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Abstract: Traditional medicine shows several treatment protocols for COVID-19 based on natural
products, revealing its potential as a possible source of anti-SARS-CoV-2 agents. Ampelozizyphus
amazonicus is popularly used in the Brazilian Amazon as a fortifier and tonic, and recently, it has
been reported to relieve COVID-19 symptoms. This work aimed to investigate the antiviral potential
of A. amazonicus, focusing on the inhibition of spike and ACE2 receptor interaction, a key step in
successful infection. Although saponins are the major compounds of this plant and often reported as
its active principles, a polyphenol-rich extract was the best inhibitor of the spike and ACE2 interaction.
Chemical characterization of A. amazonicus bark extracts by LC-DAD-APCI-MS/MS before and after
clean-up steps for polyphenol removal showed that the latter play an essential role in maintaining this
activity. The effects of the extracts on viral replication were also assessed, and all samples (aqueous
and ethanol extracts) demonstrated in vitro activity, inhibiting viral titers in the supernatant of Calu-3
cells after 24 hpi. By acting both in the SARS-CoV-2 cell entry process and its replication, A. amazonicus
bark extracts stand out as a multitarget agent, highlighting the species as a promising candidate in
the development of anti-SARS-CoV-2 drugs.

Keywords: Rhamnaceae; saponins; chalcone glycosides; flavonoids; COVID-19; spike protein;
coronavirus; mass spectrometry

1. Introduction

Three years have passed since COVID-19 was declared a pandemic. Currently, con-
firmed cases have reached more than 600 million and led to six million deaths worldwide [1].
SARS-CoV-2, the etiologic agent of COVID-19, is a single-stranded positive-sense RNA
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virus with a 27–32 kb-long genome [2,3], which is divided into two open reading frames
(ORFs) that encode non-structural proteins and subgenomic RNAs that encode the struc-
tural proteins [4,5]. Like other enveloped viruses, coronaviruses have unique proteins
responsible for the recognition of and binding to host cell receptors [6,7]. The spike protein
(SP) has 180 to 200 kDa and is a structural glycoprotein present in all coronaviruses and
which is formed by a signal peptide and two subunits: S1, which contains the receptor
binding domain (RBD), and S2, in which the fusion peptide is present [8,9]. They are found
in the homotrimeric form, as a crown-like ornamentation around the viral particle, which
gave the name to this group of viruses [9].

In the viral particle, SP exists in its pre-fusional conformation, and its specific cleavage
is mandatory to trigger the conformational change that leads to viral and cellular membrane
fusion [9,10]. Two possible entry pathways into host cells have already been described, and
both start with the recognition and binding of SP RBD to its major ligand, the angiotensin-
converting enzyme 2 (ACE2) [9,10].

Although the vaccine arsenal is widely available to the population and complete
vaccination clearly reduces severe cases, it is still imperative to consider mild and moderate
infections, whose needs are currently unmet. Controlling non-severe cases will help to
reduce the viral spread and reduce the social and economic impact of COVID-19. Therefore,
investments in new therapeutic approaches are welcome.

Since the pandemic’s beginning, natural products’ relevance as a potential source of
active compounds in the fight against SARS-CoV-2 has exponentially grown, and records in
the literature show how these substances represent a promising approach. Plants’ secondary
metabolites, such as saponins, terpenes, alkaloids, and phenolic acids, have been shown
to display antiviral activity against several specimens of the Coronaviridae family [11–13].
To date, a few works have described several representatives from different classes of
natural products, such as flavonoids and alkaloids, that clearly exhibit a promising activity
against SARS-CoV-2 [14–17], reinforcing the necessity of continued efforts to find potential
alternatives to be used in the clinical management of mild and moderate COVID-19 cases.

In 2020, a great number of in silico studies emerged as an alternative to evaluate
natural products’ ability to act as protease, helicase, and replicase inhibitors, especially
because of the limited infrastructure to manipulate SARS-CoV-2. In silico analyses provided
valuable and reliable information on a range of substances with potential anti-SARS-CoV-2
activity in a relatively short time; these are currently being tested in in vitro and in vivo
assays [18–22]. Despite viral enzymatic inhibition being the main mechanism of action for
most of the currently available and in development antivirals, blockage of SP interaction
with ACE2 is becoming an attractive approach for a new generation of antivirals since it
has the potential to hamper viral recognition and infection of host cells, preventing viral
propagation inside the organism as well as contributing to a reduced mutation rate and
thus the appearance of new variants [23].

Lately, in vitro methodologies using isolated viral components have gained space in
an attempt to increase the rate of the discovery of potential inhibitors, whether they come
from natural or synthetic sources. Some of the technologies used for this purpose include
pseudoviruses to investigate the cell entry process, FRET (fluorescence resonance energy
transfer) assays to evaluate enzymatic activity, and colorimetric or luminescent assays to
evaluate protein interactions [24].

