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Abstract: Gut microbiota (GM) modulation can be investigated as possible solution to enhance
recovery after COVID-19. An open-label, single-center, single-arm, pilot, interventional study was
performed by enrolling twenty patients recently recovered from COVID-19 to investigate the role
of a mixed probiotic, containing Lactobacilli, Bifidobacteria and Streptococcus thermophilus, on gas-
trointestinal symptoms, local and systemic inflammation, intestinal barrier integrity and GM profile.
Gastrointestinal Symptom Rating Scale, cytokines, inflammatory, gut permeability, and integrity
markers were evaluated before (T0) and after 8 weeks (T1) of probiotic supplementation. GM profiling
was based on 16S-rRNA targeted-metagenomics and QIIME 2.0, LEfSe and PICRUSt computational
algorithms. Multiple machine learning (ML) models were trained to classify GM at T0 and T1.
A statistically significant reduction of IL-6 (p < 0.001), TNF-α (p < 0.001) and IL-12RA (p < 0.02),
citrulline (p value < 0.001) was reported at T1. GM global distribution and microbial biomarkers
strictly reflected probiotic composition, with a general increase in Bifidobacteria at T1. Twelve unique
KEGG orthologs were associated only to T0, including tetracycline resistance cassettes. ML clas-
sified the GM at T1 with 100% score at phylum level. Bifidobacteriaceae and Bifidobacterium spp.
inversely correlated to reduction of citrulline and inflammatory cytokines. Probiotic supplementation
during post-COVID-19 may trigger anti-inflammatory effects though Bifidobacteria and related-
metabolism enhancement.

Keywords: post-COVID-19; probiotic supplementation; gut microbiota

1. Introduction

Coronavirus disease 2019 (COVID-19), produced by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), has been the biggest health emergency in the last
hundred years, having a peerless impact over the whole world. Both in 2020 and 2021,
COVID-19 has been the third cause of death in the United States, according to the US
Centers for Disease Control and Prevention [1]. Typically, the disease is characterized by
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fever and respiratory symptoms and, particularly, by interstitial pneumonia [2]. However,
many patients with COVID-19 frequently experience also digestive symptoms, such as
diarrhea, vomit and abdominal pain. About the transmission route, the most relevant one
is considered the direct exposure to infected patients, who can spread the virus through
droplets or aerosols. However, SARS-CoV-2 is also detected in fecal samples. Generally,
patients with respiratory infections often present associated intestinal dysfunction or in-
testinal secondary complications, with a more severe clinical course, suggesting a possible
crosstalk between airways and gut [3,4]. This phenomenon has been also observed in
COVID-19 patients [3]. New evidence suggests the possible presence of a specific lung
microbiome signature, mainly characterized by predominant Bacteroidetes, Firmicutes,
and Proteobacteria phyla compared to the most abundant Bacteroidetes and Firmicutes of
the gut microbiome [5]. The gut-lung axis is supposed to be bidirectional, meaning that
endotoxins and microbial metabolites deriving from the gut can impact the lung through
blood and, on the other side, when inflammation firstly occurs in the lung, it can also
affect the gut microbiota (GM) as well [6]. In fact, several studies have demonstrated that
respiratory infections are associated with a change in the GM composition [7].

Regarding COVID-19, recent studies have found that GM richness was not restored to
eubiotic conditions six months after primary SARS-CoV-2 infection, and patients with high-
est level of C-reactive Protein (CRP) and illness severity during the acute phase also showed
lower post-convalescence richness, suggesting close correlations between inflammatory
response and gut dysbiosis in COVID-19 [8]. Based on this evidence, GM modulation can
be considered as a possible solution during and after recovering from COVID-19 acute
phase. Interestingly, probiotics have been widely used as a mean to modulate GM, due
to their safety and efficacy in specific settings [9]. During the first COVID-19 pandemic
wave, there were no indications for the use of probiotics in COVID-19. However, the
use of probiotic supplementation could have a sufficiently strong rational based on the
previous history of use in humans with a beneficial effect on the immune system, due to
the ability to boost the immune system and fight respiratory pathogens [10,11]. In fact,
probiotics have been reported to act on our immune system in various ways, influencing
both the innate and the adaptive immune system. Particularly, probiotics’ actions, based on
non-immunological mechanism, may enhance the mucus layer of the gut barrier promoting
its good functionality [12], but they can also act directly on our immune system, stimulating
the production of cytokines such as TNF-α and IL-8, finally triggering a systemic innate
immune response [13]. All these mechanisms could be beneficial in fighting viral infections
and, particularly, COVID-19. The VSL#3® is a multi-strain high potency probiotic mixture
containing Lactobacilli, Bifidobacteria and Streptococcus thermophilus. Single species belong-
ing to VSL#3® mixture have been already reported to positively act on respiratory [10],
gastrointestinal [14], influenza-like symptoms [15], or to enhance nasal innate immunity
response to rhinovirus infection [16], or to boost humoral immune response following oral
vaccination in healthy adults [17]. Theoretically, the combination of different strains in a
mix, could amplify these effects, based on possible synergistic effects. In vitro, the exposure
of Caco-2 cells to VSL#3-derived supernatant showed to positively impact on gut barrier
function, increasing the function of tight junctions and accelerating the process of gut
barrier repair [18]. Based on the possible gut barrier disruption after SARS-CoV-2 infection,
we aimed with this pilot study to evaluate the effects of VSL#3® on immune system in
patients discharged after hospitalization for COVID-19, investigating the satisfaction with
the supplementation and the safety and tolerability of the product, analysing the changes in
inflammatory parameters, gastrointestinal symptoms, bowel movements, gut permeability
and GM profiling.

