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Abstract: Alzheimer’s disease (AD) represents the most common form of dementia, characterized by
amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs). It is characterized by neuroinflammation,
the accumulation of misfolded protein, ER stress and neuronal apoptosis. It is of main importance to
find new therapeutic strategies because AD prevalence is increasing worldwide. Cannabinoids are
arising as promising neuroprotective phytocompounds. In this study, we evaluated the neuroprotec-
tive potential of ∆8-THC pretreatment in an in vitro model of AD through transcriptomic analysis.
We found that ∆8-THC pretreatment restored the loss of cell viability in retinoic acid-differentiated
neuroblastoma SH-SY5Y cells treated with Aβ1-42. Moreover, the transcriptomic analysis provided
evidence that the enriched biological processes of gene ontology were related to ER functions and
proteostasis. In particular, Aβ1-42 upregulated genes involved in ER stress and unfolded protein
response, leading to apoptosis as demonstrated by the increase in Bax and the decrease in Bcl-2 both
at gene and protein expression levels. Moreover, genes involved in protein folding and degradation
were also deregulated. On the contrary, ∆8-THC pretreatment reduced ER stress and, as a conse-
quence, neuronal apoptosis. Then, the results demonstrated that ∆8-THC might represent a new
neuroprotective agent in AD.

Keywords: Alzheimer’s disease; ∆8-THC; unfolded protein response; neuronal apoptosis

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and repre-
sents the most frequent cause of dementia, affecting more than 50 million people world-
wide [1,2]. Considering that the strongest risk factor for AD is aging and that life expectancy
is gradually increasing, the number of AD patients is also progressively rising [3,4].

Even though AD is mainly sporadic and shows a late onset (>65 years of age), there
are rare cases in which the disease is associated with autosomal dominant inheritance and
usually develops earlier (between 24 and 60 years of age) [5]. More than 300 pathogenic
mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein
(APP) genes have been identified in familial AD cases [5]. Instead, allelic variation in the
apolipoprotein E (APOE) gene represents a major genetic risk factor for sporadic AD [6].

The most important neuropathological features of AD are β-amyloid (Aβ)-containing
extracellular plaques and tau-containing intracellular neurofibrillary tangles [7,8]. In
addition, AD is characterized by the atrophy of the cerebral cortex and by the loss of basal
forebrain cholinergic neurons [9].

It is known that AD patients generally manifest prominent amnestic cognitive impair-
ment; however, non-amnestic cognitive impairment is less frequent [8]. AD symptoms
can vary depending on the stage of the disease and AD can be classified as preclinical

Int. J. Mol. Sci. 2023, 24, 6598. https://doi.org/10.3390/ijms24076598 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24076598
https://doi.org/10.3390/ijms24076598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-7868-3353
https://orcid.org/0000-0002-3508-5230
https://orcid.org/0000-0002-0949-2799
https://orcid.org/0000-0003-0358-7348
https://doi.org/10.3390/ijms24076598
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24076598?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 6598 2 of 16

or presymptomatic, mild, and dementia-stage on the basis of the degree of cognitive
impairment [4].

Currently, the diagnostic methods for AD primarily rely on neurocognitive tests, brain
imaging techniques and cerebrospinal fluid assays [10].

The “amyloid cascade hypothesis” is one of the most important models for the patho-
genesis of AD and suggests that the deposition and accumulation of Aβ cause the formation
of amyloid plaques, leading to neuronal and synaptic toxicity in the brain. The resulting
neuronal damage can lead to memory and cognition dysfunctions [11]. Although the
mechanisms implicated in Aβ-induced neurotoxicity are still not completely clarified, it has
been suggested that different pathways, including oxidative stress, microglial activation
and apoptosis, can be involved [12]. In addition, interestingly, it has been shown that
endoplasmic reticulum (ER) stress can be implicated in AD [12]. In particular, it is known
that ER is responsible for the biosynthesis of proteins, including the post-translational mod-
ification, folding and assembly of newly synthesized proteins, and it has been suggested
that the accumulation of insoluble Aβ-peptides could alter ER homeostasis, leading to ER
stress and thus activating the unfolded protein response (UPR) [12,13]. Although, at first,
UPR aims to restore the normal function of ER, prolonged stress can lead to the activation
of apoptotic factors [12]. Considering that it has been shown that ER stress can be involved
in Aβ-induced apoptosis, it should be noted that the inhibition of ER stress could exert
beneficial effects [12].

Currently, there are no efficacious treatments that are able to reverse or delay the
progression of AD [14]. The drugs approved by the US Food and Drug Administration
(FDA) for the treatment of AD include the cholinesterase inhibitors donepezil, galantamine
and rivastigmine; the N-methyl-D-aspartate (NMDA) receptor antagonist memantine;
a combination of memantine and donepezil; the monoclonal antibodies targeting Aβ

aducanumab and lecanemab [14–18].
Of note, the possible therapeutic use of cannabinoids in AD has been recently investi-

gated [19]. Studies in rodent models with AD have highlighted the promising effects of
cannabinoids in decreasing amyloid plaque deposition and inducing hippocampal neuro-
genesis, whereas clinical studies have shown the beneficial effects of cannabinoid treatment
on AD symptoms [20].

