group in (A,B). Scatter plots of significant correlations among groups by
Spearman correlational analysis. Gene expression of Gfap was significantly correlated with the gene
expression of (C) Tgfb1, (D) Tgfb2, (E)Trem2, and (F) Nfkbp65. Gene expression of Tnf -α was correlated
with the gene expression of (G) Smad3, (H) Nfkbp65, and (I) Tak1. The p values were adjusted by
Bonferroni correction for multiple comparisons. Indicators: * correlation was significant at p < 0.00625
for gene expression data. Indicators: # Non-3-AP SAL group,
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Hericium erinaceus contains diverse compounds with neuroprotective activity [36]. 

Our previous study showed that the antidepressant effects of H.E. were attributed to sev-

eral isolated compounds including adenosine, herierin III, and herierin IV [32]. The study 
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Figure 6. Spearman correlational analysis of genes showing significant differences after H.E. treatment.
(A–D) Scatter plots represent significant correlations of the gene expression of Tgfb1 with (A) Tgfb2,
(B) Smad3, (C) Nfkbp65, and (D) Tak1. (E,F) Scatter plots represent correlations of the gene expression
of Tgfb2 with (E) Trem2 and (F) Nfkbp65. (G,H) Scatter plots represent correlations of the gene
expression of Nfkbp65 with (G) Trem2 and (H) Tak1. (I,J) Scatter plots represent correlations of the
gene expression of Smad3 with (G) Tak1 and (H) Nfkbp65. Indicators: # Non-3-AP SAL group,
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3. Discussion

Hericium erinaceus contains diverse compounds with neuroprotective activity [36]. Our
previous study showed that the antidepressant effects of H.E. were attributed to several
isolated compounds including adenosine, herierin III, and herierin IV [32]. The study
showed that 25 mg/kg H.E. also has good neuroprotective potential [32]. The neurotoxin
3-AP is a nicotinamide antagonist targeting the inferior olivary nucleus and has been
extensively used to generate animal models of cerebellar ataxia. A study has shown that
3-AP reduced the density of dendritic spines of Purkinje cells and decreased the expressions
of AMPA and PSD-95 in the cerebellar cortex, suggesting that 3-AP-induced ataxic-like
motor impairments associated with an alteration in the morphology and connectivity
of Purkinje cells [37]. In the present study, we initially used a dose of 65 mg/kg 3-AP
based on other previous studies [38,39], but none of the rats survived within a day after
intraperitoneal injection. We performed a pilot study to optimize the dose of 3-AP, which
showed that a dose of 40 mg/kg 3-AP could generate rats with ataxia accompanied by
balance and motor impairments. Based on previous publications and our pilot studies, we
selected a dose of 40 mg/kg 3-AP and 25 mg/kg H.E. in this study.

Our previous findings also demonstrated that 25 mg/kg H.E. could potentially rescue
motor impairments through neuroprotective mechanisms involving ERK-CREB-PSD95
signaling in a 3-AP rat model of ataxia [19]. In the present study, we further investigated
the molecular mechanisms of the effects of H.E. on neuroinflammation, neurotransmission,
and energy-related metabolites in an animal model of ataxia. We showed that animals
administered 3-AP had significant body weight loss compared to non-3-AP control animals.
The H.E.+3-AP group progressively showed improved body weight compared to the 3-AP
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group. The normalization of body weight in H.E.+3-AP animals could be explained by
the restoration of the lost appetite induced by 3-AP stress, or by the general improvement
in motor coordination by the H.E. treatment. According to our previous data (Figure S7),
rats in the 3-AP group remained ataxic with signs of motor impairment throughout the
duration of the study of 21, following a single 3-AP injection without showing significant
improvement compared to the control group. However, due to the timeframe of our
experimental design, it is uncertain if the motor impairment induced by 3-AP is definitive.
Moreover, animals, like humans, show spontaneous recovery; therefore, it can be difficult to
pinpoint and evaluate effects of 3-AP. After the behavioral data from the accelerated rotarod
and rod tests were normalized to the body weight of the respective animals, we observed
that H.E. treatment significantly improved motor coordination and balance functions in
3-AP animals.