2. Results
2.1. Study Population Features

Twenty patients were enrolled, but a patient was excluded from the final study phase
because he prematurely discontinued the study due to consent withdrawal. Table 1 reports
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the baseline characteristics of the 19 patients: gender distribution, age, mean BMI, concomi-
tant and previous other diseases, concomitant medications, previous surgery. Referring
to the period of active COVID-19, the most frequent COVID-19-related symptoms at the
onset of the infection were: fever (47.4%) and diarrhea (31.6%). For only three patients no
symptoms were reported (Table 2).

Table 1. Patient characteristics at baseline.

Summary Statistics Tot (n = 19)

Sex
Female %, n 31.6% (6/19)
Male %, n 68.4% (13/19)

Age

n 19 (100.0%)
Mean ± SD 55.00 ± 8.56

Median (Q1-Q3) 54.00 (52.00–61.00)
Min-Max 33.0–70.0
Missing 0

BMI

n 19 (100%)
Mean ± SD 26.53 ± 4.20

Median (Q1-Q3) 25.56 (23.90–28.70)
Min-Max 18.5–40.9
Missing 0

Other diseases (concomitant and previous) %, n 68.4% (13/19)
Concomitant diseases Anxious depressive syndrome %, n 4.8% (1/21)

Benign prostatic hypertrophy %, n 14.3% (3/21)
Diabetes %, n 9.5% (2/21)

Gastroesophageal reflux %, n 14.3% (3/21)
Hiatal hernia %, n 4.8% (1/21)

Hypercholesterolemia %, n 4.8% (1/21)
Hypertension %, n 28.6% (6/21)

Insomnia %, n 4.8% (1/21)
Minor beta-thalassemia %, n 4.8% (1/21)

Osteoporosis %, n 4.8% (1/21)
Tachycardia %, n 4.8% (1/21)

Previous diseases Cerebral Ischemia %, n 20.0% (1/5)
Chlamydial pneumonia %, n 20.0% (1/5)

Previous HBV %, n 20.0% (1/5)
Thyroiditis %, n 20.0% (1/5)

Ulna and radius fractures %, n 20.0% (1/5)

Concomitant medication %, n 78.9% (15/19)
Previous surgery %, n 42.1% (8/19)

Table 2. COVID-19 related symptoms during hospitalization.

Summary Statistics Tot (n = 19)

Fever %, n 47.4% (9/19)
Cough %, n 21.1% (4/19)

Anosmia %, n 10.5% (2/19)
Diarrhea %, n 31.6% (6/19)

Other symptoms %, n 36.8% (7/19)

During COVID-19, 47% of patients experienced gastrointestinal symptoms and 68%
reported at least one concomitant disease. Hospitalization had a median duration of 14 days,
with a range min-max between 2 and 78 days and a mean value of 18.05 ± 17.85 days. The
median duration of infection positivity was 28 days, with a range min-max between 20.00
and 38.00 days and a mean value of 29.12 ± 15.78 days. The median time of days between
negative swab and treatment initiation was 24 days, with a range min-max between 18 and
131 days and a mean value of 43.71 ± 38.23 days, while the days between COVID diagnosis



Int. J. Mol. Sci. 2023, 24, 6623 4 of 20

and treatment initiation had a median of 56 days, with a range min-max between 33 and
187 days and a mean value of 72.05 ± 43.80 days.

Clinical Outcomes and Treatment Satisfaction Assessment

Regarding the Gastrointestinal Symptom Rating Scale (GSRS) total score, its calculation
was effective only for 15 patients who answered all 15 questions both at baseline and
after 8 weeks of supplementation. Regarding these 15 patients, 11 complained at least a
gastrointestinal symptom at baseline. Among them, six showed gastrointestinal symptoms
during COVID-19, while five not.

By comparing data registered at baseline and at the end of the supplementation, no
statistically significant differences were found either in global and in specific GSRS item
scores (Tables S1 and S2 report mean scores and distribution of answers to all GSRS items
before and after supplementation). However, looking at some single GSRS questionnaire
items, some trends could be identified. Regarding the “passing gas or flatus” item, eight out
of 13 patients reported symptoms at baseline and six out of eight improved at the follow-up
visit. About the “constipation” and the “hard stools” items, all patients who declared
discomfort at baseline experienced benefit after supplementation, while five of seven
patients who declared “abdominal pain” at baseline benefited from the supplementation
with the complete pain resolution at the follow-up.

No differences were found before and after supplementation in bowel habits. In fact,
the mean number of evacuation and stool consistency, according to Bristol stool scale,
did not show significant differences before and after supplementation, 1.24 ± 0.56 versus
1.15 ± 0.38 and 3.54± 0.924 versus 3.60± 0.834, respectively). Table S2 shows the frequency
distribution of the individual items.

Regarding patients’ satisfaction on the purposed treatment, globally, 21.1% of patients
were not satisfied by the supplementation, 36.8% were quite satisfied and 42.1% were
very satisfied.

2.2. Immunological Response, Intestinal Barrier Integrity and Local and Systemic Inflammation

After 8-week probiotic supplementation, the levels of IL-6 (p < 0.001), TNF-α (p < 0.001)
and IL-12RA (p < 0.02) were significantly reduced, with a variation of−5.75± 6.363 for IL-6,
−4.85 ± 4.429 for TNF-α and −415.16 ± 708.954 for IL-12RA. No significant differences
were reported for the other assessed cytokines (Figure 1).

