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Abstract: Neutrophil elastase (NE) contributes to innate antibacterial defense at both the intracellular
(phagocytosis) and extracellular (degranulation, NETosis) levels. Moraxella catarrhalis, a human
respiratory pathogen, can exist in an inflammatory milieu which contains NE. No data are available
on the action of NE against M. catarrhalis or on the counteraction of NE-dependent host defenses
by this pathogen. Using time-kill assays we found that bacteria are able to survive and replicate in
the presence of NE. Transmission electron microscopy and flow cytometry studies with NE-treated
bacteria revealed that while NE admittedly destabilizes the outer membrane leaflet, it does not cause
cytoplasmic membrane rupture, suggesting that the enzyme does not target components that are
essential for cell integrity. Using LC-MS/MS spectroscopy we determined that NE cleaved at least
three virulent surface proteins in outer membrane vesicles (OMVs) of M. catarrhalis, including OMP
CD, McaP, and TbpA. The cleavage of OMP CD contributes to the significant decrease in resistance
to serum complement in the complement-resistant strain Mc6. The cleavage of McaP did not cause
any sensitization to erythromycin nor did NE disturb its drug action. Identifying NE as a novel but
subtle anti-virulence agent together with its extracellularly not-efficient bactericidal activity against
M. catarrhalis may facilitate the pathogen’s existence in the airways under inflammation.

Keywords: neutrophil elastase; Moraxella catarrhalis; outer membrane vesicles (OMVs);
outer membrane proteins (OMPs); complement; anti-virulence action; bactericidal action;
inflammation; TEM; OMP CD; COPD

1. Introduction

Neutrophils are the pivotal cellular components of innate defense that rapidly accumu-
late at the site of infection. To kill bacterial or fungal pathogens, they use both oxidative and
non-oxidative mechanisms during phagocytosis, neutrophil extracellular trap formation
(NETosis), and degranulation (exocytosis) of the pre-formed mediators from cytoplasmic
granules. Neutrophil elastase (NE) is a serine protease stored in azurophilic granules and
is engaged in host defense against Gram-negative but not Gram-positive bacteria [1]. NE
plays a multifaceted role in protecting against bacterial infections. The direct antibacterial
actions involve general phagosome-dependent and additional non-oxidative bactericidal
mechanisms comprising the cleavage of selected outer membrane proteins and as a result
membrane destabilization [2,3]. Apart from its antimicrobial proteolytic function, in indi-
rect immunomodulatory mechanism of action, NE promotes cytokines, i.e., TNF-α, MIP-2,
and IL-6 expression, which contributes to host anti-Pseudomonas aeruginosa defense [4].
Likewise, endogenous elastase at the site of infection/inflammation can process inactive
proforms of mammal cathelicidins into active antibacterial peptides [5] as well as syn-
thetic antimicrobial peptides (AMPs) into pharmacologically active peptide D-BMAP18 (a
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membrane-permeabilizing antimicrobial peptide composed of D-amino acid) with good
antibacterial and anti-inflammatory activities [6].

On the other hand, NE may act in strictly opposing way in many chronic disease
states, thereby favoring infection. It can cause the impairment of airway epithelial defense
against bacteria via degradation of epithelial protein SPLUNC1 (short palate lung and
nasal epithelial clone 1) [7]. Alternatively, it may cause tissue damage that decreases host
tolerance to lung infection with Burkholderia species [8]. The harmful effects of elastase also
involve its ability to inactivate the CD14 receptor for lipopolysaccharide, thus reducing
the inflammatory response to endotoxin [9] as well as cleaving the phosphatidylserine
receptor on macrophages, leading to impairment in clearance of apoptotic cells [10]. To
enable cellular migration, elastase can cleave components of the extracellular matrix such
as elastin, several types of collagen, or fibronectin [11]. Consequently, released NE may
cause serious deleterious effects on surrounding tissues in various chronic diseases, in-
cluding recurrent aphthous stomatitis, chronic obstructive pulmonary disease (COPD),
type 1 diabetes, obesity-related diseases, or chronic kidney disease, regardless of whether
it is accompanied by bacterial infections [12–15]. Furthermore, in chronic lung diseases,
NE has also been shown to be associated with induced airway mucus gland hyperplasia,
mucus secretion, airway smooth muscle cell proliferation, and airway hyperresponsiveness,
features associated with disease progression [16–18].

As recently documented from a molecular point of view, the essential role in patho-
logical inflammation triggered by Moraxella catarrhalis is based on activation the cytosolic
innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3
inflammasome in human and mouse immune cells [19]. M. catarrhalis is a Gram-negative
human-restricted respiratory pathogen responsible mainly for otitis media in children, and
one of the dominant bacteria in exacerbations of COPD or asthma in adults [20,21]. Interest-
ingly, in children suffering from recurrent respiratory tract infections (60%) or asthma (20%),
specific anti-M. catarrhalis serum IgE has been documented [22]. Furthermore, neonates
colonized in the hypopharyngeal region with M. catarrhalis and other bacteria such as S.
pneumonia and H. influenzae are at increased risk for recurrent wheeze and asthma early in
life [23].

The association between neutrophilic inflammation and a relatively small group of
bacterial taxa, which is seen consistently across chronic respiratory conditions, suggests
that neutrophilic inflammation also presents a considerable selective pressure on the
composition of the airway microbiota [18]. It means that the altered immunity in the
inflammatory milieu of the airways may contribute to very specific bacterial colonization
and adaptation. Since M. catarrhalis is one of the leading epidemiological factors in lung
disease exacerbation, it should adapt to function under the aforementioned inflammatory
conditions. Indeed, M. catarrhalis may contribute to a protease-antiprotease imbalance
in part by neutralization of the key antiprotease α 1-antichymotrypsin in the respiratory
tract [24]. The duration of asthma with a neutrophilic endotype is also positively correlated
with the total relative abundance of M. catarrhalis and other pathogens such as H. influenzae
and Streptococcus pneumoniae, which are prevalent within neutrophilic airway secretions [21].
Furthermore, mice infected with M. catarrhalis during allergen sensitization had neutrophilic
infiltrates in their airways and high levels of proinflammatory cytokines, including IL-6,
IL-17, IFN-γ, and TNF-α [25].

