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Abstract: Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-dependent serine/threonine
kinase, mediates various neuronal functions, including cell death. Abnormal upregulation of DAPK1
is observed in human patients with neurological diseases, such as Alzheimer’s disease (AD) and
epilepsy. Ablation of DAPK1 expression and suppression of DAPK1 activity attenuates neuropathol-
ogy and behavior impairments. However, whether DAPK1 regulates gene expression in the brain,
and whether its gene profile is implicated in neuronal disorders, remains elusive. To reveal the
function and pathogenic role of DAPK1 in neurological diseases in the brain, differential transcrip-
tional profiling was performed in the brains of DAPK1 knockout (DAPK1-KO) mice compared with
those of wild-type (WT) mice by RNA sequencing. We showed significantly altered genes in the
cerebral cortex, hippocampus, brain stem, and cerebellum of both male and female DAPK1-KO mice
compared to those in WT mice, respectively. The genes are implicated in multiple neural-related
pathways, including: AD, Parkinson’s disease (PD), Huntington’s disease (HD), neurodegeneration,
glutamatergic synapse, and GABAergic synapse pathways. Moreover, our findings imply that the
potassium voltage-gated channel subfamily A member 1 (Kcna1) may be involved in the modulation
of DAPK1 in epilepsy. Our study provides insight into the pathological role of DAPK1 in the regula-
tory networks in the brain and new therapeutic strategies for the treatment of neurological diseases.

Keywords: death-associated protein kinase 1 (DAPK1); differential transcriptional profiling; brain;
neurodegeneration; neuronal functions

1. Introduction

Death-associated protein kinase 1 (DAPK1) belonging to the DAPK family, is a
calcium/calmodulin-regulated serine/threonine protein kinase that is encoded by the DAP
gene located on chromosome 5 and was originally discovered and identified as necessary
for interferon gamma (IFNγ)-mediated apoptosis in HeLa cells [1–3]. DAPK1 is a 160 kDa
multidomain enzyme that is composed of a kinase domain, a calcium/calmodulin binding
domain, ankyrin repeats, putative P-loops, a Ras of complex (ROC) domain, a C-terminal
of ROC (COR) domain, a death domain, and a serine-rich C-terminal tail [4]. DAPK1 is
widely expressed in almost all tissues of mice and rats, and it is especially abundant in
the adult and developing embryonic brain as well as the lung [5]. Substantial evidence
indicates that DAPK1 is involved in apoptosis, autophagy, necrosis, and anoikis-like cell
death [4,6–8]. Both DAPK1 knockout (DAPK1-KO) and the inhibition of DAPK1 function
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protects neurons against neuronal damage, whereas DAPK1 overexpression induces cell
death [9–12]. In addition, DAPK1 may be involved in neurogenesis and other neuronal
functions, such as synaptic transmission and plasticity, as well as cognition [5,6,13–16].