Serum levels of citrulline were significantly reduced at the end of treatment (107.14 pg/mL),
compared with baseline values (282.26 pg/mL) (p value < 0.001) (Figure S1), though
within its physiological range (1750–6125 pg/mL) [19]. However, PV-1 (−0.22 ± 0.927,
p value 0.322) and zonulin (−1.85 ± 21.746, p value 0.595) did not demonstrate significant
variation after supplementation (Figure S1). Regarding faecal calprotectin, 16/19 patients
showed normal values (≤50 µg/g) at the baseline. Similarly, 17/19 patients showed
normal values of CRP (≤5 mg/dL) at baseline. However, no significant differences were
found after supplementation for both markers of inflammation. In detail, a mean normal
value of faecal calprotectin was measured for all patients at baseline (40.15 ± 81.91 µg/g)
and after 8-weeks of supplementation (23.13 ± 30.45 µg/g). Similarly, CRP showed no
significant variation after treatment, and mean values remained within the physiological
range during all the observation (4.19 ± 10.38 mg/dL versus 2.22 ± 4.24 mg/dL, before
and after treatment, respectively).
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Figure 1. Values of cytokines detected at baseline (Week 0, W0) and at the end of the study (Week 8,
W8). p values for IL-6 (A), TNF-α (B) and IL-12RA (C) were p < 0.001 and p < 0.02, respectively.
p values for IL-1B (D), IL-10 (E) and IL-8 (F) were not significant. Paired data were compared by
Wilcoxon test after verification of non normal distribution by graphical qqplot representation. The
comparisons are reported at T0 (Week 0, w0) and T1 (Week 8, w8), respectively.

2.3. Gut Microbiota Profiling: Ecology, Predicted Functions and “Microbial Marker” Discovery

To assess the overall ecological differences of microbial communities pre and post
probiotic supplementation, diversity algorithms were computed to compare sample sets
at T0 and T1. Time points. The α-diversity was based on the following metrices: ChaoI
to estimate the abundance of the individual samples belonging to the T0 and T1 classes;
Shannon to assess both species richness and evenness, but with weight on the richness.
Indeed, behind this latter metric there is the idea that more taxa you observe, more even
their abundances are, the higher the entropy, or the higher the uncertainty of predicting
which taxa you would see next; phylogenetic distance to evaluate phylogenetic diversity
measures, that is the amount of the phylogenetic tree covered by the community; observed
species to assess the observed ASVs counts up the number of ASVs you observe; Simpson to
measure the degree of concentration when samples are classified into types; good’s coverage
to estimate the percentage of total bacterial ASV represented in a sample (Figure 2) and
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dominance index to quantify the dominance of one or few species in a community. Greater
values indicate higher dominance. Dominance indices are in general negatively correlated
with alpha diversity indices (species richness, evenness, diversity, rarity).
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Figure 2. Evaluation of the gut microbiota ecology assessed by α-diversity of faecal sample sets at
T0 and T1 time points, corresponding to pre- and post-probiotic supplementation, based on Chao-1,
Shannon, observed species, phylogenetic distance, goods coverage and Simpson diversity metrices.
No statistical significance was observed (p value > 0.05), based on both ANOVA and Kruskal-Wallis
tests. Both statistical tests were confirmed by Shapiro-Wilk and Levene’s tests, respectively. The
comparison are reported at T0 (Week 0) and T1 (Week 8), respectively.

A slight increase of α-diversity was observed at the T1 time-point compared to the
T0, though this was not of statistical significance (p value > 0.05, ANOVA test), (Figure 2).
Lower dominance index was reported for the gut microbiota communities at T1 compared
to index computed at T0, corroborating the evidence of a more diverse microbiota at T1
(Figure S2).

The β-diversity, assessed by Bray-Curtis, Euclidian distance, unweighted and weighted
UniFrac algorithms, did not provide statistically significant differences as ascertained by
PERMANOVA test (p value > 0.05), between microbial communities at T0 and T1. time
points (Figure S3). For each patient, fecal sample coupled comparisons, for global distribu-
tion description of gut microbiota at T0 and T1, respectively, were reported at phylum (L2),
family (L5) and genus (L6) levels but not differential profiles were detected (Figures S4–S6).

However, for the overall coupled global sample sets’ comparison, at T1 versus T0,
the ASVs relative abundance differences at taxonomic phylum level relied on Firmicutes,
Euryarchaeota, Bacteroidetes, Proteobacteria, Actinobacteria, with an increase in Actinobac-
teria and Bacteroidetes and a decrease in Proteobacteria, respectively, at the T1 time-point,
though these were not of statistical significance (Figure S7). At the taxonomic family
level, Enterobacteriaceae, Clostridiaceae, Peptostreptococcaceae appeared higher in the
gut microbiota of COVID-19 patients at T0, while Streptococcaceae, Ruminococcaceae
and Bifidobacteriaceae were more abundant in the gut microbiota at T1, the latter being
statistically significant (p < 0.05) (Figure 3).
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Figure 3. Histograms representing the relative abundancies of Amplicon Sequence Variant (ASV)
distributions in the gut microbiota of patients at T0 and T1, represented at taxonomic family level
(L5). The bacterial families were compared by Kruskal–Wallis test. The box in red refers to the
family Bifidobacteriaceae, relevant for the composition of the administered probiotic, including
Bifidobacterium, and filtered by statistical significance (* p value < 0.001).