Despite the significant role of M. catarrhalis in the pathogenesis of chronic respiratory
diseases, no study has addressed the role of elastase in immunity against M. catarrhalis.
Herein, we provide for the first time compelling evidence that neutrophil elastase exerts
direct anti-virulence but not bactericidal activity against M. catarrhalis in extracellular milieu.
The former relies primarily on the degradation of key outer membrane proteins such as
OMP CD and McaP, causing the consequent impairment of serum resistance but keeping
insensitivity to macrolide antibiotic, respectively. However, despite the anti-virulence
action of elastase, the resistance of bacteria to the bactericidal activity of the enzyme, at
concentrations exceeding those found in pathological conditions, which are common in
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COPD exacerbations or bronchiectasis [26,27], may explain their ability to adapt and thrive
in its presence.

2. Results
2.1. Neutrophil elastase at Concentration Representative for Pathological Conditions of Respiratory
Tract Does Not Exert Direct Killing against M. catarrhalis

The direct killing activity of NE against Gram-negative bacteria such as Klebsiella
pneumoniae [1], Escherichia coli [2], and P. aeruginosa [3] was demonstrated previously. To
investigate the bactericidal impact of NE on M. catarrhalis, a series of experiments was
conducted in vitro using concentrations of NE usually higher than that found in chronic
inflammation of the lower respiratory tract. The enzymatic activity of each batch of
NE was checked by reaction with a specific fluorogenic substrate MeoSuc-Ala-Ala-Pro-
Val-AMC. Assessment of killing ability was performed with or without 2 µM NE using
time-kill assays from 0 to 4 h. As illustrated on survival plots, M. catarrhalis 6 (Mc6) at
various cfu/mL was not killed by NE over the 4 h of incubation (Figure 1). The lack
of lytic and permeabilization-inducing properties of the enzyme against M. catarrhalis
was confirmed further using transmission electron microscopy (TEM) observations and
flow cytometric measurements. As shown in Figure 2A, TEM images demonstrated some
degree of NE-dependent disorganization of lipooligosascharide (LOS) structures, with a
characteristic radial morphology and no visible distortion of the inner cell membrane or
other deformations of the outer membrane of Mc6 cells. In contrast, the bacteria treated with
EDTA (positive control) showed distorted structural integrity of the envelope accompanied
by destabilization (disintegration) of both bacterial membranes. The results of undisturbed
by NE membrane integrity were confirmed by incubation of bacteria with a dye propidium
iodide (PI), that is impermeable to viable cells but intercalates nucleic acids in damaged
cells. As shown in Figure 2B,C, for bacteria treated with NE as well as for negative control,
the fluorescence intensity was on the similarly very low level (PI-negative cells) and the
survival rate was comparable. In contrast, treatment of bacteria with EDTA, which causes
an increase in the permeability of cell envelopes, caused cell damage rates, as reflected in
both the high percentage of PI-positive cells and the lethal effect seen in the spots. It can be
concluded therefore that NE probably does not cleave surface proteins and thus does not
facilitate the damage of inner cell membrane of M. catarrhalis, which would be considered a
lethal effect.
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from log phase were incubated for 4 h in the presence of 2 µM of NE and plated in 0, 60, and 240 
Figure 1. Neutrophil elastase (NE) does not have bacteriolytic activity against M. catarrhalis. Bacteria
from log phase were incubated for 4 h in the presence of 2 µM of NE and plated in 0, 60, and 240 min.
Data are expressed as mean cfu/mL ± SD from at least two independent experiments performed in
triplicate. HiNE—heat inactivated NE (95 ◦C, 15 min).
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ages for control and NE, magnification ×22,000; for EDTA, magnification ×16,000. (B) Flow cytome-
try analysis of membrane permeability. Mc6 after 4 h of NE treatment was incubated with 6 µM PI 
for 15 min at RT and the fluorescence was measured using red fluorescence channel with Guava 
EasyCyte (Merck). Negative controls were untreated bacteria with PI, and positive controls were 
bacteria treated with 10 mM and 50 mM EDTA. Representative histograms show the fluorescence 
intensity of an experiment derived from 3 independent biological replicates. (C) Spot plate test vis-
ualization of the bacterial growth (dilutions: 10−1, 10−2, 10−3, 10−4) following NE and EDTA treatment 
at time 0, 2 h, and 4 h. Spot tests were performed in parallel with cytometric measurements. 
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The observed lack of bactericidal activity of NE against Mc6 raises the question of 
whether, and if so which, surface membrane proteins of Mc6 are susceptible to NE action, 

Figure 2. The lack of bactericidal and permeabilizing activity of neutrophil elastase (NE) against
M. catarrhalis Mc6. (A) TEM visualization of bacteria treated with NE. Mc6 were incubated (4 h,
37 ◦C) with 2 µM NE (middle panel). The negative control was bacteria incubated in diluent only
(upper panel), and the positive control was bacteria incubated in the presence of 50 mM EDTA (lower
panel). White arrows indicate membranes (outer and inner); black arrows denote lipooligosaccharide.
Red arrows indicate changes in disorganization/destabilization of marked structures. TEM images
for control and NE, magnification ×22,000; for EDTA, magnification ×16,000. (B) Flow cytometry
analysis of membrane permeability. Mc6 after 4 h of NE treatment was incubated with 6 µM PI
for 15 min at RT and the fluorescence was measured using red fluorescence channel with Guava
EasyCyte (Merck). Negative controls were untreated bacteria with PI, and positive controls were
bacteria treated with 10 mM and 50 mM EDTA. Representative histograms show the fluorescence
intensity of an experiment derived from 3 independent biological replicates. (C) Spot plate test
visualization of the bacterial growth (dilutions: 10−1, 10−2, 10−3, 10−4) following NE and EDTA
treatment at time 0, 2 h, and 4 h. Spot tests were performed in parallel with cytometric measurements.
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2.2. Neutrophil Elastase Degrades Pivotal Outer Membrane Proteins (Virulence Factors) of
M. catarrhalis