A large number of studies have proven that DAPK1 plays an Important role in me-
diating the pathological process of acute and chronic neurological disorders, such as
Alzheimer’s disease (AD) [9,17–20], Parkinson’s disease (PD) [21,22], Huntington’s disease
(HD) [23], traumatic brain injury (TBI) [24,25], stroke [15,26–28], and epilepsy [10,11]. We
discovered that levels of DAPK1 are significantly increased in the hippocampi of 75% of
AD patients compared to those in control subject samples [17,19,20]. Activation of DAPK1
results in Aβ pathology characteristic of AD through the amyloidogenic processing of APP,
hyperphosphorylation and dysregulation of tau, and cell death by multiple pathways in
AD, while DAPK1 inhibition is able to attenuate AD-related pathologies [8,17,19,20,29–31].
Moreover, activation of DAPK1 contributes to learning and memory deficiency, whereas in-
hibition of DAPK1 through deletion of the DAPK1 kinase domain ameliorates learning and
memory impairment in mice [16,32,33]. DAPK1 has also been shown to be involved in in-
terleukin (IL)-1β release, which plays a critical role in inflammatory and immune responses
in the central nervous system (CNS) by regulating inflammasome activation in microglial
cells and in mice treated and injected with Aβ25–35, respectively [34]. However, DAPK1
knockdown and catalytic activity inhibition decrease inflammation and ameliorate memory
impairment [34]. In addition, DAPK1 upregulation promotes dopaminergic neuron loss
and oxidative stress in PD [21,35]. In contrast, inhibition of DAPK1 reverses the impact on
neuronal loss [22,35]. Similar to AD and PD, a reduction in DAPK1 activity prevents the
loss of dendritic spines and the synapse dysfunction by normalizing the phosphorylation
of extrasynaptic N-methyl-D-aspartate (NMDA) receptors in HD [23]. It has also been
reported that DAPK1 promotes neuropathology after TBI, whereas suppression of both
DAPK1 expression and kinase activity significantly attenuates neuronal apoptosis, synaptic
loss, and cognitive impairments in TBI model mice [24,25]. In addition, DAPK1 modulates
brain damage via the NMDA receptor or alpha-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid (AMPA) receptor by ischemia and inhibition of DAPK1 activity, which
contributes to neuroprotective effects in a mouse model of ischemia [15,28,36,37]. Further-
more, DAPK1 expression is dramatically elevated in brain samples of epileptic patients
compared with age-matched healthy individuals [38,39]. Previous reports have shown that
DAPK1 promotes neuronal apoptosis in seizures by interacting with tumor necrosis factor
receptor 1 (TNFR1) or p53 [40,41]. We have recently reported that depletion of DAPK1
expression and inhibition of DAPK1 activity dramatically reduces epileptic seizures in mice
after convulsive pentylenetetrazol or glutamate analog kainic acid exposure [10,11]. In
summary, DAPK1 upregulation promotes neuronal damage, whereas downregulation of
DAPK1 is beneficial for neuronal functions, which suggests that DAPK1 inhibition might
exert therapeutic effects on many neurological diseases. However, the effects of DAPK1
regulation on the functions of global genes are still unclear.

In the present study, we report for the first time the function of DAPK1 in the brain and
the role of DAPK1 in neurological diseases through transcriptional profiling of DAPK1-KO
mice. Global gene expression was examined in different brain regions of DAPK1-KO and
wild-type (WT) mice and the differentially expressed genes (DEGs) were analyzed by
Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses. The results not only showed that DAPK1 plays a role in
synaptic, cognitive and neuronal death-associated neuronal functions but also showed
that DAPK1 is implicated in neurological diseases. Thus, our study demonstrates that
the DAPK1 may contribute to the pathogenesis of neurological diseases and could be a
potential target for neurological diseases therapies.
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2. Results
2.1. Transcriptional Profiling in DAPK1-KO Mice

To investigate the role of DAPK1 in global gene expression changes, RNA sequencing
(RNA-seq) was performed in different brain tissues, including the cerebral cortex, hip-
pocampus, brain stem, and cerebellum, in male and female DAPK1-KO and WT mice.
DAPK1 expression was distributed in all four brain regions in WT mice, although the ex-
pression level of DAPK1 in the cerebellum was lower than that in the other brain regions for
both males and females. However, DAPK1 was not expressed in the brain tissues of either
male or female DAPK1-KO mice (Figure 1A). DEGs analyzed by the R software ‘limma’
package (v3.28.14) and ‘edgeR’ package (v3.14.0) are shown in Supplemental File S1. More-
over, DEGs by overlapping these two methods are shown in Supplemental File S2. The
analysis of DEGs by a volcano plot revealed that 2445, 657, 2870, and 2527 genes were sig-
nificantly altered in the cerebral cortex, hippocampus, brain stem, and cerebellum of male
DAPK1-KO mice, respectively (Figure 1B for edgeR and Figure S1A for limma). Moreover,
1940, 881, 1931, and 2539 genes were significantly altered in the cerebral cortex, hippocam-
pus, brain stem, and cerebellum of female DAPK1-KO mice, respectively. (Figure S2). In
addition, the number of regulated genes, including upregulated genes and downregulated
genes, for each type of brain tissue is shown in Figure 1C and Figure S1B for males and
females, respectively. As the data showed, the number of upregulated genes was more than
that of downregulated genes, especially in the hippocampus. Interestingly, the hippocam-
pus showed the lowest number of DEGs for both males and females (Figures 1C and S1B).
Moreover, the fold-change was lower in the hippocampus than in the other brain regions.
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Figure 1. Transcriptional profiling of tissues from different brain regions in DAPK1-KO mice.
(A) DAPK1 protein levels in tissues from four different brain regions of WT and DAPK1-KO male and
female mice by immunoblotting analysis. (B) Differential gene expression volcano plots of tissues
from each brain region of male mice by the edgeR method. The horizontal dotted line refers to the
threshold of statistical significance with log, while the vertical dotted line refers to the threshold of
the differential expressed ratio. (C) Number of DEGs in tissues of four brain regions for male mice.
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We further analyzed the number of DEGs in each chromosome and found that the
DEGs in the brain tissues of DAPK1-KO mice were distributed on 20 chromosomes, in-
cluding 19 autosomes and 1 sex chromosome (Figures 2 and S3). The data showed that the
number of DEGs on chromosome 7 was the highest in all brain tissues for both males and
females; however, the highest percentage of DEGs existed on chromosome 18. Moreover,
the common DEGs among all four brain regions were also distributed on 20 chromosomes,
and chromosome 18 showed both the highest number and the highest percentage of com-
mon DEGs (Figure S4). Furthermore, DEGs were not only distributed on 20 chromosomes
but also in the mitochondria.
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Figure 2. Chromosome distribution of significantly regulated genes in different regions of male
DAPK1-KO mouse brain tissues. Chromosome distribution of DEGs in the cerebral cortex (A),
hippocampus (B), brain stem (C) and cerebellum (D).