In particular, it has been suggested that delta8-tetrahydrocannabinol (∆8-THC), a
cannabinoid that is a structural isomer of a widely known active ingredient in cannabis
delta9-tetrahydrocannabinol (∆9-THC), could exert interesting pharmacological
effects [21,22]. It is considered to have fewer potent psychoactive properties than
∆9-THC [23]. ∆8-THC is a partial agonist of the cannabinoid CB1 receptor, while it has also
been reported to be an agonist or inverse agonist at the CB2 receptor. Cannabinoids can
also interact with other receptors, such as PPARγ and GRP55, but there are no data about
∆8-THC effects on these receptors [22]. ∆8-THC use may be associated with decreased
chemotherapy side effects, analgesic effects, decreased seizure activity, lower intra-ocular
eye pressure, decreased cancer cell proliferation, decreased depressive symptoms and
decreased nicotine use and withdrawal [23]. In addition, it has been shown that ∆8-THC ex-
erts moderate inhibitory activity against acetylcholinesterase and butyrylcholinesterase [24].
This is of particular interest, considering that it is known that the enhancement of choliner-
gic neurotransmission through cholinesterase inhibitors is the leading therapeutic option
for treating the cognitive and behavioral symptoms of the early and late stages of AD [25].

In this study, we evaluated the neuroprotective potential of ∆8-THC in an in vitro
model of AD using Next Generation Sequencing (NGS). With this aim, we pretreated
retinoic acid (RA)-differentiated SH-SY5Y neuroblastoma cells with ∆8-THC and exposed
them to Aβ1-42. At the end of the treatment, we performed a transcriptomic analysis
in order to evaluate whether ∆8-THC could modulate signaling pathways leading to
protective effects.
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2. Results

2.1. ∆8-THC Counteracted the Aβ1-42-Induced Loss of Cell Viability

RA-differentiated SH-SY5Y were pretreated with different doses of ∆8-THC for 24 h
and, after, were treated with 10 µM Aβ1-42 for another 24 h. Using the MTT assay, we
evaluated if ∆8-THC exerted toxicity in the range of the doses tested (5–20 µM) and if it
was able to counteract Aβ1-42 toxicity.

The MTT assay results demonstrated that 10 µM Aβ1-42 treatment reduced the cell
viability of RA-differentiated SH-SY5Y cells. ∆8-THC was not cytotoxic at all the concen-
trations tested. However, 5 µM ∆8-THC was not able to counteract Aβ1-42-reduced cell
viability. On the contrary, both 10 and 20 µM ∆8-THC were able to restore the cell viability
of RA-differentiated SH-SY5Y cells after 10 µM Aβ1-42 treatment (Figure 1). Transcriptomic
analysis was carried out using the concentration 20 µM ∆8-THC.
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Figure 1. Cell viability after Aβ1-42 and ∆8-THC treatment. The treatment with 10 µM Aβ1-42 reduced
cell viability of RA-differentiated SH-SY5Y cells, but ∆8-THC pretreatment at the concentrations 10
and 20 µM was able to restore cell viability. N = 4 independent experiments. The results are expressed
by mean ± standard deviation (SD). ** p < 0.01; **** p < 0.0001.

2.2. Transcriptomic Analysis Revealed That ∆8-THC Counteracted the Aβ1-42-Induced ER Stress

In order to evaluate the differential pattern of gene expression in RA-differentiated
SH-SY5Y treated with 20 µM ∆8-THC and 10 µM Aβ1-42, we performed NGS transcrip-
tomic analysis. The aim was to evaluate the pathways associated with the protective effects
exerted by ∆8-THC. Figure 2 represents the distribution of differentially expressed genes
(DEGs) between control against Aβ1-42 (CTRL vs. Aβ1-42), control against ∆8-THC (CTRL
vs. ∆8-THC), or Aβ1-42 against ∆8-THC + Aβ1-42 groups (Aβ1-42 vs. ∆8-THC + Aβ1-42).
In the blue section, we highlighted how many DEGs were exclusively deregulated in
each comparison (1896 in CTRL vs. Aβ1-42, 1812 in CTRL vs. ∆8-THC and 2597 in
Aβ1-42 vs. ∆8-THC + Aβ1-42), between two comparisons and not in the last one (2323 not in
Aβ1-42 vs. ∆8-THC + Aβ1-42, 752 not in CTRL vs. Aβ1-42, 1479 not in CTRL vs. ∆8-THC) or
deregulated in all the comparisons (1366 DEGs). On the other hand, the three donuts show
how many upregulated (dark red) or downregulated (light red) DEGs were found between
each comparison and, in particular, between CTRL vs. Aβ1-42 and CTRL vs. ∆8-THC in
the left-top section, CTRL vs. Aβ1-42 and Aβ1-42 vs. ∆8-THC + Aβ1-42 in the bottom section
and CTRL vs. ∆8-THC and Aβ1-42 vs. ∆8-THC + Aβ1-42 in the right-top section.
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Figure 2. DEGs distribution between CTRL vs. Aβ1-42, CTRL vs. ∆8-THC groups or Aβ1-42 vs.
∆8-THC + Aβ1-42. Venn diagram in the center of the plot highlights the amount of DEGs found
exclusively in each comparison (outer circles), how many DEGs found in two groups but not in the
other (intersection of two circles) or how many DEGs were found in each comparison (center of the
diagram). Each donut plot highlights, in turn, the intersection of two comparisons showing in dark
red the upregulated and in the light red the downregulated DEGs.