The observed lack of bactericidal activity of NE against Mc6 raises the question of
whether, and if so which, surface membrane proteins of Mc6 are susceptible to NE action,
and what the other biological consequences are. In addition, given the ability of Mc6 outer
membrane vesicles (OMVs) to cause degranulation of PMNs [28], they may contribute to the
increased concentration of NE in the immediate vicinity of the bacteria. Treating OMVs with
NE showed that at least three key outer membrane proteins (OMPs) of M. catarrhalis were
cleaved by NE following 1 h incubation at 37 ◦C (Figure 3). These proteins, corresponding
to gel bands of ~50, ~70, ~100, and further analyzed by LC-MS/MS mass spectrometry
(Table 1), were identified as transferrin-binding protein TbpA (120 kDa), involved in iron
uptake from transferrin [29], and two bacterial adhesins: OMP CD (46 kDa), involved
in adhesion and complement resistance [30], and McaP (62 kDa), involved in adhesion
and lipolytic activity [31]. These findings indicate that NE exerts a potent proteolytic
activity towards three M. catarrhalis OMPs which are associated with the virulence of this
bacterium. The importance of cleavage of two proteins, namely OMP CD and McaP, were
further studied.
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Figure 3. Neutrophil-elastase-mediated proteolysis of M.catarrhalis outer membrane proteins. Pro-
teinogram from enzymatic digestion of OMVs Mc6 by human neutrophil elastase (NE). OMVs Mc6
(10 µg) were subjected to enzymatic treatment (NE, 2 µM) for 1 h at 37 ◦C. As a control OMVs
were incubated only in reaction buffer. The degraded by NE outer membrane proteins are indicated
by arrows and red frames. NE-dependent digestion of casein (2.5 µg/mL) was performed under
analogous conditions (positive control). Proteins were separated of 12% SDS-PAGE electrophoresis of
OMVs; the protein profiles were visualized using Coomassie blue staining.

Having documented the proteolytic activity of NE against OMP CD and McaP, we
posed two research hypotheses. The first hypothesis was that enzymatic degradation of the
OMP CD protein, which confers partial complement resistance to human serum, would
result in increased bacterial sensitivity to complement. The second hypothesis was that
digestion of McaP, a protein displaying esterase activity against macrolide antibiotics [32],
would sensitize the bacteria to an exemplary antibiotic of this group, erythromycin. The
verification of both hypotheses required demonstrating that the proteolytic activity of NE
favors the reduction of resistance of the wild-type M. catarrhalis strain to the aforementioned
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compounds. For these experiments, isogenic mutants of strain Mc6, which were devoid
of the OMPs, namely ∆ompCD and ∆mcaP mutant strains, were used as positive controls
(Figure S1).

Table 1. OMPs proteolytically cleaved by NE as determined by LC-MS/MS spectrometry.

Protein Name and Description MW 1 [kDa]
Sequence Coverage

(%) Score 2 No. of Unique
Peptides

TbpA (Transferrin binding protein A) 119.3 61.45 163.57 53

McaP (Moraxella catarrhalis adherence protein) 71.3 70.15 71.45 28

OMP CD (Outer membrane protein CD) 48.3 56.95 236.58 29

Proteins determined by LC-MS/MS of excised 1DE gel bands. 1 Theoretical molecular mass was determined by
Mascot. 2 Score ranges represent MS/MS ion scores determined by peptide mass fingerprinting. Scores deemed
to be significant by Mascot (p < 0.05) are shown.

2.3. Degradation of OMP CD by Neutrophil Elastase Sensitizes M. catarrhalis to
Complement Action
2.3.1. Complement-Dependent Bactericidal Activity

In preliminary experiments, we confirmed that the complement-resistant wild-type
(WT) M. catarrhalis Mc6 and its isogenic ∆ompCD mutant strain showed different sensitivi-
ties to complement in active normal human serum (NHS) while growing comparably in
the presence of heat-inactivated NHS (HiNHS,). Specifically, ∆ompCD showed a significant
decrease in viability in the presence of 25% NHS in comparison to 25% HiNHS. In contrast,
the WT strain even grew in the presence of 75% of NHS (Figure S2).

To assess the contribution of NE-mediated proteolytic degradation of the surface OMP
CD protein to the complement-associated bactericidal actions of NHS, the M. catarrhalis
WT was incubated for 4 h with 2 µM NE and a subsequent additional 2 h incubation was
performed with either NHS or HiNHS. As shown in Figure 4A, the WT strain subjected to
proteolytic degradation by NE became significantly more susceptible to complement action
by NHS in comparison to the intact bacteria. At the same time, no reduction in the survival
of enzymatically digested Mc6 was observed in the HiNHS control serum. These finding
indicates that NE is able to degrade OMP CD in the outer membrane of intact M. catarrhalis,
resulting in its greater sensitivity to NHS complement.

2.3.2. Activation of Terminal Complement SC5b-9 Component

Next, knowing that NE can degrade OMP CD, we decided to verify the potential
of NE-treated OMPs to activate the complement system and that the proteolytic action
of NE did not interfere with complement activity. Using an ELISA assay, the quantity of
the soluble terminal membrane attack complex SC5b-9 was measured as an indicator of
complement activation. As shown in Figure 4B, the OMP CD protein-rich OMVs from M.
catarrhalis WT strain were potent activators of complement cascade. However, although
the absence of OMP CD protein in OMVs from the ∆ompCD mutant strain significantly
attenuated SC5b-9 formation (Figure 4B), the enzymatic digestion of OMVs with clinically-
relevant concentrations of NE did not affect the activation of complement compared with
non-digested OMVs (Figure 4C). This finding shows that NE treatment of OMVs does not
affect complement activation.