2.2. Common and Unique DEGs in the Tissues from Four Brain Regions

To further identify the common and unique DEGs in the tissues from four brain
regions, we analyzed the DEGs by Venn diagram. The overlap of all DEGs for males and
females is shown in Figure 3A,B. We found that most of the DEGs were unique to the
cerebellum. Moreover, the figure shows that 354 and 557 DEGs were common in the tissues
from all four brain regions for males and females, respectively. Moreover, 934 and 567 genes
were significantly dysregulated in the tissues of at least three brain regions for males and
females, respectively. Interestingly, the cerebral cortex, brain stem and cerebellum had the
highest number of common DEGs when comparing the number of shared DEGs within
all four brain regions. Furthermore, the hippocampus tissue showed the lowest number
of DEGs (657 genes for males and 881 genes for females), almost all of which (~54% for
males and ~63% for females) were shared with the tissues from the other brain regions.
Detail information of Venn diagram is shown in Supplemental Files S3 and S4 for males
and females, respectively.
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Figure 3. Venn analysis of the differentially expressed genes in different brain region tissues of male
(A) and female (B) DAPK1-KO mice.

2.3. GO Enrichment Analysis of DEGs

To explore the potential function of DEGs in the brains of DAPK1-KO mice, GO
enrichment analysis was performed on the tissues of the four brain regions by analyzing
them according to three categories: biological process, cellular component, and molecular
function. When comparing DAPK1-KO and WT mice, there were 983 (727 for biological
processes, 139 for cell component, and 117 for molecular function) and 244 (156 for biological
processes, 61 for cell component, and 27 for molecular function) GO categories that were
enriched in the DEGs in the cerebral cortex for males and females, respectively. The number
of enriched GO categories in other brain tissues is listed in Table 1. The data indicated that
DAPK1-KO has a larger impact on male mice than on female mice, and that DAPK1-KO
affects gene regulation in the hippocampus less than other brain regions.

Table 1. GO categories of DEGs.