We then enriched DEGs both in CTRL vs. Aβ1-42 and Aβ1-42 vs. ∆8-THC + Aβ1-42 in
order to evaluate if ∆8-THC was able to exert protective effects through the modulation of
processes affected by Aβ1-42. Specifically, we enriched DEGs for the biological process terms
of gene ontology (GO) that revealed 665 terms in CTRL vs. Aβ1-42 and 488 terms in Aβ1-42
vs. ∆8-THC + Aβ1-42 groups. The inspection of the biological process terms commonly
enriched in the two analyses revealed 321 terms. In this line, we depicted the bubble plot
in Figure 3 that shows how DEGs were enriched for each ontology in the CTRL vs. Aβ1-42
(orange) or Aβ1-42 vs. ∆8-THC + Aβ1-42 (light blue) groups. They demonstrated the “reg-
ulation of ubiquitin-dependent protein catabolic process” (GO:2000058), “neuron death”
(GO:0070997), the “regulation of proteasomal protein catabolic process” (GO:0061136),
“neuron apoptotic process” (GO:0051402), “positive regulation of protein catabolic pro-
cess” (GO:0045732), “proteasome-mediated ubiquitin-dependent protein catabolic process”
(GO:0043161), “regulation of protein catabolic process” (GO:0042176), “regulation of pro-
tein ubiquitination” (GO:0031396), “proteasomal protein catabolic process” (GO:0010498),
“protein polyubiquitination” (GO:0000209). Interestingly, all the aforementioned ontolo-
gies included a higher number of DEGs in CTRL vs. Aβ1-42 than in Aβ1-42 vs. ∆8-THC +
Aβ1-42 groups.

Given that significantly enriched GO are related to ER functions and proteostasis,
we focused on related DEGs looking at KEGG pathways “Alzheimer disease” (hsa05010)
and “protein processing in endoplasmic reticulum” (hsa04141). In Table 1, we report the
common DEGs, altered in both CTRL vs. Aβ1-42 and Aβ1-42 vs. ∆8-THC + Aβ1-42. In the
supplementary Table S1, we report all the inspected DEGs.
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Figure 3. Bubbleplot of biological process terms enriched in gene ontology between CTRL vs. Aβ1-42

and Aβ1-42 vs. ∆8-THC + Aβ1-42 groups. For each ontology reported on the y axis, a bubble for
the CTRL vs. Aβ1-42 (orange) and one for the Aβ1-42 vs. ∆8-THC + Aβ1-42 (light blue) groups were
plotted. The position of the bubble in the x axis shows the number of DEGs in the ontology (the more
on the right, the higher the number of DEGs). The number of DEGs was normalized over the number
of genes included in the ontology term itself so that the terms were comparable to each other. The
size of the bubble is a score given by −log(q-value).

Table 1. Common DEGs, altered in both CTRL vs. Aβ1-42 and Aβ1-42 vs. ∆8-THC + Aβ1-42,
related to “Alzheimer’s disease” (hsa05010) and “protein processing in endoplasmic reticulum”
(hsa04141) pathways.

Gene
CTRL vs. Aβ1-42 Aβ1-42 vs. ∆8-THC + Aβ1-42 CTRL vs. ∆8-THC

Fold Change q-Value Fold Change q-Value Fold Change q-Value

ATF6 0.11 9.70 × 10−7 −0.11 9.51 × 10−08

BCL2 −0.45 1.74 × 10−17 0.33 1.08 × 10−10 −0.34 3.16 × 10−11

DNAJA2 −0.11 8.15 × 10−4 0.10 1.40 × 10−03

DNAJC1 0.21 1.51 × 10−3 −0.25 3.70 × 10−05

EDEM1 −0.29 3.16 × 10−9 0.17 4.10 × 10−04

EIF2AK4 0.15 1.51 × 10−15 −0.14 4.64 × 10−16 0.15 8.77 × 10−15

ERN1 0.37 1.46 × 10−6 −0.19 7.29 × 10−03

FBXO6 −1.21 2.21 × 10−4 1.52 3.86 × 10−07

HSP90AA1 0.06 3.31 × 10−33 0.01 5.68 × 10−03 0.11 3.57 × 10−129

HSP90AB1 0.04 2.31 × 10−25 −0.02 6.86 × 10−05 0.10 1.97 × 10−145

HSP90B1 0.06 2.20 × 10−12 −0.02 1.15 × 10−03 0.10 6.80 × 10−43

MAN1B1 0.10 1.70 × 10−8 −0.08 3.89 × 10−06

OS9 0.16 2.08 × 10−17 −0.12 3.05 × 10−12

PSMB4 −0.09 5.43 × 10−13 −0.06 4.45 × 10−06

PSMB5 −0.18 3.86 × 10−14 0.14 2.98 × 10−09 0.09 2.45 × 10−4

PSMB6 0.14 1.82 × 10−3 0.15 7.90 × 10−05 0.21 1.16 × 10−6

RAD23A −0.15 2.61 × 10−6 0.09 4.40 × 10−03

SEC61B 0.12 1.06 × 10−3 −0.23 7.89 × 10−13

TXNDC5 −4.20 2.95 × 10−4 3.22 8.52 × 10−03

UBE2G2 −0.11 2.31 × 10−3 0.13 5.66 × 10−05

UBE2J1 −0.11 7.60 × 10−5 0.11 6.06 × 10−06

UBXN6 −0.11 4.66 × 10−5 0.11 1.41 × 10−05 0.08 2.60 × 10−3

UBXN8 −0.26 1.57 × 10−5 0.15 8.50 × 10−03

The column fold change shows for each DEG the difference in the level of expression computed by log2(Aβ1-42/CTRL),
log2(∆8-THC + Aβ1-42/Aβ1-42) or log2(∆8-THC/CTRL). The q-Value column was obtained correcting the p-value
through Benjamini–Hochberg correction. All values were rounded to the second decimal digit.
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2.3. ∆8-THC Restored the Protein Levels of Bax and Bcl-2