At 3 weeks after the 3-AP injection, we did not observe any significant changes in
the expression of Iba1, Il1b, Il18, or iNos, indicating no microglial and pro-inflammatory
responses during the chronic phase of ataxia. This phenomenon could be explained by
a natural compensatory mechanism of the animal’s immune defense system. However,
the 3-AP group showed downregulated expressions of pro-inflammatory Gfap, Tnf -α, and
Nfkbp65 genes, which were rescued by the H.E. treatment to levels comparable to those of the
control group, suggesting normal levels of these genes participate in neuron protection and
damage recovery [40,41]. Despite tremendous literature showing the aversive role of pro-
inflammatory-related genes, emerging studies have shown that elevated pro-inflammatory
cytokines are involved in both neurodegeneration and neuroprotection [42]. For example,
GFAP, a classical marker of astrocytes, plays pivotal roles in neuronal regeneration, repair,
structural support, nutritional supply, and synaptic transmission [43,44]. It has been
reported that the downregulation of Gfap mRNA was associated with inhibited astroglial
growth and function [45]. In addition, although TNF-α and NF-κB have been associated
with pro-inflammatory responses [46], recent studies have suggested that TNF-α has
anti-inflammatory [47], neuroprotective [48], and anti-apoptotic activities through the
modulation of the NF-κB pathway [49]. Overall, our results showed that H.E. treatment can
rescue the downregulated expression of Gfap, Tnf -α, and Nfkb65 back to the levels in the
controls, which is important for regulating inflammatory response and neuronal survival.

Treatment with 3-AP remarkably downregulated the expression of Trem2, Tgfb1, Tgfb2,
Smad2, Smad3, Tak1, and Jmjd3 in rat cerebellum. Treatment with H.E. normalized the ex-
pression of Trem2, Tgfb1, Tgfb2, and Smad3 back to the levels in the control group, whereas
the expression of Smad2, Jmjd3, and Tak1 were not rescued. It has been shown that TREM2
participates in the anti-inflammatory response [50]. Furthermore, TGF-β was reported to
participate in both anti- and pro-inflammatory responses [51], whereas impaired TGF-β
signaling was associated with a dysregulated microglial response [52]. Hence, the regula-
tion of TGF-β signaling by H.E. could potentially contribute to the restoration of normal
immune function. Besides pro- and anti-inflammatory roles, the TGF-β/Smad3 pathway is
also involved in other neuroprotective mechanisms including anti-apoptosis, neurogenesis,
and neurotransmission [53–55]. Therefore, the improvement in motor coordination by H.E.
could potentially be mediated through the canonical TGF-β/Smad3 signaling pathway.
Furthermore, the dysregulated anti-inflammatory response in 3-AP-treated animals is
potentially due to a negative relationship between the downregulated Tgfb2 expression
and poor motor balance in the rod test when compared to both the control and H.E.+3-AP
groups. However, due to the small sample size, this relationship needs to be further verified.

A previous study demonstrated that patients with cerebellar ataxia had mitochondrial
COX-IV deficiency [56]. After 3 weeks of H.E. treatment, we observed the significantly
upregulated protein expression of COX-IV, suggesting that H.E. can rescue neuronal respi-
ratory chain deficits and mitochondrial dysfunction [57]. We also observed a significant
downregulation of the pro-apoptotic protein BAX [58] in both 3-AP and H.E.+3-AP animals,
suggesting a general compensatory anti-apoptotic regulatory mechanism in response to the
chronic neuronal loss induced by 3-AP. In addition, our data showed that H.E. significantly
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increased Akt activity and the pAkt/Akt ratio. Although a recent report suggests that Akt
has multiple neuroprotective effects in DNA repair and cell survival by inhibiting neuronal
death [59], our findings indicate that Akt signaling also has potential roles in mitochondrial
and apoptotic regulation [34,60]. This result further supports our previous finding that
an increase in Akt enhances the phosphorylation of CREB, which inhibits the expression
of caspase 3, an apoptotic marker of the degradation of cytoskeletal proteins [19] and
a regulator of mitochondrial function and neurotransmission [57].