Int. J. Mol. Sci. 2023, 24, 6607 8 of 18Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 4. Enzymatic cleavage of surface protein OMP CD by neutrophil elastase (NE) sensitizes M. 
catarrhalis to human complement action. (A) Bactericidal activity of human serum complement 
(NHS) against WT bacteria treated with NE. Bacteria from log phase were enzymatically digested 
with 2 µM NE (1 h, 37 °C) before 4 h bactericidal assays were performed. Bacteria untreated with 
NE and incubated in reaction buffer for 1 h at 37 °C were used as controls. Data are expressed as 
mean cfu/mL ± SD from two independent experiments performed in triplicate. Statistical analysis 
was performed by Wald–Wolfowiĵ test (* p < 0.05); HiNHS-heat inactivated NHS. (B) Human se-
rum complement activation in 90% NHS by OMVs from Mc6 WT and its isogenic mutant following 
30 min. incubation at 37 °C as determined by ELISA. Data were analyzed using sera from three 
volunteers (O1–O3) and are expressed as mean SC5b-9 ± SD from two replicates for each serum. 
Statistical analysis was performed by T test for independent variables (* p < 0.005). (C) Activation of 
human serum complement in 90% NHS by OMVs Mc6 WTe previously cleaved by NE (1 h, 37 °C). 
Data are expressed as mean SC5b-9 ± SD from two replicates for pooled serum. 

2.4. Degradation of McaP by Neutrophil Elastase Does Not Sensitize M. catarrhalis to Erythro-
mycin Action 

McaP, a conserved autotransporter has adhesive properties and mediates adherence 
to human epithelial cells [31,32]. This protein also displays esterase activity, [32], which 
determines one of the mechanisms of macrolide resistance [33]. 

Initially, examining the sensitivity of Mc6 WT to erythromycin (macrolide antibiotic), 
we showed, that for ~2.5–5 × 105 cfu/mL, the minimum inhibitory concentration (MIC)  

and the minimum bactericidal concentration (MBC) were, respectively, 0.125 µg/mL and 
0.5 µg/mL. As expected, the isogenic ΔmcaP Mc6 mutant strain was significantly more 
sensitive to this antibiotic. In time-kill assays, the lethal effect of supra-MICs  concentra-
tion of erythromycin occurred 1 h post-incubation. Applying the same concentrations of 
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Figure 4. Enzymatic cleavage of surface protein OMP CD by neutrophil elastase (NE) sensitizes
M. catarrhalis to human complement action. (A) Bactericidal activity of human serum complement
(NHS) against WT bacteria treated with NE. Bacteria from log phase were enzymatically digested
with 2 µM NE (1 h, 37 ◦C) before 4 h bactericidal assays were performed. Bacteria untreated with
NE and incubated in reaction buffer for 1 h at 37 ◦C were used as controls. Data are expressed as
mean cfu/mL ± SD from two independent experiments performed in triplicate. Statistical analysis
was performed by Wald–Wolfowitz test (* p < 0.05); HiNHS-heat inactivated NHS. (B) Human serum
complement activation in 90% NHS by OMVs from Mc6 WT and its isogenic mutant following 30 min.
incubation at 37 ◦C as determined by ELISA. Data were analyzed using sera from three volunteers
(O1–O3) and are expressed as mean SC5b-9 ± SD from two replicates for each serum. Statistical
analysis was performed by T test for independent variables (* p < 0.005). (C) Activation of human
serum complement in 90% NHS by OMVs Mc6 WTe previously cleaved by NE (1 h, 37 ◦C). Data are
expressed as mean SC5b-9 ± SD from two replicates for pooled serum.

2.4. Degradation of McaP by Neutrophil Elastase Does Not Sensitize M. catarrhalis to
Erythromycin Action

McaP, a conserved autotransporter has adhesive properties and mediates adherence
to human epithelial cells [31,32]. This protein also displays esterase activity, [32], which
determines one of the mechanisms of macrolide resistance [33].

Initially, examining the sensitivity of Mc6 WT to erythromycin (macrolide antibiotic),
we showed, that for ~2.5–5 × 105 cfu/mL, the minimum inhibitory concentration (MIC)
and the minimum bactericidal concentration (MBC) were, respectively, 0.125 µg/mL and
0.5 µg/mL. As expected, the isogenic ∆mcaP Mc6 mutant strain was significantly more
sensitive to this antibiotic. In time-kill assays, the lethal effect of supra-MICs concentra-
tion of erythromycin occurred 1 h post-incubation. Applying the same concentrations of
antibiotic to the WT strain only produced a bacteriostatic effect (Figure S3). The results
obtained confirmed the contribution of the McaP protein to the survival of Mc6 bacteria
in the presence of erythromycin. In the next step, erythromycin-dependent bactericidal
tests were performed on Mc6 WT bacteria that had been previously treated with NE. In this
case, despite the fact that NE digests the McaP outer membrane protein of the M. catarrhalis
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Mc6 (Figure 3), no sensitization of this pre-exposed Mc6 bacterium to erythromycin was
observed, despite extended incubation times (Figure 5). Nevertheless, besides the lack of
enhanced erythromycin activity after NE treatment, it is worth adding that the presence of
NE in the environment does not disturb its bacteriostatic drug action.