In order to evaluate the effects of ∆8-THC on Aβ1-42-induced apoptosis, we evaluated
the levels of Bax and Bcl-2. Western blot analysis evidenced a significant increase in Bax
in RA-differentiated SH-SY5Y treated with 10 µM Aβ1-42. Pre-treatment with 20 µM ∆8-
THC was able to reduce Bax protein levels. On the contrary, Bcl-2 protein levels were
decreased in Aβ1-42 treated cells, while ∆8-THC restored its levels (Figure 4). ∆8-THC
treated RA-differentiated SH-SY5Y showed a level of Bax similar to the control, while
Bcl-2 increased.
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3. Discussion

The prevalence of dementia is increasing, and it is expected that about 113 million will
be affected in 2050 worldwide [26]. Given that AD is the prevalent form of dementia, it
is of main importance to find new therapeutic strategies. Cannabinoids seem promising
for neuroprotective treatments. Some of them have been reported to improve cognitive
functions and reduce Aβ [20]. ∆8-THC is present in a very low quantity in plants, and it is
mainly produced by cannabidiol. ∆8-THC is a structural isomer of the ∆9-THC, showing a
double bond between carbon atoms 8 and 9 rather than carbon atoms 9 and 10. ∆9-THC
is responsible for the psychoactive properties of cannabis, such as alterations in mood,
perception and cognition. ∆9-THC is one of the cannabinoids most studied, but ∆8-THC
has also been attracting attention for the better thermodynamic stability in comparison to
∆9-THC. The two compounds showed similar pharmacokinetics and pharmacodynamics.
Both ∆8-THC and ∆9-THC are partial agonists of the cannabinoid receptor CB1, but ∆8-
THC showed a lower affinity. Given that the psychoactive effects of ∆9-THC depend on
the CB1 receptor, ∆8-THC has a lower psychotropic potency. Both ∆8-THC and ∆9-THC
were reported to act as agonists or inverse agonists at the CB2 receptor [22]. A survey
of consumers highlighted that ∆8-THC might exert the benefits of ∆9-THC with lower
risks [27].
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Some cannabinoids have already shown protective effects in both in vitro and in vivo
AD models. ∆9-THC was shown to lower Aβ levels in an in vitro AD model in a dose-
dependent manner, directly binding to the Aβ peptide and inhibiting its aggregation [28].
Moreover, it can alleviate cognitive impairments and reduce inflammatory markers, the
numbers of Aβ plaques and degenerated neurons in AD mice [29–31]. Additionally, other
agonists of CB1 and CB2 receptors were tested in AD models. ACEA, a CB1 receptor agonist,
exerted a strong neuroprotective action against Aβ toxicity in vitro and in vivo [32,33].
Additionally, CB2 agonists, such as JWH-133, showed neuroprotective effects in AD models,
reducing inflammation, Aβ plaque and deposition, increasing Aβ clearance and improving
cognitive performance [34]. CP55940, an agonist of CB1 and CB2, restored mitochondrial
membrane potential and reactive oxygen species and reduced extracellular Aβ [35].

However, the potential neuroprotective effects of ∆8-THC have not been investigated
yet. To our knowledge, this is the first study that has investigated ∆8-THC effects in an
in vitro model of AD.

In this study, we found that ∆8-THC showed no cytotoxicity at all the doses tested.
Interestingly, it was able at doses 10 and 20 µM to restore the loss of cell viability induced
by Aβ1-42. The dose of 20 µM ∆8-THC was used for other experiments.

Transcriptomic analysis and GO evaluations evidenced the enrichment of biological
processes related to proteostasis and neuronal apoptosis. Then, ∆8-THC could modu-
late the pathways involved in proteostasis to exert protective effects. For this reason,
we focused on DEGs related to ER functions and proteostasis, looking at the KEGG
pathways for “Alzheimer’s disease” (hsa05010) and “protein processing in endoplasmic
reticulum” (hsa04141).

ER plays important roles in protein biosynthesis and in their quality control. In some
cases, the maintenance of cellular homeostasis is not possible, causing a reduction in the
protein folding capacity of ER and leading to the accumulation of misfolded/unfolded
proteins in ER. This process caused the disruption of cellular homeostasis, inducing ER
stress. AD is characterized by protein misfolding and aggregation and Aβ accumulation,
which are all events that trigger ER stress [36].

Treatment with Aβ1-42 also altered the expression of several chaperones. Chaperones
are a functionally related group of proteins that assist protein folding both in physiological
and stress conditions. Among chaperones, heat shock proteins (HSPs) are well known.
HSPs have a role in all the phases of proteostasis; they participate in folding, protein
synthesis and degradation. Their levels increase during stress exposure, helping to prevent
conformational changes and the aggregation of misfolded proteins [37]. We found that
several HSPs were dysregulated by Aβ1-42 treatment. Aβ1-42 treatment increased the
expression of several members of the HSP40 family (DNAJC1, DNAJC10, DNAJC3), HSP70
family (HSPA1A and HSPA1L) and HSP90 family (HSP90AA1 and HSP90AB1). HSPs also
played a role in the degradation of proteins by the proteasome. The genes encoding for
these HSPs, such as DNAJA2 and DNAJB12, were downregulated by Aβ1-42 treatment.