Gender Tissues Total GO
Categories

Biological
Processes

Cell
Component

Molecular
Function

Male

Cortex 983 727 139 117
Hippocampus 79 29 26 24

Brain stem 930 691 135 104
Cerebellum 440 275 107 58

Female

Cortex 244 156 61 27
Hippocampus 32 21 1 10

Brain stem 271 160 70 41
Cerebellum 267 129 94 44

GO enrichment analysis depicted the top 20 GO terms for each type depending on
the number of DEGs in males and females (Figures 4, 5, S5 and S6). Compared to WT
mice, the top three biological process terms significantly changed in the cerebral cortex
of DAPK1-KO mice were regulation of membrane potential, learning or memory, and
cognition. The top three cellular component terms significantly changed were cytosolic
ribosome, ribosomal subunit, and ribosome, while structural constituent of ribosome, cation
channel activity, and ion channel activity were the top three significantly changed molecular
function terms. For the hippocampus, the top three significantly changed biological process
terms included neuron death, regulation of neuron death, and learning or memory, and
the top three enriched terms in cellular component were synaptic membrane, myofibril,
and Z disc, while transcription coactivator activity, transcription coregulator activity, and
gated channel activity were the top three molecular function terms. For the brain stem,
axonogenesis, cognition, and learning or memory were the top three significantly enriched
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biological process terms, while the top three cellular component and molecular function
terms were the same as those in the cerebral cortex. For the cerebellum, generation of
precursor metabolites and energy, ribonucleoprotein complex biogenesis, and neuron death
were the top three biological process terms significantly enriched. The top three molecular
function terms were structural constituent of ribosome, rRNA binding, and primary active
transmembrane transporter activity, while the top three cellular component terms were the
same as those in the cerebral cortex and brain stem. Detailed information of GO enrichment
analysis is shown in Supplemental File S5.
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(B) of male DAPK1-KO mice. The GO categories were biological process (BP), cellular component
(CC), and molecular function (MF).
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Figure 5. Gene ontology enrichment analysis of the DEGs in the brain stem (A) and cerebellum (B) of
male DAPK1-KO mice. The GO categories were biological process (BP), cellular component (CC),
and molecular function (MF).

2.4. KEGG Pathway Analysis of DEGs

KEGG analysis was applied to further identify the important pathways associated with
the DEGs. The top 20 significantly enriched pathways in DAPK1-KO mice compared with
WT mice for males and females are depicted in Figures 6, 7, S7 and S8, respectively. The
KEGG analysis revealed that several pathways, including ribosome-related, coronavirus
disease 2019 (COVID-19), age-associated, nonalcoholic fatty liver disease (NAFLD), and
oxidative phosphorylation pathways were significantly enriched in the cerebral cortex,
brain stem, and cerebellum, but not in the hippocampus. Similarly affected were many
neurodegenerative disease-related pathways, such as AD, PD, and HD. COVID-19 was
the most significantly enriched KEGG pathway in the cerebral cortex, brain stem, and
cerebellum, with 69, 81, and 75 related genes for DAPK1-KO males (49, 52, and 75 DEGs
for DAPK1-KO females), respectively. Moreover, the main enriched pathways in the
hippocampus were endocrine-related pathways, such as morphine addiction, salivary
secretion, and parathyroid hormone synthesis, secretion, and action. We also found that
circadian entrainment and synapse-related pathways, including glutamatergic synapses
and GABAergic synapses, were significantly enriched in almost all tissues. Consistent
with the number of DEGs and GO terms, the number of significant KEGG pathways
was smaller in the hippocampus than those in other brain regions, especially the female
hippocampus. However, the types of KEGG pathways enriched in males and females were
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similar in each brain region. Detailed information of KEGG pathway analysis is shown in
Supplemental File S5.
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DAPK1-KO mice.

2.5. Gene Expression Validation by RT-PCR

To confirm the expression of DEGs by RNA-seq, we selected five of the most upregu-
lated genes overlapping in four brain regions for both males and females and performed
qRT-PCR with three independent samples. AF4/FMR2 family member 2 (Aff2), zinc finger
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with KRAB and SCAN domains 16 (Zkscan16), potassium voltage-gated channel subfamily
A member 1 (Kcna1), protocadherin alpha subfamily C, 2 (Pcdhac2), and protocadherin
gamma subfamily A, 8 (Pcdhga8), which are upregulated in the tissues of all four brain
regions for both males and females, were selected and analyzed. The RNA-seq data showed
that the expression of Aff2, Zkscan16, Kcna1, Pcdhac2, and Pcdhga8 in the cerebral cortex of
male DAPK1-KO mice was increased by 24.5 (by edgeR method, 24.1 by limma method), 24.0