The administration of 3-AP upregulated levels of phenylalanine and tyrosine, but
downregulated dopamine, DOPAC, and the dopamine/tyrosine ratio in 3-AP animals.
This suggests that the impairment of tyrosine hydroxylase could affect the conversion
of phenylalanine/tyrosine to dopamine and the turnover of dopamine and its metabo-
lites [57,61]. Additionally, 3-AP treatment increased tryptophan but decreased 5-HIAA,
5-HT/tryptophan turnover, and the 5-HIAA/5HT ratio, indicating the impairment of
serotonin conversion and its metabolic pathways [57,61]. Treatment with H.E. rescued
dopamine and serotonin conversion and metabolic pathways back to the levels in the con-
trols. These results are in line with a study by Chiu et al., which found that an H.E. bioactive
compound, erinacine A, restored the decreased levels of a monoamine neurotransmitter in
stressed mice [62]. Taken together, our findings suggest that H.E. treatment can potentially
rescue the dysregulated dopamine and serotonin metabolic pathways in the 3-AP-induced
ataxia model.

We found 3-AP administration also induced a state of hypermetabolism, as demon-
strated by significantly increased levels of glucose, glucose-6-phosphate, fructose-1,6-
diphosphate, phosphoenolpyruvic acid, and isocitric acid. These findings are in line with
a study that reported an association between glucose hypermetabolism and neurodegener-
ation in amyotrophic lateral sclerosis [63]. Treatment with H.E. restored the hypermetabolic
state in 3-AP-treated animals to a level comparable to that of the control animals. We
also observed elevated levels of amino acids and sugars in 3-AP animals, which were also
normalized by H.E. treatment back to the levels in the controls.

To further investigate the effects of H.E. on the neuroinflammatory response, we per-
formed a correlational analysis to study the gene-gene interactions and relationships [31,64].
We found significant positive correlations in the gene expressions of Tnf -α with Smad3
and Nfkbp65 in the 3-AP group, but not in the H.E.+3-AP or control groups. These results
suggest that the reduced expression of Tnf -α was mediated by the reduced expression of
Smad3 and Nfkbp65 in 3-AP treated animals, which could be restored by the H.E. treatment.
Additionally, we also found positive correlations in the gene expression of Gfap with Trem2,
Tgfb1, Tgfb2, and Nfkbp65 in the H.E.+3-AP group but not in the 3-AP or control groups,
which suggests that the anti-inflammatory effects of H.E. involve the interaction of these
genes [44,55].

4. Materials and Methods
4.1. Source and Composition of H.E.

In this study, the standardized aqueous extract of H.E. (Nev-Gro®, Batch No. 7H2308X,
Ganofarm R&D Private Limited, Tanjung Sepat, Selangor, Malaysia) was used for in-
vestigating the mechanisms related to the changes of pro- or anti-inflammatory mark-
ers and the regulation of metabolites in cerebellar ataxia model. Fresh fruiting bodies
of H.E. were boiled in reverse osmosis water for 4 h, filtered, concentrated, and spray-
dried. The standardized aqueous extract has a defined content of beta 1,3–1,6 glucan
(20.66%) and adenosine (0.17%) (Nova Laboratories Private Limited, Sepang, Selangor,
Malaysia). We isolated and identified three major compounds from H.E., namely adenosine
(Supplementary Figures S1 and S2, Table S1), herierin III (Supplementary Figures S3 and S4,
Table S2) and Herierin IV (Supplementary Figures S5 and S6, Table S3) [32]. The detailed infor-
mation regarding the isolation and identification of compounds from H.E. were previously
reported by our laboratory (see Chong et al. 2021) [32].
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4.2. Subjects

The animal protocols were approved by the Committee on the Use of Live Animals
in Teaching and Research (CULATR No. 4495.17) of the University of Hong Kong. Ten-
week-old male Sprague Dawley rats (n = 25) were housed in pairs under standard conditions
(temperature: 25–27 ◦C, humidity: 60–65%, 12-h light/dark cycle) with food and water
available ad libitum. Rats were subject to training before the motor behavioral tests. After
ensuring that there were no significant differences in their motor performance, rats were
randomly assigned into the non-3-AP control group (n = 8) and 3-AP treatment groups.
Any non-responders to the 3-AP injection were removed from the experiment before the
animals were further assigned into the 3-AP (n = 9) and H.E.+3-AP (n = 8) groups.