We also found the upregulation of HSP90B1, encoding for GRP94, after Aβ1-42 treat-
ment. GRP94 is a chaperone that directs the folding and/or assembly of proteins. Moreover,
GRP94 is one of the few major luminal calcium-binding proteins. It seems to have a role in
ER-associated degradation (ERAD) to distinguish misfolded proteins and target them for
degradation [38]. ∆8-THC reduced the levels of HSP90B1, DNAJC1 and HSP90AB1 while
increasing DNAJA2 expression in cells treated with Aβ1-42.

The excess of misfolded proteins induces ER stress. In order to counteract ER stress,
cells activate UPR. The UPR starts as cell-protective cascades, with the aim of reducing
the ER load of unfolded proteins through the inhibition of protein synthesis and the
upregulation of protein folding and degradation. However, prolonged UPR finally leads
to cell death. The UPR signaling involves three sensor proteins, which are PERK, ATF6,
and IRE1. Abnormal levels of these effectors of UPR were reported in AD brains [39]. We
found the upregulation of PERK (EIFAK2 and EIFAK4), ATF6 (ATF6) and IRE1 (ERN1)
in cells treated with Aβ1-42. PERK activation is reported in AD and is associated with
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neurodegeneration and memory deficits [40]. Additionally, IRE1 activation is known to
participate in AD pathogenesis and to be positively correlated with the progression of
AD [41]. IRE1 activation is also associated with the induction of apoptosis [42]. Active ATF6
has also been shown in AD models [42]. We also found the downregulation of WFS1, which
influences ER stress, to negatively regulate ATF6α [43]. Interestingly, it was found that the
protein level of WFS1 and the number of WFS1+ neurons decreased in both AD-like mouse
model brains and human post-mortem AD [44]. In particular, WFS1 deficiency was linked
with increased tau pathology and neurodegeneration. WFS1 deficiency may induce chronic
ER stress and affect the degradation and clearance of tau aggregates [45]. Interestingly,
∆8-THC pre-treatment reduced the expression of the genes encoding for PERK, ATF6
and IRE1.

Misfolded/unfolded proteins are eliminated by the proteasome through ERAD. ERAD
can be divided into four steps that are substrate recognition, dislocation across the mem-
brane, ubiquitination and degradation by the proteasome [46]. The data suggest alterations
of ERAD in AD [47–50]. In this study, we found a dysregulation of genes involved in the
ERAD process. Specifically, genes involved in the phase of the recognition of unfolded
protein were upregulated by Aβ1-42. We found the upregulation of genes encoding for
ERManI (MAN1A2 and MAN1B1). Removal of mannose residues is a critical process in
targeting misfolded glycoproteins for degradation. This removal is operated by ERManI
together with EDEM [51,52]. This trimming permits misfolded glycoproteins to be bound
to OS-9 and XTP3-B, which target them to ERAD. OS-9 is upregulated in response to ER
stress and is required for the ubiquitination of ERAD substrates, suggesting that it may help
transfer misfolded proteins to ubiquitination machinery [53]. OS9 and XTP3B redundantly
promote glycoprotein degradation, but XTP3B inhibits the degradation of non-glycosylated
proteins, while OS9 antagonizes this inhibition [54]. After treatment with Aβ1-42, we also
found the upregulation of OS-9 and XTP3B (ERLEC1). We also found the downregulation
of EDEM1. It can modulate APP metabolism, and its overexpression is associated with
a decrease in Aβ secretion [55]. Interestingly, EDEM1 can be upregulated by ∆8-THC
pre-treatment. ∆8-THC pre-treatment also reduced OS-9 and MAN1B1.

We also found deregulation in the genes encoding for PDI (PDIA6, P4HB, TXNDC5)
and ERO (ERO1A). Aβ1-42 increased the genes encoding for ERO while reducing the expres-
sion of those encoding for PDI. In the oxidizing environment of the ER, unfolded proteins
interact with PDI and undergo oxidative protein folding. In this way, misfolded substrate
proteins can be reduced and refolded or isomerized to the appropriate native protein
conformation. Misfolded proteins are reduced and isomerized by PDI and converted to
their appropriate native conformation. Then, reduced PDI is reoxidized by ERO1. ∆8-THC
pre-treatment reduced ERO (ERO1B) while also increasing PDI (ERP29 and TXNDC5).

On the contrary, the genes involved in the processes of translocation, ubiquitination
and degradation were mainly downregulated by Aβ1-42. Bap31, encoded by BCAP31
which we found downregulated, have several roles in ER homeostasis: membrane protein
chaperone, quality control, and it is involved in ER stress and ERAD [56]. Its deficiency
was associated with the formation of Aβ plaques in a murine AD model [57]. P97, encoded
by VCP, also plays a critical role in protein dislocation in ERAD [46]; it is involved in
aggregates clearance, and, indeed, its knockdown delayed the elimination of ubiquitin-
positive aggregates [58]. We found the downregulation of VCP after Aβ1-42 treatment.