(by edgeR method, 24.1 by limma method), 24.8 (by edgeR method, 24.8 by limma method),
24.3 (by edgeR method, 24.2 by limma method), and 24.2 (by edgeR method, 23.9 by limma
method) fold changes, compared with that of WT mice, respectively. The data are shown
in column ‘logFC’ in Supplemental File S1. Consistently, the results from the qRT-PCR
experiment showed that the expression levels of Aff2, Zkscan16, Kcna1, Pcdhac2, and
Pcdhga8 were increased by 22.6-, 21.5-, 24.2-, 22.7-, and 22.9-fold, respectively, in the cerebral
cortex of male DAPK1-KO mice compared with those of WT mice (Figure 8A). Although the
levels of gene expression from qRT-PCR were different compared with those determined
in the RNA-seq data, the upregulation pattern was the same in all brain regions for both
males and females (Figure 8A,B).
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3. Discussion

DAPK1 is highly expressed in proliferative and postmitotic regions within the cerebral
cortex, hippocampus, and cerebellar Purkinje cells in rats [5]. Moreover, the mRNA level of
DAPK1 in the brain increases at the prenatal stages and gradually declines after birth [5].
Interestingly, DAPK1 has been reported to be expressed widely in the brain and it is highly
expressed in the cerebral cortex, hippocampus, and cerebellum during the embryonic
stages [5]. However, DAPK1 expression was only found to be distributed in the cerebral
cortex and hippocampus, not the cerebellum, in the brains of adult rats. This distribution
of DAPK1 implies that it might be involved in neuronal functions such as synaptic trans-
mission and plasticity as well as memory and learning [5,42]. To explore the physiological
function of DAPK1 in the brain, gene expression profiling was generated and analyzed
in the cerebral cortex, hippocampus, brain stem, and cerebellum of DAPK1-KO mice [43].
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We found that DAPK1 was expressed in all four brain regions in the adult mouse brain,
conflicting with previous reports that indicated DAPK1 was expressed only in the adult rat
cerebral cortex and hippocampus [5]. Moreover, the highest number of DEGs was found in
the brain stem of male mice, while the highest number of DEGs was found in the cerebellum
of female mice. Interestingly, the number of upregulated genes and downregulated genes
were similar in the cerebral cortex, brain stem, and cerebellum, whereas the number of
upregulated genes was approximately 88% and 75% of the total DEGs in the hippocampus
for males and females, respectively. The data suggested that DAPK1 might specifically
regulate gene expression in the hippocampus. DEGs are distributed on 20 chromosomes
and in the mitochondria but are not restricted to particular chromosomes. Overall, the data
indicated that DAPK1 has a wide effect on gene transcription.

GO enrichment analysis showed that transcription related functions, such as regulation
of DNA-binding transcription factor activity, DNA-binding transcription repressor activity,
transcription coregulator activity, and transcription coactivator activity, were significantly
affected by DAPK1 in all brain tissues. This might be the reason why DAPK1 has a
global effect on gene expression, even though DAPK1 is not a transcription factor. DAPK1
may regulate the activity and cellular localization of transcription factors through its
kinase activity. However, further research is needed to investigate whether and how
DAPK1 affects the activity of transcription regulators. Moreover, the cellular component
terms involved in ribosomes were enriched in most of the brain tissue regions except
the hippocampus. The molecular function terms that involved ribosome and channel
activity related functions were enriched. KEGG pathway analysis further supported the
results from the GO enrichment analysis. To our surprise, in addition to the ribosome
pathway, pathways associated with COVID-19 were most significantly affected by the
downregulation of DAPK1. Ribosomal-related proteins have been reported to be widely
expressed in the COVID-19 pathway [44]. The data suggest that DAPK1 might play a role
in COVID-19. However, the cause of this correlation is not known, and warrants further
investigation. Furthermore, we found that the biological process terms of DAPK1-KO brains
DEGs were mainly enriched in synaptic, cognitive, and neuron death-associated functions,
in which the cerebellum is less relevant to cognition than other brain tissues. KEGG pathway
analysis also showed that synapse-related pathways, such as glutamatergic synapses and
GABAergic synapses, were significantly enriched in all brain region tissues. In accordance
with our data, other studies have reported that DAPK1 has an impact on synaptic and
cognitive functions [14,16,23,45,46]. For example, activation of DAPK1 is required for long-
term depression (LTD), which is a form of long-term synaptic plasticity that is caused by
inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) accumulation in the
synapse and NMDA-receptor subunit 2B binding (GluN2B) [14]. Another report showed
that DAPK1-KO prevents cognitive impairment in vascular cognitive impairment and
dementia (VCID) mice [46]. Consistently, DAPK1 has also been demonstrated to regulate
neuronal cell death [13,17,25,47,48]. Activation of DAPK1 by extracellular signal-regulated
kinase (ERK) increases neuronal apoptosis in an epilepsy mouse model, while DAPK1 gene
depletion alleviates neuronal cell death [11]. In addition to ribosome-related pathways,
age-associated (including NAFLD pathways, oxidative phosphorylation pathways, as well
as many neurodegenerative disease-related pathways) were also the significantly enriched
KEGG pathways. Neuronal cell death and cognition were enriched in the GO analysis
and corresponded with the KEGG enriched pathways associated with neurodegenerative
diseases, verifying the similarity of these two analyses. Consistent with these findings,
DAPK1 has been shown to be involved in many neurological disorders, such as AD, PD,
and HD. For example, downregulation of DAPK1 attenuated the neuropathology of AD,
including Aβ secretion and tau hyperphosphorylation at AD-related sites [9,19,20,29,30].