At the taxonomic genus level (L6), Ruminococcus, Oscillospira, Streptococcus and Bifidobacterium
were more abundant at T1 than at T0, with Bifidobacterium being statistically significant
(p < 0.05) (Figure 4).
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Figure 4. Histograms representing the relative abundancies of Amplicon Sequence Variant (ASV)
distributions in the gut microbiota of patients at T0 and T1, represented at taxonomic genus level
(L6). The bacterial genera were compared by Kruskal-Wallis test. The box in red refers to the genus
Bifidobacterium, relevant for the composition of the administered probiotic and filtered by statistical
significance (* p value < 0.001).
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To infer taxonomic differences between the GM of the patients at T0 and T1, before
and after probiotic supplementation, in terms of potential biomarkers, the LefSe algorithm
was exploited and six top-ranking ASVs overall characterizing the GM at the T1 time-point
were identified (Figure 5). In particular, the analysis provided T1-related specific microbial
biomarkers (p ≤ 0.05), such as Actinobacteria (L2, phylum), Bifidobacteriales (L4, Order),
Bifidobacteriaceae and Enterococcaceae (L5, family); Bifidobacterium and Enterococcus (L6)
(Figure 5).
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Figure 5. LEfSe analysis for high-dimensional biomarker discovery and explanation, based on linear
discriminant analysis (LDA) effect size (LEfSe), employed to identify ASV features that resulted in
statistical differences among T0 and T1 gut microbiota groups. Histogram represents the LDA scores
until the taxonomy level genus (L6) filtered by statistical significance between the two groups. In red
are represented microbial biomarkers for the patients at T1.

To investigate the GM of post-COVID-19 patients by potential microbial marker
searching, its probiotic-linked profiling at T1 was investigated by a computational analysis
based on multiple ML models trained to classify the patients’ GM at T1 versus T0 for
each taxonomy level of the corresponding ASVs, hence identifying “important” features.
The ML model based on K Neighbors Classifier had an accuracy of 87.5% in distinguish
between T1 and T0 patients’ gut microbiota at Phylum level (Figure 6A), while the model
based on SGD Classifier had an accuracy of 58.33% in distiguish the two gut microbiota at
family and genus levels (Figure 6B,C). However, the accuracy value rised up to 100.0% by
K Neighbors Classifier when referring just to T1 patients’ gut microbiota classification at
phylum level, and to the 66.7% at both family and genus levels. In all cases, the important
features of the T1 patient group were related to Bifidobacterium-related taxa, actually one of
the main components of the administered probiotic, and to short chain fatty acids (SCFA)
producer bacteria.
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of models. Important ASVs for model prediction are represented at Phylum level (L2) (A); Family
level (L5) Pael (B); and at Genus level (L6) (C). The labels T0 and T1 represent the group of patients
for which the relative ASV resulted more representative. The models able to classify T1 versus T0 gut
microbiota at phylum level (L2) was K Neighbors Classifier and at family level (L5) and genus level
(L6) was SGD Classifier with 87.50% and 58.33% of accuracy for L2 and L5, L6, respectively).

The PICRUSt algorithm, exploited to identify predicted functional signatures, al-
lowed us to identify 97 KEGG orthologs (KOs), filtered by statistically significance, up or
down represented for the T0- and T1-related gut microbiota ASV datasets. Amongst this
KOs set, 12 KOs were mainly associated to bacterial virulence and antibiotic resistance
and resulted unique, that is exclusivetely associated to the time point T0 and absent at
T1. Indeed, the KOs were: K16958 (i.e., L-cystine transport system permease protein),
K14988 (i.e., two-component system, NarL family, secretion system sensor histidine kinase
SalK), K00720 (i.e., ceramide glucosyltransferase), K01274 (i.e., β-Ala-Xaa dipeptidase),
K01819 (i.e., galactose-6-phosphate isomerase), K02531 (i.e., Transcription factor), K02771
(i.e., fructose PTS system EIID component), K12294 (i.e., LytTR family, sensor histidine
kinase ComD), K12295 (i.e., two-component system, LytTR family, response regulator
ComE), K18216 (i.e., ATP-binding cassette, subfamily B, tetracycline resistant protein),
K18217 (i.e., ATP-binding cassette, subfamily B, tetracycline resistant protein), K18830
(i.e., HTH-type transcriptional regulator/antitoxin PezA) (Table S3).

Moreover, in correlation heatmaps, Spearman’s algorithm was used to examine the
association between features (e.g., biochemical markers and ASVs) and only statistically
significant correlations (FDR adjusted p values < 0.05) were reported. Spearman’s cor-
relation highlighted significant negative correlation between citrulline and ASV at L2
(phylum Actinobacteria), L5 (family Bifidobacteriaceae) and L6 (genus Bifidobacterium)
(FDR adjusted p values < 0.05). Also, significant negative correlation between IL-6 and ASV
was observed but only at L2 (phylum Bacteroidetes) and L5 (family Methanobacteriaceae)
(p values < 0.05) (Figure 7). No statistically significant correlations were identified between
KOs and biochemical markers.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 20 
 

 

Family level (L5) Pael (B); and at Genus level (L6) (C). The labels T0 and T1 represent the group of 

patients for which the relative ASV resulted more representative. The models able to classify T1 

versus T0 gut microbiota at phylum level (L2) was K Neighbors Classifier and at family level (L5) 

and genus level (L6) was SGD Classifier with 87.50% and 58.33% of accuracy for L2 and L5, L6, 

respectively). 

The PICRUSt algorithm, exploited to identify predicted functional signatures, al-

lowed us to identify 97 KEGG orthologs (KOs), filtered by statistically significance, up or 

down represented for the T0- and T1-related gut microbiota ASV datasets. Amongst this 

KOs set, 12 KOs were mainly associated to bacterial virulence and antibiotic resistance 

and resulted unique, that is exclusivetely associated to the time point T0 and absent at T1. 