4.3. Administration of 3-AP and H.E.

Both 3-AP and H.E.+3-AP rats were administered with a single intraperitoneal injec-
tion of 3-AP (40 mg/kg body weight; Sigma-Aldrich, Missouri, USA). After 2 days, H.E.
(25 mg/kg) or saline was administered intraperitoneally to the H.E.+3-AP group or 3-
AP group once daily for 21 days. Whereas non-3-AP control rats received a single in-
traperitoneal injection of 0.9% NaCl saline solution. After 2 days, saline was administered
intraperitoneally to the group once daily for 21 days.

4.4. Body Weight and Behavioral Tests

Behavioral data from the accelerated rotarod test and rod test were obtained from
a previous experiment [19] and were reanalyzed accordingly. For the accelerated rotarod
test, the percentage deficit of the total time on the rod (latency to fall) was calculated as:

(X− Baseline)/(X + Baseline) × 100%.

where X refers to the latency to fall in the current test and baseline refers to the latency to
fall during the rotarod test before 3-AP administration.

For the rod test, the total time on the rod (latency to fall) within 5 min was recorded.
The animal’s body weight was measured before each behavioral test and the behavioral
data were normalized to the body weight of the respective animals. All rats were trained
and screened for functional mobility prior to the actual test. Rats that were uncooperative
or refused to learn were excluded from the experiment.

4.5. Tissue and Histological Processing

At 21 days after H.E. or saline administration, rats were euthanized by sodium pento-
barbital (Dorminal, Alfasan International BV, Woerden, Holland) and perfused with 0.9%
NaCl saline solution. Rats were decapitated and their brains were extracted and dissected
into two halves. One half of the brain was post-fixed in 4% paraformaldehyde fixative
solution for 1 day and then immersed in 15% and 30% buffered sucrose solution, and
subsequently snap-frozen in liquid nitrogen and stored at −80 ◦C. The other half of the
brain was immediately snap-frozen in liquid nitrogen and stored at −80 ◦C. Cerebellar
regions were macrodissected for gene and protein analysis. The experimental procedures
were conducted as previously described [19,65].

4.6. Gene Expression Study

Quantitative real-time PCR (qPCR) was performed on cerebellar tissue as previously
described [19,66,67]. TRIZOL (Life Technologies, Carlsbad, CA, USA) was added to the
dissected brain tissue to isolate total RNA. The isolated RNA was converted to cDNA
using a cDNA synthesis kit (Takara Bio Inc., Shiga, Japan). Next, qPCR was performed
to analyze inflammation-related genes including glial fibrillary acidic protein (Gfap), al-
lograft inflammatory factor 1 (Iba1), interleukin 1 beta (Il1b), tumor necrosis factor alpha
(Tnf -α), interleukin 18 (Il18), nitric oxide synthase, inducible (iNos), interleukin 6 (Il-6),
triggering receptor expressed on myeloid cell (Trem2), transforming growth factor beta 1
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(Tgfb1) and 2 (Tgfb2), mothers against decapentaplegic homolog 2 (Smad2) and 3 (Smad3),
nuclear factor kappa B p65 (Nfkbp65), TGFB Activated Kinase 1 (Tak1), jumonji domain-
containing protein D3 (Jmjd3), glycogen synthase kinase 3-beta (Gsk3b), and hypoxanthine
phosphoribosyltransferase (Hprt). The qPCR was performed in duplicate on well plates
(Micro-Amp Optia 384 Reaction Plate, Thermo Fisher Scientific, Waltham, MA, USA) under
standard conditions (50 ◦C for 2 min, 95 ◦C for 10 min, and 40 cycles of 95 ◦C for 10 s and
60 ◦C for 30 s) using the StepOnePlus Real-time PCR system (Thermo Fisher Scientific,
Waltham, MA, USA). The PCR products were monitored by SYBR Green quantitative PCR
mix (Applied Biosystems, Warrington, UK) and analyzed by the StepOne Real-Time PCR
software (v2.3). Gene expression was normalized to the reference gene Hprt using the ratio
2−∆∆C

T method and presented as the relative gene expression against the control group.
The primer sequences of the analyzed genes are listed in Table 1.