The poly-ubiquitination of proteins is fundamental for their degradation by the protea-
some, and different enzymes are required: an E1 activating enzyme activates ubiquitin in an
ATP-dependent manner, an E2 ubiquitin-conjugating enzyme (Ubc), and an E3 ubiquitin-
protein ligases that mediate the transfer of ubiquitin from the Ubc enzyme onto the target
substrate. We found a downregulation in ubiquitin ligase complex subunits after treatment
with Aβ1-42, such as UBE2G2 and others (RBX1, UBE2J1, UBQLN1, UBQLN2, UBQLN4,
UBXN6, UBXN8). UBE2G2 was shown to be critically important for degradation through
the ERAD of multiple substrates [59]. Additionally, FBXO6 was downregulated; it is a
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functional E3 ubiquitin ligase that plays a critical role in inhibiting ER stress-induced
apoptosis [60].

∆8-THC pretreatment was able to reverse the alterations of the gene expression in-
duced by Aβ1-42. In particular, the genes involved in protein targeting (EDEM3, MAN1B1)
were downregulated, suggesting that there was less need for proteins involved in unfolded
protein recognition. SEC61A1 and SEC61B were downregulated. The Sec61, which interacts
with TRAP [61], encoded by SSR3, which was upregulated, mediates protein import into
the ER and is also a candidate channel for the dislocation of ERAD substrates [62,63].
The expression of the genes involved in protein dislocation and ubiquitination increases
(UBE2G2, SELENOS, TRAM1, UBE2J1, UBXN6, UBXN8, FBXO6). Then, if needed, mis-
folded/unfolded proteins can be dislocated to the cytosol and ubiquitinated.

Interestingly, ∆8-THC reduced the expression of HERPUD1, encoding for HERP.
HERP was reported to be involved in Aβ accumulation, including the formation of senile
plaques [64]. ∆8-THC also increased DERL1, encoding for Derlin-1, which plays a main
role in the transport to the cytosol [65,66].

∆8-THC also increased the expression of the shuttling factor RAD23A that delivers
ubiquitin conjugates to the proteasome and activates its degradative capacity. ∆8-THC
also restored the expression of other genes that were involved in substrate delivery to the
proteasome, such as ATXN3 [67].

Aβ1-42-treated cells also showed a downregulation of the genes encoding for 20S
proteasome (PSMA5, PSMB2, PSMB3, PSMB4, PSMB5, PSMB7). The 20S proteasome was
shown to be able to degrade misfolded, oxidized and intrinsically disordered proteins, but
also Aβ, and to be the major degradation machinery under oxidizing conditions [68,69].
The 20S proteasome was reported to be inhibited in regions affected by Aβ, and Aβ

aggregates were shown to inhibit proteasome activity in vitro [70]. It was shown that
the Aβ precursor protein reduced the expression of the proteasome subunit α type-5 and
β type-7, leading to cell death [71]. In line with the previous work, also in our work,
these subunits were downregulated by Aβ1-42 treatment. ∆8-THC was able to partially
upregulate the expression of proteasome subunits (PSMB5, PSMB6). In particular, we
found the upregulation of PSMB5, whose overexpression was associated with increased
resistance to Aβ1-42 toxicity [72].

As we also said before, ER stress can trigger neuronal apoptosis. The Aβ1-42-induction
of cell death in our study was demonstrated by the increase in BAX and the reduction in
BCL2 gene expression. The transcriptomic results were also supported by Western blot
analysis, which showed an increase in Bax protein levels and Bcl-2 reduction. ∆8-THC
pre-treatment reduced apoptosis induced by Aβ1-42, as demonstrated by the increase in
Bcl-2 and the reduction in Bax levels.

RA-differentiated SH-SY5Y cells treated only with ∆8-THC showed no ER stress; in-
deed, ATF6 and ERN1 were not differentially expressed compared to the control cells, and
EIFAK3 was downregulated. Moreover, it increased some of the genes involved in the dislo-
cation of misfolded proteins, such as DERL1, VCP, SSR3 and some proteasome subunits, in-
cluding PSMB5, suggesting an efficient degradation of potentially
unfolded proteins.

Figure 5 reports the proteins encoded by DEGs and modulated in Aβ1-42 and ∆8-THC
treated groups in the ER pathway.
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4. Materials and Methods

4.1. Synthesis and Purification of ∆8-THC

To a stirred solution of CBD (200 mg, 0.636 mmol, 1eq) in DCM (5 mL), p-toluensulfonic
acid (11 mg, 0.064 mmol, 0.1 eq) was added. The reaction was refluxed for 6 h, followed
by TLC (Rf = 0.67, silica, petroleum ether-EtOAc 95:5) until the complete conversion of
the starting material, which was then quenched with NaHCO3 s.s. and diluted with DCM.
The combined organic phases were washed with brine, dried, and evaporated. The residue
was purified by GCC on silica gel (pure petroleum ether to petroleum ether-EtOAc 9:1) to
afford 182 mg (91%) of ∆8-THC as a brown oil.

This latter impure ∆8-THC (1) (Figure 6) was purified with JASCO Hichrom,
250 × 25 mm, silica UV−vis detector-2075 plus (silica, petroleum-ether-EtOAc gradi-
ent from 95:5 to 85:15) to afford 150 mg of ∆8-THC (1, 99%) as a brownish powder, whose
structure was identified according to 1H NMR (Figure S1) and reported in the literature [73].
1H 400 MHz NM spectra were measured on Bruker 400 spectrometers (Bruker®, Biller-
ica, MA, USA). Chemical shifts were referenced to the residual solvent signal (CDCl3:
δH = 7.26). Silica gel 60 (70-230 mesh) used for low-pressure chromatography was pur-
chased from Macherey-Nagel (Düren, Germany). Purifications were monitored by TLC
on Merck 60 F254 (0.25 mm) plates, visualized by staining with 5% H2SO4 in EtOH and
heating. Chemical reagents and solvents were from Aldrich (Darmstadt, Germany) and
were used without any further purification unless stated otherwise. HCPL JASCO Hichrom,
250 × 25 mm, silica UV−vis detector-2075 plus (Tokyo, Japan).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 17 
 

 

further purification unless stated otherwise. HCPL JASCO Hichrom, 250 × 25 mm, silica 

UV−vis detector-2075 plus (Tokyo, Japan). 