Indeed, the KOs were: K16958 (i.e., L-cystine transport system permease protein), K14988 

(i.e., two-component system, NarL family, secretion system sensor histidine kinase SalK), 

K00720 (i.e., ceramide glucosyltransferase), K01274 (i.e., β-Ala-Xaa dipeptidase), K01819 

(i.e., galactose-6-phosphate isomerase), K02531 (i.e., Transcription factor), K02771 (i.e., 

fructose PTS system EIID component), K12294 (i.e., LytTR family, sensor histidine kinase 

ComD), K12295 (i.e., two-component system, LytTR family, response regulator ComE), 

K18216 (i.e., ATP-binding cassette, subfamily B, tetracycline resistant protein), K18217 

(i.e., ATP-binding cassette, subfamily B, tetracycline resistant protein), K18830 (i.e., HTH-

type transcriptional regulator/antitoxin PezA) (Table S3). 

Moreover, in correlation heatmaps, Spearman’s algorithm was used to examine the 

association between features (e.g., biochemical markers and ASVs) and only statistically 

significant correlations (FDR adjusted p values < 0.05) were reported. Spearman’s correla-

tion highlighted significant negative correlation between citrulline and ASV at L2 (phy-

lum Actinobacteria), L5 (family Bifidobacteriaceae) and L6 (genus Bifidobacterium) (FDR 

adjusted p values < 0.05). Also, significant negative correlation between IL-6 and ASV was 

observed but only at L2 (phylum Bacteroidetes) and L5 (family Methanobacteriaceae) (p 

values < 0.05) (Figure 7). No statistically significant correlations were identified between 

KOs and biochemical markers. 

(A) 

 

Figure 7. Cont.



Int. J. Mol. Sci. 2023, 24, 6623 12 of 20Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 12 of 20 
 

 

(B) 

 

(C) 

 

 
 

Figure 7. Spearman’s correlation between citrulline, IL-12, IL-6, TNF-a and ASV. Spearman’s corre-

lation is represented at L2-phylum (A), L5-family (B) and L6-genus (C) levels (FDR adjusted p values 

< 0.05). The statistical significance is represented with * for p-value < 0.05, and ** for p-value < 0.01. 

3. Discussion 

COVID-19 pandemic dramatically changed our lives. The impact of this disease goes 

beyond the effects that we see during the active phase, as long-COVID syndrome has been 

described, that could deeply impair health many months after COVID-19. 

Figure 7. Spearman’s correlation between citrulline, IL-12, IL-6, TNF-a and ASV. Spearman’s cor-
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p values < 0.05). The statistical significance is represented with * for p-value < 0.05, and ** for
p-value < 0.01.
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3. Discussion

COVID-19 pandemic dramatically changed our lives. The impact of this disease goes
beyond the effects that we see during the active phase, as long-COVID syndrome has been
described, that could deeply impair health many months after COVID-19.

In this small pilot study, designed before that long-COVID [20,21] was described, we
aimed to explore if the modulation of GM through probiotic supplementation could be able
to contrast COVID-19-induced alterations in term of barrier integrity and immune response.
Considering the pivotal role of gut barrier in maintaining local and systemic immune
homeostasis, we explored GM ecological and functional inferred profiles, indirect markers
of gut barrier integrity and systemic cytokine profile, together with clinical monitoring of
gastrointestinal symptoms pre- and post-probiotic supplementation.

Since the first outbreak in 2019, SARS-CoV-2 has undergone multiple variants over
time. These variants have developed mutations capable of conferring higher transmissibil-
ity or antigenicity. However, the effect of probiotic supplementation demonstrated in this
paper is not expected to change with different SARS-CoV-2 variants, as it is mostly related
to probiotics contained in the mix rather than the interaction with the virus.

Interestingly, most patients at baseline (T0), which was a post-COVID free-of- supple-
mentation timepoint, complained at least one gastrointestinal symptom, independently
from the presence of gastrointestinal symptoms during COVID-19 active infection. Fur-
thermore, considering that in our cohort patients with a previous known chronic gastroin-
testinal disease were excluded, this data could suggest a role of COVID-19 in triggering
post-infectious functional gastrointestinal disorders [22–25].

Notwithstanding a high prevalence of gastrointestinal symptoms at baseline, probiotic
supplementation did not significantly improve symptoms at the end of treatment, prob-
ably because of the small sample size and the heterogeneity of reported gastrointestinal
symptoms. However, looking at the single items of the GSRS questionnaire, some trends
toward improvement could be highlighted even if not statistically significant, particularly
regarding flatulence, constipation, and abdominal pain.

The presence of these gastrointestinal symptoms at baseline was not associated with
active gastrointestinal inflammation as demonstrated by normal value of CRP and faecal
calprotectin at baseline. Similarly, no gut barrier dysfunction was detected at baseline
through zonulin evaluation, suggesting that after the acute phase of COVID-19 infection,
the epithelium in the gut rapidly repaired, consistently with previous reports [26–28].

However, the systemic activation of the immune response seemed to continue after
clinical recovery, as the serum level of cytokines was high at baseline. In this scenario, the
use of probiotic supplementation could have an impact on systemic cytokine profile, as at
T1, after 8-weeks of probiotic supplementation, the serum levels of IL-12RA, IL-6, TNF-α
were significantly reduced.

However, this result could also reflect the natural history of COVID-19, as at the
T1 COVID-19 acute form is more remote compared to baseline, thus we should take in
account also the hypothesis of a natural cytokine decrease due to the overcome of the acute
disease, more than an effect related to the probiotic supplementation. Clearly, the absence
of a placebo group in our study represents a major limitation, as it does not allow us to
definitely interpret this data as natural history of disease or a real immunological impact of
the probiotic supplementation.

Some studies about SARS-CoV-2 inflammation have already shown how, during
infection, serum levels of IL-1b, TNF-α and other cytokines were higher in infected patients
than in healthy adults [29] and the highest IL-6 and TNF-α levels correlated with disease
severity [30,31], suggesting cytokine levels as good indicator of therapeutic goal [32]. This
evidence may support the hypothesis that probiotic supplementation could have a positive
impact on cytokine profile reduction.