Table 1. The primer sequences used in the real-time quantitative PCR.

Genes Primer Sequences

Gfap
Forward (5′-3′): CCTTGAGTCCTTGCGCGGC

Reverse (5′-3′): TTGGCCCTCCTCCTCCAGC

Iba1
Forward (5′-3′): GAAGCGAATGCTGGAGAAAC

Reverse (5′-3′): CCTCCAATTAGGGCAACTCA

Il1b
Forward (5′-3′): CACCTCTCAAGCAGAGCACAG

Reverse (5′-3′): GGGTTCCATGGTGAAGTCAAC

Tnf-a
Forward (5′-3′): AAATGGGCTCCCTCTCATCAGTTC

Reverse (5′-3′): TCTGCTTGGTGGTTTGCTACGAC

Il18
Forward (5′-3′): ATATCGACCGAACAGCCAAC

Reverse (5′-3′): TGGCACACGTTTCTGAAAGA

iNos
Forward (5′-3′): GCACAGAGGGCTCAAAGG

Reverse (5′-3′): CACATCGCCACAAACATAAA

Il6
Forward (5′-3′): TCCTACCCCAACTTCCAATGCTC

Reverse (5′-3′): TTGGATGGTCTTGGTCCTTAGCC

Trem2
Forward (5′-3′): AACTTCAGATCCTCACTGGACCC

Reverse (5′-3′): GCAGAACAGAAGTCTTGGTGG

Tgfb1
Forward (5′-3′): TGGCGTTACCTTGGTAACC

Reverse (5′-3′): GGTGTTGAGCCCTTTCCAG

Tgfb2
Forward (5′-3′): TCGACATGGATCAGTTTATGCG

Reverse (5′-3′): CCCTGGTACTGTTGTAGATGGA

Smad2
Forward (5′-3′): ATGTCGTCCATCTTGCCATTC

Reverse (5′-3′): AACCGTCCTGTTTTCTTTAGCTT

Smad3
Forward (5′-3′): AAGAAGCTCAAGAAGACGGGG

Reverse (5′-3′): CAGTGACCTGGGGATGGTAAT

Nfkb1
Forward (5′-3′): GCGAGAGAAGCACAGATACCA

Reverse (5′-3′): GGTCAGCCTCATAGTAGCCAT

Tak1
Forward (5′-3′): AGAGGTTGTCGGAAGAGGAGCTT

Reverse (5′-3′): ACAACTGCCGGAGCTCCACAA
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Table 1. Cont.

Genes Primer Sequences

Jmjd3
Forward (5′-3′): CAACTCCATCTGGCTGTTACTG

Reverse (5′-3′): CCTTCTGCAACCAATTCCAG

Gsk3b
Forward (5′-3′): CGGGACCCAAATGTCAAACT

Reverse (5′-3′): CGTGACCAGTGTTGCTGAGT

4.7. Western Blot Analysis

Western blot analysis was performed on cerebellar tissues according to our previously
published studies [19,68]. The dissected cerebellar tissues were homogenized in RIPA
buffer with protease and phosphatase inhibitors (Thermo Scientific, Rockford, IL, USA). The
protein concentration of each protein lysate sample was measured by a Bio-Rad DC Protein
Assay Kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Protein lysate diluted in lysis
buffer was separated by 12% SDS-PAGE and transferred onto PVDF membranes by semi-
dry electroblotting. Membranes were blocked with 5% milk in tris-buffered saline (TBS) for
1 h at room temperature, followed by incubation with the primary antibodies overnight at
4 ◦C. The primary antibodies included Akt, pAkt, COX-IV, VDAC, GAPDH, BAX, Lamin B1
(1:1000; Cell Signaling Technology, Inc., Beverly, MA, USA), and PDHe1α (1:1000; Abcam,
Cambridge, MA, USA). After incubation overnight, membranes were rinsed with TBS in
0.1% Tween 20 (TBST) and then incubated with horseradish peroxidase-conjugated anti-
mouse or anti-rabbit immunoglobin G secondary antibodies (1:2000; Invitrogen, Thermo
Fisher Scientific, Waltham, MA, USA) for 2 h at room temperature. The protein bands were
visualized using a Clarity Western ECL Substrate kit (Bio-Rad Laboratories, Inc., Hercules,
CA, USA). The protein expression was normalized against the GAPDH loading control and
presented as the relative protein expression against the control group.