qRT-PCR analysis confirmed the expression of five genes and indicated that the
regulation patterns of most genes followed the same trends as those in the RNA-seq
results. Moreover, we found that the fold change of Kcna1 expression was the highest
among the five genes. A number of studies have shown that Kcna1 is implicated in
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epilepsy [48–53]. Simeone et al. found that Kcna1-KO mice developed methacholine (MCh)-
induced seizures and had greater respiratory sensitivity to MCh when they approached
epileptic sudden death. Moreover, Kcna1-KO mice exhibited increased respiratory drive
and decreased blood oxygen saturation with a higher probability of epileptic sudden
death [48]. These data suggest that the progression of respiratory dysfunction with age may
result in higher susceptibility to respiratory failure during severe seizures, consequently
increasing the risk of epileptic sudden death in Kcna1-KO mice [48]. In addition, the
potassium channel genes KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3,
KCNMA1, and KCNT1 have been implicated in epilepsy [52]. Consistently, our data
revealed that potassium channel-related GO terms, such as potassium ion transmembrane
transport, potassium ion transport, potassium channel complex, potassium channel activity,
and voltage-gated potassium channel complex, were significantly enriched in the DEGs
of DAPK1-KO mice. These findings implied that DAPK1 might be strongly involved
in epilepsy. Our previous studies have validated that DAPK1 plays a critical role in
the development of epilepsy and might be a potential target for neuronal protection in
epilepsy [10,11]. However, whether inhibition of DAPK1 protects against epileptic seizures
through potassium channels deserves further study.

4. Materials and Methods
4.1. Animals

WT C57BL/6 mice were obtained from Shanghai Laboratory Animal Research Center
(Shanghai, China) and the generation of DAPK1-KO mice on the C57BL/6 background was
described previously [43]. All mice were maintained on a 12-h light/dark cycle with water
and food supply in the SPF facility of Fujian Medical University.

4.2. Immunoblotting Analysis

The tissues from the cerebral cortex, hippocampus, brain stem, and cerebellum were
lysed using radioimmunoprecipitation assay buffer (RIPA buffer) containing protease and
phosphatase inhibitor cocktails (Transgene, Beijing, China). The protein concentration
was measured using a BCA protein assay kit (Beyotime, Shanghai, China). Then, the
protein was incubated with loading buffer at 95 ◦C for 10 min. Protein samples (5–10 µg)
were separated by 10% SDS-PAGE and transferred to 0.45-µm polyvinylidene fluoride
membranes (MilliporeSigma, St.Louis, MO, USA), followed by blocking with 5% milk-
TBST at room temperature for 1 h. The membranes were incubated with an anti-DAPK1
antibody (MilliporeSigma, Cat# D2178) or an anti-β-actin antibody (MilliporeSigma, Cat#
A5441) at 4 ◦C overnight, and then with an HRP-conjugated secondary antibody at room
temperature for 1 h after washing in TBST. The membranes were further exposed using
enhanced chemiluminescence HRP substrate (MilliporeSigma) on the Bio-Rad Chemidoc
imaging system (Bio-Rad, Hercules, CA, USA).