Before and after probiotic supplementation, ecology of the microbial ecosystems
appeared characterized by an increase in richness, though this was not of statistical signifi-
cance, but were represented by an increased quantity of Streptococcaceae, Ruminococcaceae
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and Bifidobacteriaceae at T1, the latter being statistically significant and corroborated at L6
by the increase of the Bifidobacterium spp. Remarkably, the LEfSe algorithm, exploited for
searching of potential microbial biomarkers, identified six top-ranking ASVs overall char-
acterizing the GM at the T1 time-point. Amongst the others, Actinobacteria (L2, phylum),
Bifidobacteriales (L4, Order), Bifidobacteriaceae (L5, family); Bifidobacterium were consis-
tent with the probiotic composition. Additionally, based on the ML model classification
analysis, the two ecological microbial ecosystems at T0 and T1 were correctly classified at
L2 level by 87.50% score and the microbial ecosystem at T1 was predicted with a 100.00%
score, based on the feature Actinobacteria, phylum of the Bifidobacterium spp. At level
L5 and L6, behind specific Bifidobacterium family- and genera-related, the most important
features resulted overall SCFAs producers, well characterizing the GM of the patients at T1,
compared to T0, regardless a lower performance score (i.e., 58.33) compared to the values
based on L2 feature. Based on these results, Bifidobacterium spp. seem to be the most func-
tionally active component of the multi-strain probiotic product as it strongly characterized
the GM ecology after supplementation. Indeed, further metabolomics-based investigations
could unveil biochemical pathways of probiotic metabolite-derived, as already performed
for functional assessment of probiotic supplementations in other diseases [33].

Amongst the 97 GM functional KOs signatures, up or down represented for the T0-
and T1-related ASV datasets, 12 were unique Kos associated to the only pre-treatment
time point T0, but completely absent at T1. Particularly, the K18216 and the K18217,
both defined as ATP-binding cassette, subfamily B, tetracycline resistant protein, were
associated to the metabolic pathways TetAB(46), a predicted heterodimeric ABC transporter
conferring tetracycline resistance and to steB/tetB46, respectively, apparently conferring
ABC transporter tetracycline resistance in a member of the oral microbiota in the first
case [34] and acting as ATP-binding cassette, subfamily B, tetracycline resistant protein
in the other [24]. This data could suggest a possible role of probiotic supplementation
in enhancing the clearance of antibiotic-resistant genes in GM of patients that received
antibiotic therapy during COVID-19. In fact, 10/19 patients had been treated with single
or combined (subsequent or concomitant) antibiotics -including amoxicillin/clavulanate,
ceftriaxone, piperacillin/tazobactam, clarithromycin or azithromycin- for prophylaxis or
treatment of bacterial complication of COVID-19 during the hospitalization.

Interestingly, Spearman’s correlation highlighted significant negative correlation between
citrulline and ASV at L2 (Actinobacteria), L5 (Bifidobacteriaceae) and L6 (Bifidobacterium)
(FDR adjusted p values < 0.05). Also, significant negative correlation between IL-6 and ASV
was observed but only at L2 (Bacteroidetes) and L5 (Methanobacteriaceae) (p values < 0.05).

In this context, we better understand the apparently surprisingly reduction of serum
citrulline after supplementation. In fact, in the literature, citrulline has been used as
a quantitative enterocyte mass marker [27] and it generally decreased during an acute
mucosal damage and subsequently increased because of epithelial healing. However, the
decrease of citrulline in our cohort after supplementation was not probably related to gut
barrier damage, as it was not related to significant changes in tight junctions’ function as
demonstrated by no change in serum zonulin. Furthermore, notwithstanding a significant
reduction compared to baseline, both baseline and T1 values remained in physiological
range. This apparently unexpected curve of serum citrulline did not seem to be related
to variation on enterocyte mass, but in this functional context, its modification could be
related to a shift in GM ecology and bacterial metabolism. In fact, we showed an inverse
correlation between serum citrulline and Bifidobacterium spp. probably due to specific
amino acids-linked metabolic pathways, as already reported for GM Akkermansia [25] and
not to physiological effects.

4. Materials and Methods
4.1. Study Design and Aims

This open-label, single-center, single-arm, pilot, interventional study was conducted in
compliance with the independent Ethics Committee/Institutional Review Board (EC/IRB)’s
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recommendation, informed consent regulations, Declaration of Helsinki, ICH GCP Guide-
lines and this Study Protocol. The protocol Probiotics against COronavirus: a pRoof-of-
concept, Open-LabeL, single-Arm, single-centre clinical study in patients with COVID-19-
COROLLA study was approved by the Ethical Committee of Fondazione Policlinico Uni-
versitario A. Gemelli IRCCS (protocol version 2.0, 28 September 2020). All participants
provided written informed consent for all clinical and experimental procedures and publi-
cation of the results, before any study step. All subjects participated to three study visits:
week -2 (screening), week 0 (start of treatment), week 8 (end of treatment). Patients were
asked to collect blood and fecal samples and to underwent clinical and gastrointestinal
symptoms evaluation before and after 8 weeks of treatment. Eligible patients were asked
to continue with their dietary habits during the whole course of the trial.

The primary aim of the study was to evaluate the effect of VSL#3® on the immuno-
logical response through a serum cytokine profile, including IL-6, IL-1, IL-2R, IL-8, IL-10,
TNF-α, before and after VSL#3® supplementation. Secondary aims relied on the evaluation
of the VSL#3® effects on gastrointestinal symptoms, bowel movements, gut permeability
and gut microbiota profile. An overall questionnaire on treatment satisfaction, safety and
tolerability of the product was also administered.