2.5. M. catarrhalis Is a Potent Inducer of Neutrophil Elastase Release

Given the ability of M. catarrhalis to cause degranulation of PMNs, they may contribute
to the increased concentration of this proteolytic enzyme in the immediate vicinity of the
bacteria. Previously, we have shown that OMVs released by M. catarrhalis are potent
inducers of NE release from PMNs neutrophils [28]. Here, we documented the differences
in magnitude of NE release due to PMN degranulation in response to bacteria either
opsonized or not by human serum (opsonic versus non-opsonic manner). As shown in
Figure 6, in opsonic conditions, NE release was 5.7- to 11-fold higher in comparison to
the unstimulated control, depending on the blood donor. In non-opsonic conditions, this
increase was noticeably lower, from 1.2 to maximally 3.3-fold. These results indicated that
the opsonized Mc6 induced the mean ~4-fold ± 0.52 SD higher increase in elastase release
comparing to non-opsonized bacteria. By inducing the release of NE under a variety of
immune conditions, M. catarrhalis contributes to enhancing the inflammatory environment,
which facilitates its persisting.
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Figure 6. M. catarrhalis Mc6 is effective stimulator of human PMNs degranulation and elastase
release. Human neutrophil samples at ~1× 107 cell/mL from four volunteers S1–S4 were primed
with cytochalasin D (5 µg/mL), incubated for 30 min with bacteria preincubated with 10% pooled
human sera (opsonic) or not (non-opsonic), and assayed for the release of elastase. Activity of enzyme
was determined using fluorogenic substrate, MeoSuc-Ala-Ala-Pro-Val-AMC, and the increase in
fluorescence was measured using Varioskan™ Flash Multimode Reader, Thermo Scientific, Vantaa,
Finland) at Ex. λ = 370 nm and Em. λ = 445 nm. Data are expressed as fold increase of RLU/s in
comparison to non-stimulated control for each individual supernatant after degranulation.
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3. Discussion

Excessive neutrophilic inflammation accompanied by the impaired function of neu-
trophils is a hallmark of lower respiratory tract infections and chronic pulmonary diseases,
including acute respiratory distress syndrome COPD or neutrophilic asthma [14,18,34].
For example, in COPD, patients’ neutrophils are described as aberrant due to abnormal
degranulation, phagocytosis, high ROS generation, and NET formation [35]. Furthermore,
it was shown that NETs are more abundant in sputum from patients with severe COPD and
are associated with more frequent exacerbations as well as loss of microbiota diversity and
Haemophilus species dysbiosis [36]. There is increasing evidence that an overwhelming NET
response correlates with poor outcome also in other lung-related diseases such as bacterial
pneumonia, cystic fibrosis, or influenza. The detrimental effects that NETosis causes, such
as destruction of epithelial and endothelial cells, vessel occlusion, or additional neutrophil
recruitment and activation [37] are partly responsible for this. Likewise, neutrophils from
patients with neutrophilic asthma display enhanced migration but diminished phagocytic
efficiency compared with healthy controls [38].

In the case of bacterial exacerbation of inflammatory disorders, bacteria are exposed
to granule contents containing elastase during neutrophil degranulation or NET-osis. As
was documented in this paper, the exposure of M. catarrhalis to NE at 2 µM (60 µg/mL)
did not result in the loss of their cocci-like morphology, inner-membrane damage or in-
creased permeability. For other Gram-negative bacteria, using the same or even lower
concentrations of the enzyme, a nonoxidative mechanism of bactericidal action of NE
involving degradation of pivotal OMPs that facilitate osmotic lysis has been proposed for
OmpA E. coli [2] and OprF P. aeruginosa [3]. Our observed lack of bacterial death in M.
catarrhalis after exposure to NE used in concentrations exceeding those documented for
lower airways in bronchoalveolar lavage fluid (BALF) in COPD exacerbations or bronchiec-
tasis [26,27] indicates that, in these conditions, potential degradation of any of the highly
expressed surface proteins by NE is not sufficient to either destroy cell wall integrity or
to locally attenuate wall thickness, which would facilitate osmotic lysis. The lack of, or
reduced sensitivity to, NE may be another strategy that allows the bacterium to survive
extracellularly in its presence, although we cannot exclude the possibility that bactericidal
activity could be observed in phagolysosomal compartments inside neutrophils, where the
concentration of this enzyme should be much higher. To date, other defense strategies of
M. catarrhalis, which allow the bacteria to overcome the inflammatory conditions, have also
been documented. For example, M. catarrhalis evaded neutrophil oxidative stress responses
via induction of less ROS and reduced NETosis in differentiated HL-60 neutrophils [39].

Although we did not observe a direct elastase-dependent bacteriolytic effect or inner-
membrane perturbation using 2 µM of enzyme, we have shown for the first time that
neutrophilic elastase caused the proteolytic degradation of three important outer-membrane
proteins of this bacterium, i.e., OMP CD, McaP, and TbpA, as was determined by LC-
MS/MS analyses. The functional significance of this phenomenon for two of the proteins
mentioned, namely OMP CD and McaP, has been further explored. OMP CD is a highly
conserved and abundantly expressed M. catarrhalis surface protein identified as a target of
serum IgG antibodies to surface epitopes in the majority of adults with COPD who cleared
this pathogen as well as mucosal IgA in COPD patients [40,41]. OMP CD is recognized
intensively by cross-reactive intraspecies antibodies from mice sera and human sera in
healthy children and those with otitis media [42,43]. Functionally, this protein is involved in
complement resistance [32]. Initially, using a constructed isogenic ∆ompCD mutant of Mc6
defective in expression of OMP CD as an internal control, we confirmed the involvement
of this surface protein in complement resistance by showing that bacteria lacking OMP
CD die in the presence of the complement cascade in contrast to the wild-type strain.
Interestingly, although the absence of OMP CD protein in OMVs significantly attenuates
the activation of the terminal SC5b-9 complement complex, enzymatic digestion of OMVs
with clinically relevant concentrations of NE (2 µM) does not inhibit the formation of the
aforementioned complex as compared to OMVs that are not digested by NE. These results
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imply that the proteolytic activity of NE against OMVs did not interfere with complement
activation. The finding that NE-dependent proteolytic degradation of OMP CD sensitizes
complement-resistant M. catarrhalis Mc6 to bactericidal action of complement, contributing
to the significant decrease of this resistance, is important and a new observation. It indicates
that NE exerts direct anti-virulence activity against M. catarrhalis, making it more susceptible
to the action of this humoral innate mechanism.