4.3. Transcriptome Sequencing

The tissues from each brain region were dissected from 6 WT (3 male and 3 female)
and 6 DAPK1-KO (3 male and 3 female) mice at the age of 12 months. Total RNA was
extracted from mouse brain tissues using TRIzol and assessed by the RNA Nano 6000
Assay Kit and the Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA,
USA). The minimum RNA integrity number (RIN) for the samples is four. The construction
of sequencing library was performed using the NEBNext Ultra RNA Library Prep Kit
(NEB, Ipswich, MA, USA), followed by sequencing on the Illumina NovaSeq 6000 system
(Novogene Corp., Sacramento, CA, USA).

4.4. Bioinformatic Analysis

DEGs between the two groups were first identified using the R software ‘limma’
package (v3.28.14) and ‘edgeR’ package (v3.14.0), respectively [54,55]. The Benjamin–
Hochberg method was applied to control the false discovery rate (FDR) [56]. Genes
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with |log2FC| > 1 and FDR < 0.05 were considered DEGs regulated by DAPK1 and
were further visualized by the R software package ggplot2 (v3.3.3) [57]. Subsequently,
identifying DEGs by overlapping these two methods increased the reliability of statistical
analyses. In addition, we also conducted enrichment analyses to explore whether these
DEGs were significantly enriched in predefined biological KEGG pathways or GO terms by
using the ‘clusterProfiler’ R package (v4.0) [58]. The KEGG database represents the most
comprehensive collection of manually drawn pathway maps of molecular interactions and
is utilized as a reference to map newly identified DEGs [59]. The GO terms describe the
biological domain of a gene with respect to three categories: molecular function, cellular
component, and biological process [60].

4.5. Quantitative RT-PCR Assay

Real-time qRT-PCR was conducted using the QuantStudio Real-Time PCR System
(Thermo Fisher Scientific, Waltham, MA, USA) as described previously [61]. The primers
used in this study were as follows: Aff2, forward 5′- CTTGGAGCAGCAGTGTCACTAT-3′,
reverse 5′- AGGGCATCCCCTTTGTTTGTAT-3′; Zkscan16, forward 5′-GTTGAACAGCGTC
TCTGGCT-3′, reverse 5′-CAGTCTTGAAGGAACTGGGACT-3′; Kcna1, forward 5′-GGGTA
GGGTACGGACGTTTC-3′, reverse 5′-GATCGATGGACGCTGGC-3′; Pcdhac2, forward
5′-CTGGCAGTCGCAGAAAATCG-3′; reverse 5′-ACTACAAATGCCCGAGACGG-3′; Pcd-
hga8, forward 5′-AGGATGAAGATGCTTGCGCT-3′, reverse 5′-TCACCATTTTGGGATCC
GCT-3′; β-actin, forward 5′-GTGACGTTGACATCCGTAAAGA-3′, reverse 5′-GCCGGACT
CATCGTACTCC-3′. The tissues from each brain region were dissected from six WT (three
male and three female) and six DAPK1-KO (three male and three female) mice. Each
sample was amplified in duplicate. Data were analyzed by the comparative Ct (∆∆Ct)
method by normalizing expression to β-actin.

5. Conclusions

In summary, we analyzed global gene expression changes in the brains of DAPK1-KO
mice compared with that of WT mice for the first time. Transcriptional profiling showed
that more genes were upregulated than downregulated in all brain regions, especially in
the hippocampus. We also found that synaptic, cognitive, and neuronal death-associated
functions were most dramatically enriched in the biological process category in the GO
enrichment analysis. Moreover, in addition to ribosome-related and COVID-19 pathways,
neurodegeneration-related pathways were significantly enriched in the brains of DAPK1-
KO mice. We also found that Kcna1, which has been implicated to be involved in epilepsy,
was highly upregulated in DAPK1-KO mice. In conclusion, our study revealed an effect of
DAPK1 on neuronal functions and might provide insights into the development of novel
therapeutic strategies for neurological diseases.
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