All enrolled patients were assigned to the following probiotic supplementation: VSL#3®

450 billion sachets, 1 sachet twice a day for 8 weeks. VSL#3® (lot number 909031) was
provided by Actial Farmaceutica. The probiotic mix contained four strains of lactobacilli spp.:
Lactobacillus paracasei BP07, Lactobacillus plantarum BP06, Lactobacillus acidophilus BA05 and
Lactobacillus helveticus BD08 (previously identified as L. delbrueckii subsp. bulgaricus); three
strains of bifidobacteria: Bifidobacterium animalis subsp. lactis BL03 (previously identified as
B. longum), Bifidobacterium animalis subsp. lactis BI04 (previously identified as B. infantis)
and Bifidobacterium breve BB02; a strain of Streptococcus thermophilus BT01.

The study population consisted of 20 patients discharged after hospitalization for
COVID-19 and in follow-up at the post-COVID-19 Day Hospital of the Fondazione Policlin-
ico Universitario A. Gemelli IRCCS for SARS-CoV-2 infection during the second pandemic
wave in Italy, with a previous positive nasopharyngeal swab, performed at the dedicated
“COVID-19 hotel” nursery or at home. Patients were considered eligible for the study if
they had an age between 18 and 80 years and if they were previously discharged after
hospitalization for COVID-19 and if they had a second negative nasopharyngeal swab,
proving recovery from COVID-19 acute phase. Exclusion criteria were: patients discharged
after hospitalization addressed to a Nursing and Residential Care Facility; ascertained
intestinal organic diseases, including inflammatory bowel diseases (Crohn’s disease, ulcer-
ative colitis, infectious colitis, ischemic colitis, microscopic colitis); presence of any severe
organic, systemic or metabolic disease (particularly significant history of cardiac, renal,
neurological, psychiatric, oncological, endocrinological, metabolic or hepatic disease), or
abnormal laboratory values that would be deemed clinically significant by the Investigator;
active malignancy of any type, or history of a malignancy, either surgically removed and
with evidence of recurrence for at least five years before the study enrolment; use of probi-
otics or prebiotics during the last two weeks before screening; inability to be conformed to
the protocol; pregnancy or breastfeeding; participation in other investigational studies or
treatment with any investigational drug within the previous 30 days.

4.2. Measures of Clinical Outcomes

The presence of gastrointestinal symptoms before and at the end of the study was
investigated through the GSRS questionnaire [35] and by recording the number of bowel
movements and stool consistency by the Bristol stool form scale [36] in the three days
before each visit. The GSRS questionnaire includes 15 questions each for one different
gastrointestinal symptom, referring to five symptom clusters: reflux, abdominal pain,
indigestion, diarrhea and constipation. For each symptom, the patient is asked to choose
the corresponding grade of intensity on a 7-point Likert scale (from no symptoms to
unbearable symptoms).
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A visual analogue scale (VAS) was used to register patients’ satisfaction about the
supplementation at the end of treatment. We also collected information about the previous
COVID-19, including the most prevalent symptoms, duration of hospitalization and specific
therapies administered.

4.3. Measures of Laboratory Outcomes

The analysis included serum cytokines (interleukins; IL-1β, IL-12RA, IL-6, IL-8 and
tumor necrosis factor, TNF-α) measured using Ella™ (Bio-Techne, Oxford, UK) [37,38], and
serum markers of intestinal barrier integrity and permeability including zonulin, citrulline
and plasmalemmal Vesicle Associated Protein-1, PV-1 assessed by ELISA test [26–28,39].
Blood samples were collected before (T0) and after the 8 weeks (T1) of treatment in a vial
without anticoagulant to obtain serum.

Faecal calprotectin was used as a marker of intestinal inflammation [40] and C-reactive
protein (CRP) as a marker of systemic inflammation. Stool samples for faecal calprotectin
determination were collected preferentially on the same day of visit. In case this was not
possible, also samples collected the day before were accepted. Samples were stored in
home fridge by the patient before they were brought to the center. Both faecal calprotectin
and CRP were collected at baseline and at the end of the 8-week treatment. Analysis was
performed locally according to Biochemistry Laboratory procedures.

4.4. Statistical Analysis of Metadata

No data were available in the literature on the use of probiotics for immune modulation
during COVID-19 at the time of the protocol design. Thus, the sample size was not based
on a formal statistical sample size calculation, but was considered appropriate for the
study purposes, also considering the estimated enrolment rate at the site. We estimated
that 20 patients would be enough to individuate a trend that could allow formal sample
size calculation for eventual further studies. Regarding statistical methods, a p value
<0.05 was considered statistically significant. Quantitative variables were represented as
statistical mean and standard deviation (sd) or median and first and third quartiles (Q1–Q3).
Categorical variables were represented as absolute frequency and percentage (%). The
paired T0–T1 Student t test and corresponding Wilcoxon non-parametric test were used to
evaluate the variation between baseline and end-of-study visit.

4.5. Faecal Microbiota Analyses

Forty stool samples were planned to be collected at T0 (week 0) and T1 (week 8) for
gut microbiota profiling of each 20 patients, through 16S rRNA sequencing. Specimens
were collected preferentially on the same day of visit or the day before, if necessary, and
stored in the freezer until visit. All samples were then stored at the −80 ◦C until processing.
After selection for only coupled T0–T1 stool samples, 36 samples were processed, because
of two lacking samples at T0 and T1, respectively.