 

Figure 6. Δ8-THC chemical structure. 

4.2. Cell Culture and Differentiation 

The human neuroblastoma cell line SH-SY5Y was acquired from American Type Cul-

ture Collection (ATCC) (Manassas, VA, USA). Cells were grown in a monolayer at 37 °C 

in a 5% CO2 humidified atmosphere using Dulbecco’s Modified Eagle’s Medium/Nutrient 

Mixture F-12 Ham (DMEM/F12) medium (Sigma-Aldrich, St. Louis, MO, USA) supple-

mented with 10% fetal bovine serum (FBS) (Sigma-Aldrich), 1% glutamine, and 1% peni-

cillin-streptomycin (100 U-100 µg/mL). With the aim of inducing neuronal differentiation, 

SH-SY5Y cells were incubated for 5 days with 10 µM of RA (Sigma-Aldrich). 

4.3. Cell Treatment with Aβ1-42 and Δ8-THC 

Aβ1-42 (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in dimethyl sulfoxide 

(DMSO), diluted in phosphate-buffered saline (PBS), aggregated at 37 °C for 24 h, and 

added to the medium at the concentration 10 µM (final DMSO concentration was <0.1%). 

It has been demonstrated that Aβ1-42 incubation for 24 h at 37 °C induced the formation of 

aggregates [74]. Δ8-THC was dissolved in DMSO, diluted in PBS and added at the final 

concentration in the medium (the final DMSO concentration was <0.1%). Cells were pre-

treated with Δ8-THC for 24 h. At the end of the pre-treatment, cells were treated with the 

medium containing 10 µM of Aβ1-42 for 24 h. This concentration of Aβ1-42 was chosen based 

on previous studies showing that it was able to exert cytotoxicity in SH-SY5Y cells [75–

84]. Control cells and cells pretreated with Δ8-THC were incubated with DMEM/F12 me-

dium supplemented with 10% FBS.  

4.4. Cell Viability 

Cell viability was evaluated with a Thiazolyl Blue Tetrazolium Bromide (MTT) assay. 

SH-SY5Y cells were cultured in 96-well plates, underwent RA differentiation, and were 

treated as reported in the previous paragraph. At the end of the treatment, the cells were 

incubated with a medium containing MTT (0.5 mg/mL; Sigma-Aldrich) at 37 °C for 4 h. 

The formed formazan crystals were dissolved in acidic isopropanol at 37 °C for 1 h, and 

the optical density was evaluated by the spectrophotometric measurement of absorbance 

using the microplate reader Victor NIVOTM (PerkinElmer, Waltham, MA, USA).  

4.5. Extraction of Total RNA and cDNA Library Preparation 

RNA extraction was carried out with a Maxwell® RSC simplyRNA Cells Kit 

(Promega, Madison, WI, USA) according to the manufacturer’s instruction. The prepara-

tion of the library was performed following the TruSeq RNA Exome protocol (Illumina, 

San Diego, CA, USA) as previously described [75].  

4.6. RNA-Seq Data Analysis and Gene Evaluation 

The raw data obtained from the NextSeq 550 Dx instrument of Illumina was evalu-

ated using the fastqc tool version 0.11.4 from the Babraham Institute in Cambridge, UK. 

Figure 6. ∆8-THC chemical structure.

http://smart.servier.com/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


Int. J. Mol. Sci. 2023, 24, 6598 11 of 16

4.2. Cell Culture and Differentiation

The human neuroblastoma cell line SH-SY5Y was acquired from American Type Cul-
ture Collection (ATCC) (Manassas, VA, USA). Cells were grown in a monolayer at 37 ◦C in
a 5% CO2 humidified atmosphere using Dulbecco’s Modified Eagle’s Medium/Nutrient
Mixture F-12 Ham (DMEM/F12) medium (Sigma-Aldrich, St. Louis, MO, USA) sup-
plemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich), 1% glutamine, and 1%
penicillin-streptomycin (100 U-100 µg/mL). With the aim of inducing neuronal differentia-
tion, SH-SY5Y cells were incubated for 5 days with 10 µM of RA (Sigma-Aldrich).

4.3. Cell Treatment with Aβ1-42 and ∆8-THC

Aβ1-42 (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in dimethyl sulfoxide
(DMSO), diluted in phosphate-buffered saline (PBS), aggregated at 37 ◦C for 24 h, and
added to the medium at the concentration 10 µM (final DMSO concentration was <0.1%).
It has been demonstrated that Aβ1-42 incubation for 24 h at 37 ◦C induced the formation
of aggregates [74]. ∆8-THC was dissolved in DMSO, diluted in PBS and added at the
final concentration in the medium (the final DMSO concentration was <0.1%). Cells were
pre-treated with ∆8-THC for 24 h. At the end of the pre-treatment, cells were treated
with the medium containing 10 µM of Aβ1-42 for 24 h. This concentration of Aβ1-42 was
chosen based on previous studies showing that it was able to exert cytotoxicity in SH-
SY5Y cells [75–84]. Control cells and cells pretreated with ∆8-THC were incubated with
DMEM/F12 medium supplemented with 10% FBS.