Unlike many Gram-negative bacteria which are resistant to macrolide antibiotics,
most strains of M. catarrhalis are sensitive to these hydrophobic compounds, including
erythromycin [44]. However, the presence of OMPs with esterase activity may potentially
contribute to macrolide resistance. It has been previously demonstrated that a lack of
McaP expression abolishes the esterase activity of isogenic M. catarrhalis O35E mutant
and considerably decreases its adherence to several human cell lines [32]. The esterase
activity of McaP against erythromycin should result in its degradation. In the absence of
McaP, this bactericidal activity of the antibiotic is expected to be enabled. However, when
analyzing the consequences of NE-dependent digestion of McaP, we did not show any
greater sensitization to erythromycin beyond inhibition of bacterial growth in its presence,
as we observed for bacteria incubated in the presence of antibiotic alone. The observed lack
of bactericidal effect of erythromycin in the presence of surface McaP partially digested
by elastase can be explained by the sufficiently high expression level of McaP protein on
bacterial cells, thereby retaining esterase activity against erythromycin despite the action of
NE. Alternatively, the proteolytic action of NE did not cleave the site of McaP responsible
for the esterase activity. Other OMPs encoding genes, including uspA2 and uspA2H, also are
reported to be engaged in macrolide resistance in M. catarrhalis. Furthermore, macrolide-
resistant isolates exhibited enhanced adhesion when compared with macrolide-susceptible
isolates, indicating they were more pathogenic [45].

Overall, despite the fact that our studies did not reveal any direct bactericidal action
of NE against M. catarrhalis, we showed a new beneficial indirect role for this enzyme in the
innate immune response against this bacterium. It involves the decrease of the resistance of
M. catarrhalis to human serum complement.

Bacteria and their OMVs can induce neutrophil granule exocytosis [28,46]. Moreover,
bacterial pathogens can manipulate neutrophil degranulation and by inhibiting, dysregu-
lating, or inducing excessive neutrophil degranulation, bacteria can skew the protective
effects of neutrophil degranulation in a way that ultimately benefits the pathogen and
worsens disease [47]. This virulence strategy is used by Shigella flexnerii, which utilizes
antimicrobial proteins released by degranulation to increase adhesion efficiency followed
by hyperinvasion into epithelial cells [48]. Since the OMVs released can disseminate over
significant distances, OMV-dependent degranulation of PMNs may be another virulence
mechanism that triggers cellular exocytosis away from the bacteria. This could both delay
the direct contact between the pathogen and PMNs and disarm PMNs by protecting bac-
teria from the anti-virulent effects of elastase. The protective role of vesicles against the
deleterious effects of released neutrophil granule components has so far been demonstrated
for several Gram-negative pathogens. For example, Porphyromonas gingivalis deploys OMVs
decorated with gingipains for a neutrophil-deceptive strategy to degrade released external
MPO and LL-37, creating a favorable inflammatory niche as well as avoiding killing [49].
We have previously demonstrated that neutrophils stimulated by M. catarrhalis OMVs
released both azurophilic and secondary granules and that these OMVs caused cell death
of respiratory epithelial cells [28]. In the present work, we found that antibody-opsonized
bacteria induced significantly stronger NE release than non-opsonized bacteria, suggesting
that under a variety of immune conditions M. catarrhalis contributes to enhancing the
inflammatory niche in which it can persist.

Importantly, the level of free elastase in the lungs of severe COPD patients is sig-
nificantly higher than in healthy individuals [50]. This enzyme is recognized also as a
valuable biomarker for distinguishing the bacterial exacerbation in patients in COPD [27].
Thus, the bacteria- or OMV-dependent elastase release, trapping, and finally utilization,
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together with PMN depletion and exhaustion, may facilitate the adaptation of M. catarrhalis
in countering lower respiratory tract defense.

In conclusion, the ability of M. catarrhalis to provoke neutrophil elastase release which
does not seem to be effective as a bactericidal agent against these bacteria, at least in
extracellular inflammatory milieu, as well as the identification and characterization of
novel NE proteolytic targets within M. catarrhalis OMPs, broaden our understanding of
how these bacteria contribute to enhancing the inflammation in which they persist and
counteract host defense mechanisms.

4. Materials and Methods
4.1. Reagents

The following reagents were used: acetonitrile (Sigma-Aldrich, Saint Louis, MO, USA);
BHI or BHI agar (Brain Heart Infusion, OXOID, Basingstoke, UK); Columbia agar with
5% sheep blood (BioMérieux, Warszawa, Poland); Bradford reagent (Protein Assay Dye
Reagent Concentrate, Bio-Rad, München, Germany); GelCode blue stain reagent (Thermo
Scientific, Rockford, IL, USA); human neutrophil elastase and elastase fluorogenic substrate
MeoSuc-Ala-Ala-Pro-Val-AMC (Calbiochem, San Diego, CA, USA); Hank’s Buffer with
Ca2+, Mg2+ (HBSS, Lonza, Walkersville, MD, USA); kanamycin and erythromycin (ROTH,
Karlsruhe, Germany); Percoll (GE Healthcare, Uppsala, Sweden); dextran (Sigma, St. Louis,
MO, USA); PBS (IITD PAN, Wroclaw, Poland); propidium iodide (Invitrogen by Thermo
Fisher Scientific, Eugene, OR, USA); Trypan blue (ICN Biomedicals, Eschwege, Germany);
sequencing grade modified porcine trypsin (Promega, Madison, WI, USA); Zwittergent
3-14 (Calbiochem, Darmstadt, Germany).

4.2. Microbial Strains and Growth Condition

M. catarrhalis Mc6, described previously [43], and its study isogenic mutants generated
in this study were used. WT strain was grown on Columbia agar with 5% sheep blood, BHI
agar plates, or BHI broth. Mutants were grown on BHI supplemented with 20 µg/mL of
kanamycin. Strains were cultivated at 37 ◦C.

4.3. PMNs Isolation

Polymorphonuclear (PMNs) cell fraction enriched in neutrophils was isolated as de-
scribe previously [28]. Briefly, heparinized blood from healthy volunteers, aged 20–45 years,
was mixed in a 1:1 ratio with 2% dextran w/v dextran in PBS buffer, pH 7.4, and incubated
for 30–40 min at RT for erythrocytes sedimentation. The 3–6 mL of PMN-rich plasma
collected was carefully transferred to a discontinuous Percoll gradient (61% and 76% in
0.9% NaCl) and centrifuged (320× g/10 min, RT). After centrifugation, the PMNs fraction
between both Percoll layers was collected in a sterile falcon tube and washed twice by
centrifugation (320× g/10 min, RT) with erythrocyte lysis buffer (150 mM NH4Cl; 10 mM
KHCO3; 0.3 mM EDTA; pH 7.4). Finally, the cells were resuspended in HBSS. Isolated
neutrophils were assessed for viability with the trypan blue exclusion assay.