4.5.1. Bacterial DNA Extraction from Stools and 16S rRNA Targeted-Metagenomics

Stools were processed in in a strictly controlled, separate and sterile workplace. Briefly,
200µg of each sample were resuspended in CTAB buffer. This suspension was used
to extract DNA by using Danagene Microbiome Stool DNA kit (DanaGen-Bioted, S.L.,
Barcelona, Spain) according to manufacturer’s instruction [41]. Quality and concentra-
tion of the extracted DNA were evaluated before amplifying the variable regions V3–V4
from the bacterial 16S rRNA gene (∼460 bp) by using the following primers: V3_Next_For:
5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′

and V4_Next_Rev: 5′-TCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTA-
CHVGGGTATCTAATCC-3′ [42]. Amplicons were purified by using Agencourt AMPure
XP beads (Beckman Coulter, Brea, CA, USA) and then barcoded with Nextera XT index
(Illumina) according to Illumina rRNA Amplicon Sequencing protocol (Illumina). Each
indexed amplicon was equimolarly diluted and the final pool was properly prepared for
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the paired ends sequencing (2 × 300 bp, v3 chemistry, Illumina) on the Illumina MiSeq in-
strument (Illumina, San Diego, CA, USA). To increase degree of base diversity, the internal
control PhiX v3 (Illumina) was added to the library [42].

4.5.2. Biocomputational and Statistical Analysis for GM Profile Analysis and Patients’
Metadata Correlation

Paired-end sequencing reads in fastq format were analyzed using QIIME2 [43]. Samples
characterized by reads number < 20,000 were excluded, hence finally providing 34 samples
totally, with 17 sample coupled for each T0-T1 paired time-point. The QIIME2 plugin
for DADA2 [44] was used for quality control, denoising, chimera removal, trimming and
construction of the Amplicon Sequence Variant (ASV) table. The taxonomy was assigned
by using a Naive Bayes model pre-trained on Greengenes 13_8 [45,46] through the QIIME2
plugin q2-feature classifiers [47]. Unassigned reads were filtered out while the ASV table
was normalized using the Cum Sum Scaling (CSS) methodology [48]. Alpha-diversity was
computed by skbio.diversity using analysis of variance (ANOVA test). A comparison of
ASV taxonomic differences at phylum (L2), family (L5), and genus (L6) levels for each T0–T1
couple was provided. Kruskal-Wallis test was applied to compare taxonomic differences
at L2, L5 and L6 for the entire T0 and T1 datasets, respectively. All ecological statistical
analyses were performed using Python 3.7. Three different levels of statistical significance
were identified based on different p values (p ≤ 0.001) and false discovery rate (FDR)
thresholds (p ≤ 0.05, p ≤ 0.001) and two of them were corrected for multiple hypothesis
testing by FDR method [49]. Both statistical tests (ANOVA and Kruskal–Wallis) were
chosen to provide information on whether the parametric and non-parametric tests would
lead to similar or different conclusions. The results of both tests were consistent, providing
a more nuanced understanding of the data, approximately normally distributed (Shapiro-
Wilks test), and with homogeneity of variances (Levene’s test) and a continous dependent
variable. The algorithm for high-dimensional biomarker discovery and explanation, based
on linear discriminant analysis (LDA) effect size (LEfSe) [50], was employed to identify ASV
features that resulted statistically different among T0 and T1 GM groups. Specifically, a non-
parametric factorial Kruskal–Wallis (KW) sum-rank test followed by Wilcoxon rank-sum
test were used. Finally, LDA estimated the effect size of each differentially abundant ASV.

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt), exploiting the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs
(KO) database were used to determine ASVs and their microbiome’s functional potential
and the unique KO associated to pre- and post-treatment.

In correlation heatmaps, Spearman’s correlation was used to examine the association
between features (e.g., biochemical markers and ASVs) and only statistically significant
correlations (FDR adjusted p values < 0.05) were reported.

Positive and negative association between ASVs and markers of immunological re-
sponse and intestinal barrier integrity which resulted significantly modified after treatment
were selected according to mean Spearman correlation index ρ (rho) >0 or <0 in positively
and negatively, respectively associated markers.

4.5.3. Machine Learning Models

Multiple machine learning models were trained for the classification task T1 versus
T0 at each taxonomy level and for the corresponding ASVs. Multiple machine learning
(ML) models were trained for the classification tasks. The pipeline consisted of a 10-fold
cross-validation with a train-test split of 70–30%. To evaluate the model, the global and
the single-class accuracies were considered. The models tested were Logistic Regression,
SGD Classifier, Logistic Regression CV, Hist Gradient Boosting Classifier, Random Forest
Classifier, Extra Trees Classifier, Gradient Boosting Classifier, Bagging Classifier, Ada Boost
Classifier, XGB Classifier, XGBRF Classifier, MLP Classifier, Linear SVC, SVC, Gaussian
NB, Decision Tree Classifier, Quadratic Discriminant Analysis, K Neighbors Classifier,
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and Gaussian Process Classifier. An explain ability algorithm based on a permutation
performance with 1000 repetitions was followed.

5. Conclusions

Probiotic supplementation in the immediate post-COVID-19 could have a positive
impact on immunological profile, reducing pro-inflammatory systemic cytokines through a
shift in GM ecology.

GM profiling, either at ecological and inferred functional level, was extremely corre-
lated to pre-and post- probiotic supplementation. A predicted model, based on ML classifi-
cation was indeed predictive of the T1 with 100% score, based on the same ASVs (i.e., Acti-
nobacteria) characterizing the microbial ecosystem in term of ecology, microbial biomarker
LefSE prediction and strictly consistent with probiotic components (i.e., Bifidobacterium
spp.), proposing the GM as the master regulator of the immunological host response to
probiotic supplementation. Bifidobacterium spp. are metabolically active, and they may
correlate with a reduction on citrulline levels. These preliminary results, which should be
confirmed in placebo-controlled clinical studies and further sampling scale up, provide us
with a first insight in the possible mechanism of action of a multi-strain probiotic in humans.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24076623/s1.
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