4.4. Cell Viability

Cell viability was evaluated with a Thiazolyl Blue Tetrazolium Bromide (MTT) assay.
SH-SY5Y cells were cultured in 96-well plates, underwent RA differentiation, and were
treated as reported in the previous paragraph. At the end of the treatment, the cells were
incubated with a medium containing MTT (0.5 mg/mL; Sigma-Aldrich) at 37 ◦C for 4 h.
The formed formazan crystals were dissolved in acidic isopropanol at 37 ◦C for 1 h, and
the optical density was evaluated by the spectrophotometric measurement of absorbance
using the microplate reader Victor NIVOTM (PerkinElmer, Waltham, MA, USA).

4.5. Extraction of Total RNA and cDNA Library Preparation

RNA extraction was carried out with a Maxwell® RSC simplyRNA Cells Kit (Promega,
Madison, WI, USA) according to the manufacturer’s instruction. The preparation of the
library was performed following the TruSeq RNA Exome protocol (Illumina, San Diego,
CA, USA) as previously described [75].

4.6. RNA-Seq Data Analysis and Gene Evaluation

The raw data obtained from the NextSeq 550 Dx instrument of Illumina was evalu-
ated using the fastqc tool version 0.11.4 from the Babraham Institute in Cambridge, UK.
Adapters and low-quality bases were then eliminated through Trimmomatic [85] ver-
sion 0.38 (Usadel Lab, Aachen, Germany). The cleaned reads were aligned to the human
reference genome (GRCh38) using the STAR RNA-seq aligner [86] 2.7.3a (New York, NY,
USA). The expression levels of the transcripts were computed using the htseq-count python
package [87] version 0.6.1p1 (European Molecular Biology Laboratory (EMBL), Heidelberg,
Germany). DEGs were identified using the DESeq2 library in R [88] version 3.6.3 (R Core
Team). No cut-off was set on the fold change. Nevertheless, to drop false positive DEGs,
the Benjamini–Hochberg procedure was used with a tight q-value of 0.01. The enrichment
of the biological process terms of the gene ontology was also performed in R using the
package biomaRt [89] version 2.52.0. Plots were depicted using the R libraries ggplot2
version 3.4.0 and ggVennDiagram version 1.2.2.
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4.7. Protein Extraction and Western Blot Analysis

At the end of the treatment, SH-SY5Y were harvested with trypsin-Ethylenediaminete-
traacetic acid (EDTA), and proteins were extracted using RIPA (Thermo Scientific™,
Waltham, MA, USA) according to the manufacturer’s instruction. Protein concentration
was evaluated using the Bio-Rad Protein Assay (Bio-Rad Laboratories, Hercules, CA, USA)
and bovine serum albumin (BSA) as standard. Twenty-five micrograms of proteins were
separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred onto a PVDF transfer membrane (Immobilon-P PVDF, Merck Millipore division
of Merck KGaA, Darmstadt, Germany). Membranes were blocked for 1 h at room tem-
perature, with PBS containing 5% non-fat dried milk. Then, membranes were incubated
with primary antibodies overnight at 4 ◦C. The following primary antibodies were used:
Bax (1:1000; Cell Signaling Technology, Danvers, MA, USA) and Bcl-2 (1:1000; Cell Sig-
naling Technology, Danvers, MA, USA). The membranes were incubated with secondary
antibodies and horseradish peroxidase (HRP)-conjugated anti-rabbit IgG (1:2000; Santa
Cruz Biotechnology, Inc., Dallas, TX, USA) for 1 h at room temperature. To evaluate
that blots were loaded with equal amounts of protein lysates, they were also incubated
with an antibody for GAPDH HRP Conjugated (1:1000; Cell Signaling Technology). The
relative expression of protein bands was visualized using an enhanced chemilumines-
cence system (Luminata Western HRP Substrates, Millipore Corporation, Billerica, MA,
USA), and protein bands were obtained and quantified with a ChemiDoc™ MP System
(Bio-Rad Laboratories S.r.l., Hercules, CA, USA) and analyzed with the software Image J
1.54d. The uncropped blots for Bax and Bcl-2 and relatives of GAPDH are available in the
supplementary Figures S2 and S3, respectively.

4.8. Statistical Analysis

Statistical analysis of cell viability and Western blot was carried out using GraphPad
Prism version 9.0 software (GraphPad Software, La Jolla, CA, USA). Multiple comparisons
were performed using a one-way ANOVA test and the Bonferroni post hoc test. A p-value
less than or equal to 0.05 was considered statistically significant. The results are expressed
by the mean ± standard deviation (SD).

5. Conclusions

∆8-THC reduced Aβ1-42-induced toxicity as a result of a reduction in ER stress. In-
deed, ∆8-THC restored proteostasis, increasing the expression of proteasome and ubiquitin
subunits and reducing UPR, suggesting that misfolded/unfolded proteins were not accu-
mulated but could be eliminated through the proteasome. As a consequence of the reduced
ER stress, ∆8-THC increased neuronal cell viability. The results suggested that ∆8-THC
may represent a novel neuroprotective agent in AD but also in other neurodegenerative
diseases characterized by the accumulation of misfolded proteins.
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