4.4. PMNs Degranulation Assay

PMNs were subjected to degranulation as previously described [28]. Briefly, 1× 107 cells/mL
were gently mixed and 500 µL was aliquoted into polystyrene cell culture tubes. To
obtain degranulation, all samples (without spontaneous degranulation samples) were
primed with cytochalasin D (5 µg/mL) for 5 min at 37 ◦C, 5% CO2, followed by a further
30 min incubation (37 ◦C, 5% CO2) with stimulants including opsonized (10% pooled heat
inactivated (56 ◦C, 30 min) human serum) or serum non-opsonized M. catarrhalis Mc6 at
~5 × 108 and 1 µM fMLP as positive control. Subsequently, samples were centrifuged
(320 × g/10 min, RT), and after subsequent centrifugation of supernatant, the bacteria-free
supernatants were aliquoted and stored at −20 ◦C.
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4.5. Neutrophil Elastase Activity Measurement

Neutrophil elastase (NE) activity was determined by measuring the cleavage of the
fluorogenic NE substrate, MeoSuc-Ala-Ala-Pro-Val-AMC, dissolved in Hank’s Balanced
Salt Solution (HBSS) reaction buffer at pH 7.5, containing 0.1% (w/v) HEPES, 10% (v/v)
DMSO, and 150 mM NaCl, as determined previously [28,51]. The working substrate
concentration that gave the linear relationship (increase in fluorescence) was 100µM as
determined in preliminary calibration curve experiments with various concentrations of
elastase. Cell-free suparnatants after degranulation were added to the substrate in a 1 : 1
ratio in a volume of 50µL each and were immediately measured using the 96-well flat-
bottom black microplate (NUNC). The cleavage rate of the substrate measured for 30 min
at 37 ◦C as the increase in fluorescence was monitored spectrofluorometrically (Varioskan™
Flash Multimode Reader, Thermo Scientific) at excitation wave λ = 370 nm and emission
λ = 445 nm.

4.6. Flow Cytometry Analysis

To measure the activity of NE in permeabilization of bacterial membranes, the method
described previously was used [52]. Briefly, 18 h Mc6 was recultivated in BHI until early-log
phase (OD600 = 0.25). The bacteria were washed with PBS (pH 7.4), resuspended in PBS-1%
BHI (w/v) and diluted to ~2–4 × 106 cfu/mL. The cells (100 µL) supplemented with NE,
EDTA (positive control), or buffer (negative control) were incubated at 37 ◦C up to 4 h
(thermoblock) and then treated with 6 µM PI for 15 min at room temperature. The samples
were suspended in 250 µL PBS, diluted at least 10× in PBS and analyzed with GUAVA
EasyCyte flow cytometer (Merck) by measurement of 5000 events on red fluorescence
channel. Data were analyzed using GUAVA EasyCyte software (guavaSoft 3.3) Tests were
performed in 3 independent biological replicates.

4.7. In Gel Trypsin Digestion and Peptide Identification by LC MS/MS Analysis

Gels were rinsed with HPLC-grade water. Excised bands were destained in 100µL of
100 mM ammonium bicarbonate/acetonitrile solution for 30 minutes at room temperature
and then washed with 500µL of neat acetonitrile. Gel pieces were then covered with
10 ng/µL porcine trypsin solution in 10 mM ammonium bicarbonate/10% (v/v) acetonitrile
and incubated for 2 h on ice followed by overnight incubation at 37 ◦C. After digestion,
samples were centrifuged and supernatant aliquots were withdrawn and stored at −20 ◦C
until LC MS/MS analysis. The analyses were performed on an Ion Trap LC/MS/MS
spectrometer (Agilent Technologies, Santa Clara, CA USA). The resulting peptide mass
fingerprints and LC MS/MS fragmentation spectra were identified using the MASCOT
(http://www.matrixscience.com) and BLAST engines [53] searching M. catarrhalis pro-
tein databases.

4.8. Time-Kill Assay for WT and Isogenic Mutants

For the time kill assay from 0 to 4 h, overnight cultures of Mc6 WT, ∆ompCD, or ∆mcaP
were recultivated until early log-phase (OD600 = 0.25–0.3) in relevant media. The bacteria
were diluted in 1% (w/v) BHI-PBS to obtain ~2–4 × 106 cfu/mL and incubated in the
presence of NE, NHS, HiNHS, or erythromycin in a final volume of 100 µL for 0, 1, and
4 h at 37 ◦C. At each time point suspensions were 10-fold serially diluted with and 10 µL
aliquots were plated in triplicate on BHI agar plates or alternatively in spots. The plates
were incubated overnight at 37 ◦C, and cfu/mL were calculated.

4.9. Bactericidal Activity of Serum Complement or Erythromycin against NE-Treated Bacteria

For enzymatic digestion, the early-log phase bacteria at ~5 × 105 cfu/mL were mixed
with 2 µM NE in an elastase HBSS buffer containing 0.1% HEPES, 10% DMSO, 150 mM
NaCl, 1% BHI (pH 7.5) in a final volume of 100 µL. The not enzymatically treated bacteria
were used as control samples. Bacteria were incubated for 4 h at 37 ◦C in water bath.

http://www.matrixscience.com
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Next. the NE-treated as well as NE-non-treated bacteria were divided into equal
volumes and used in bactericidal tests with 25% or 50% normal human serum (NHS) as
well as 4 or 6 µg/mL of erythromycin (E). Simultaneously, the incubation of bacteria in
the presence of heat-inactivated serum (HiNHS) and appropriate diluent was included as
negative and positive controls, respectively. To assess the bactericidal effect at 0, 60, 120,
and 240 min of the experiment, 10 µL each of bacterial suspensions incubated in a water
bath at 37 ◦C were 10-fold serially diluted and then 10 µL aliquots were plated in triplicate
on BHI agar plates. The plates were incubated overnight at 37 ◦C. The colony counts and
cfu/mL were calculated next day.