4.8. Mass Spectrometry

Mass spectrometry analysis of the dissected cerebellar tissues was performed as
previously described [66,67]. Two samples from the same group were randomly pooled,
with each group consisting of three to four pools per group. The tissue sample (50 mg) was
mixed with 500 µL methanol/water (80%, v/v) containing 200 ng norvaline as the internal
control. The tissue sample was homogenized by two cycles of sonication at 10 microns for
20 s on ice with a 10-s interval. The sample was vortexed in 250 µL of 0.1 M HCl for 30 s
and 400 µL chloroform was added. The sample was agitated for 15 min and centrifuged
at 16,000× g for 5 min at 4 ◦C. The supernatant (375 µL) was dried under a gentle stream
of nitrogen at room temperature. The dried residue was subject to derivatization in 40 µL
methoxylamine hydrochloride (30 mg/mL in pyridine) for 2 h at room temperature. The
trimethylsilyation step was performed using 70 µL MSFTA and 1% TMCS. The sample
(1 µL) was analyzed by GC-MS/MS on an Agilent 7890B GC—Agilent 7010 Triple Quadrupole
Mass Spectrometer system (Santa Clara, CA, USA). The sample was separated on an Agilent
DB-5MS capillary column (30 m × 0.25 mm ID, 0.25 µm film thickness) under a constant
flow rate of 1 mL/min. The GC oven program was started at 60 ◦C (hold time 1 min) and
then increased at a rate of 10 ◦C/min to 120 ◦C, 3 ◦C/min to 150 ◦C, 10 ◦C/min to 200 ◦C,
and finally 30 ◦C/min to 280 ◦C (hold time 5 min). The inlet temperature and transfer
line temperature were 250 ◦C and 280 ◦C, respectively. The characteristic quantifier and
qualifier transitions were monitored in the MRM mode. The mass spectra were acquired in
SCAN mode from m/z 50–500. Data analysis was performed using the Agilent MassHunter
Workstation Quantitative Analysis Software 12.0. Linear calibration curves for each analyte
were generated by plotting the peak area ratio of the external/internal standard against the
standard at different concentrations. Analytes were confirmed by comparing the retention
time and ratio of characteristic transitions between the sample and standard during the run.
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4.9. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics 27. A Shapiro–Wilk test
was used to examine the normality of data distribution. Normally distributed data were
analyzed by one-way ANOVA with an LSD post hoc test. For non-normally distributed data,
a non-parametric Kruskal–Wallis or Mann–Whitney test was used for multiple comparisons,
as appropriate. A non-parametric test was used to analyze the mass spectrometry results
of the pooled samples. All data were presented as mean ± S.E.M. A p-value ≤ 0.05
was considered statistically significant. Spearman correlation coefficients with Bonferroni
correction were applied to investigate the relationship between weight-normalized behavior
and genes showing significant differences between groups. Variables showing significance
after the Bonferroni correction were presented by scatter plot with each individual data
point plotted with 95% confidence intervals.

5. Conclusions

In conclusion, our results demonstrate that H.E. treatment can rescue motor coor-
dination and balance deficits in rats with 3-AP-induced cerebellar ataxia. The effect of
H.E. on restoring the motor impairment potentially involves TGF-β/Smad3 signaling via
enhancing mitochondrial and Akt activity, normalizing monoaminergic conversion, and
restoring metabolic pathways and hypermetabolic status. Our findings support the use
of H.E. as a novel approach for treating ataxia symptoms. Importantly, ethical concerns
on the use of H.E. in patients with ataxia need to be considered in the future clinical ap-
plications. Moreover, collaborations between various international funding bodies and
interdisciplinary research are needed to enhance the development of rapid and robust
therapies [69,70].
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