4.10. Complement Complex SC5b-9 Activation

Briefly, 10 µL of OMVs in veronal buffer (pH 7.4) to obtain final vesicle protein concen-
trations of 20 µg/mL were added to 90 µL of NHS. The negative control was NHS with the
addition of 10 µL of veronal buffer. The samples were incubated for 30 min at 37 ◦C, diluted
in the range 100–2000×, and concentration of soluble SC5b-9 was determined by ELISA
kit (MicroVue SC5b-9 Plus, Quidel; Athens, OH, USA) according to the manufacturer’s
instructions. The absorbance at λ = 450 nm was read using Varioskan™ LUX multimode
microplate reader (Thermo Scientifc, Vantaa, Finland).

4.11. Outer Membrane Vesicles Isolation

Outer membrane vesicle (OMV) isolation was performed as we reported previously [43].
Briefly, the 18 h pre-culture of M. catarrhalis 6 (Mc6) was diluted 50 × in 500 mL brain–heart
infusion (BHI) media and incubated at 37 ◦C for 16–18 h with orbital shaking (150 rpm).
The culture was centrifuged at 8000 rpm for 15 min at 4 ◦C. The supernatant was collected
and passed through 0,22 µm pore size filter vacuum pump (Merck, Millipore). The filtrate
was concentrated using 50 kDa vivaspin centrifugal concentrators (Amicon ultra, Merck
Millipore, Cork, Ireland) at 5000× g for 30 min at 4 ◦C. The concentrated supernatant
was thereafter ultracentrifuged overnight (100,000× g, at 4 ◦C) using Beckman Coulter
Optima ultracentrifuge (model L-90K, Palo Alto, CA, USA). The pellet containing OMVs
was re-suspend in 500 µL of sterile PBS buffer (pH 7.4), aliquoted, and stored in −20 ◦C.
The sterility of OMVs was confirmed on BHI agar. The protein concentration in OMV
preparation was measured using Qubit fluorometer (Life Technologies Corporation, Carls-
bad, CA, USA), and the quality of OMVs preparation was confirmed in 12% SDS-PAGE
stained with GelCode blue stain reagent.

4.12. Outer Membrane Protein Isolation

Outer membrane proteins (OMPs) were isolated with zwitterionic detergent Zwit-
tergent 3–14 according to our method described in [42]. Briefly, the bacteria from 200 mL
of culture were suspended in 5 mL of 1 M sodium acetate buffer containing 1 mM β-
mercaptoethanol, pH 4.0). To this suspension, a 45 mL volume of a solution of 0.5 M CaCl2
containing 5% Zwittergent was added and stirred for 1 h at room temperature. The nucleic
acids were precipitated by adding 12.5 mL of cold absolute ethanol and subsequently
centrifuging the solution (17,000× g, 10 min., 4 ◦C). The pellet was discarded and the
proteins remaining in the supernatant were precipitated by adding 187 mL of cold ethanol
and collected by centrifugation (17,000× g, 20 min., 4 ◦C). The pellet was air dried and
then resuspended in 10 mL of Z buffer (0.05% Zwittergent, 50 mM Tris, 10 mM EDTA; pH
8.0). This mixture was stirred for 1 h at room temperature and centrifuged at 12,000× g for
10 min. at 4 ◦C, and the soluble fraction containing OMPs was retained. The OMPs were
divided into aliquots and stored at −80 ◦C. The quantity and quality of OMPs preparation
was confirmed using Bradford reagent and 12% SDS-PAGE stained with GelCode blue
stain reagent, respectively.
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4.13. TEM

Briefly, 18 h cell culture of M. catarrhalis in BHI was centrifuged and rinsed in PBS.
The pellet was fixed in 1 mL of cacodylate buffer (0.2 M sodium cacodylate, 0.2 M HCl,
pH 7.4) supplemented with 2.5% glutaraldehyde and incubated 8–10 h at room temperature
(RT). The suspension was rinsed by centrifugation (3000× g, 10 min., RT) several times
with cacodylate buffer. The resultant pellet was postfixed in cacodylate buffer containing
1% OsO4 for 2 h at RT and rinsed. The samples were subsequently dehydrated in a
series of ethanol concentrations and embedded in Epon 812. Thin sections were cut with
an ultramicrotome (Reichert-Jung) equipped with a diamond knife and stained with 2%
uranyl acetate and lead citrate. The samples were then visualized with a TEM (TESLA BS
540, Brno, Czech Republic) operated at 80 kV.

4.14. Construction of Mc6 Isogenic Mutants

To construct M. catarrhalis 6 ∆ompCD mutant, the plasmid pGEM-∆ompCD carrying
deletion cassette was transformed into M. catarrhalis Mc6 strain according to procedure de-
scribed before [54]. Kanamycin-resistant transformants were selected and the proper deletion
was verified by the primers ompCD-F2 (5′-CATATGGGTGTGACAGTCAGCCCACTAC-3′)
and ompCD-R2 (5′- GGATCCCTGGCGATATGCCCGAACTG-3′). For further studies, the
clone no. 2 was selected.

To obtain M. catarrhalis 6 ∆mcaP mutant, WT Mc6 was transformed with plasmid pJTm-
caPnpKAN, as described before [32]. Kanamycin-resistant transformants were selected and
the proper deletion was verified by the primers P1 (5′-CGCAATAAAGATCACCATGCTTG-
3′) and P2 (5′-CGGGATCCCGCTGACACATTGCATTGATAAA-3′). For further studies, the
clone no. 3 was selected.

4.15. Statistical Analysis

The data were expressed as the mean ± SD and analyzed for the significant difference
using the Statistica (version 13.3) software (StatSoft, Krakow, Poland). Differences were
considered statistically significant if p < 0.05.
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