As part of a broader ongoing screening project on natural inhibitors of the interaction
between SP and ACE2, a library of plant extracts belonging to Brazilian biome biodiversity
(in the Amazon, Atlantic Forest, and Cerrado region) was evaluated, from which the
extracts from A. amazonicus Ducke stood out as the most promising. A. amazonicus is one
of 984 species of the Rhamnaceae Juss. family [25], which is endemic to the Amazonian
states of South America; its distribution includes the regions of Peru, Colombia, Venezuela,
Guyana, Suriname, French Guiana, and Brazil [26–28]. The bark and roots of the plant,
popularly known as “cerveja de indio” or “saracura-mirá”, have been used in Brazil
for over 30 years by the Amazonian traditional communities to prepare a drink with
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stimulant, tonic and fortifying properties to combat and prevent malaria, among other
uses [29]. Studies with a spray-dried aqueous bark extract of the plant have demonstrated
its properties as an immune enhancer and adaptogen [30,31]. More recently, the species has
been recorded as being used for the prevention and treatment of COVID-19 by the Sateré
Mawé indigenous people, as well as by riverine communities in the Brazilian Amazon
during the pandemic [32]. Reports on the chemical composition of the plant focus basically
on its triterpenes and saponins, which are believed to be responsible for the wide range
of biological activities reported for the species [29–31,33–35]. In fact, aqueous extracts
prepared from the plant produce abundant foaming, due to the presence of up to 48% of
saponins [31,33], which explains one of the popular names “cerveja de indio” which means
“Indian beer”. However, although never studied, phenolic compounds are also present in
these plant extracts, especially ethanol compounds (personal observations).

Since the literature shows the potential of A. amazonicus as a source of useful com-
pounds for the attenuation of COVID-19 symptoms, we aimed in the present study to
evaluate the potential of its chemically characterized bark extracts to inhibit the receptor-
binding domain (RBD) of SARS-CoV-2 spike protein and ACE2 interaction before and after
clean-up steps with lead acetate for the removal of phenolics, and to inhibit SARS-CoV-2
replication in vitro.

2. Results and Discussion
2.1. A. amazonicus Extracts Inhibit at Least Half of RBD:ACE2 Complex Formation In Vitro

The ability of four different extracts of A. amazonicus to interfere in the formation of
RDB:ACE2 complex was assessed with the aid of a Lumit™ kit (Promega), a no-wash,
add-and-read bioluminescence-based kit suitable for the trial of potential inhibitory sam-
ples [36].The tested samples included two aqueous extracts prepared according to tra-
ditional medicine, which were previously shown to have immunomodulatory and anti-
inflammatory properties [30,31], and two ethanol extracts obtained according to the litera-
ture [34,35]. At 250 µg·mL−1, all the available extracts were able to inhibit at least 50% of
the interaction between RBD and ACE2 (Figure 1).
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#75—Ethanol bark extract, obtained from the remaining “cake” after the aqueous extraction of the 
plant material which generated extract #74. #76—Ethanol bark extract, prepared by percolation; 
#156—Aqueous bark extract, prepared in a pilot-scale industrial plant, according to the traditional 
method. These data are the result of three independent technical replicates. 

Figure 1. Inhibition rates (in percentage) of the RBD:ACE2 complex of A. amazonicus. Aqueous and
ethanol bark extracts (250 µg·mL−1) were assessed with the Lumit™ immunoassay (Promega). #74—
Aqueous bark extract, prepared on a laboratory scale to mimic the traditional beverage; #75—Ethanol
bark extract, obtained from the remaining “cake” after the aqueous extraction of the plant material
which generated extract #74. #76—Ethanol bark extract, prepared by percolation; #156—Aqueous
bark extract, prepared in a pilot-scale industrial plant, according to the traditional method. These
data are the result of three independent technical replicates.

The most active extract (#76) was able to inhibit 92 ± 0.03% of this interaction at this
concentration. Notably, a very similar inhibition pattern can be observed for both aqueous
extracts (#74 and #156) and ethanol extract #75, which was prepared from the resulting
cake after the aqueous extraction of the barks, while ethanol extract #76 was obtained from
direct extraction of the plant material with ethanol [34].
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2.2. Chemical Characterization of A. amazonicus Bark Extracts Reveal the Presence of Saponins,
Triterpenes, and Phenolic Compounds

The aqueous (#74 and #156) and ethanol extracts (#75 and #76) of A. amazonicus were
analyzed by ultra-high-performance liquid chromatography with PDA and coupled to mass
spectrometry (UHPLC-PDA-APCI-MS/MS). All extracts showed a very similar saponin
profile (Figure 2), which is the main class of compounds described for the species, as
reported before [31,34,35,37,38], but a different profile of UV absorbing compounds (as
recorded by the PDA detector) not yet reported in the literature for this species.
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Figure 2. Aligned chromatograms of aqueous and ethanol extracts obtained by UHPLC-PDA-MS/MS.
#74—Aqueous bark extract prepared on a laboratory scale; #75—Ethanol bark extract, obtained from
the remaining “cake” after the aqueous extraction of the plant material which generated extract
#74; #76—Ethanol bark extract, prepared by percolation; #156—Aqueous bark extract, prepared in a
pilot-scale industrial plant.
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The UHPLC-APCI(-)MS/MS analyses show a complex chemical profile and two
characteristic regions in the chromatogram, one formed by UV-absorbing compounds
(0–5 min), and the other one represented by triterpenes and saponins (10–25 min). Table 1
shows the main saponins annotated in the studied extracts, all of which bear dammarane-
type triterpene aglycones (Figure 3), as previously reported for A. amazonicus [31,34,35].

Saponin structures were proposed based on the MS fragmentation profile. Compound
1 shows a characteristic MS/MS spectrum of the aglycone 16-keto-tetrahydroxydammar-
23-ene, with the loss of 142Da corresponding to its side chain (C8H14O2) (Figure S1).
Compound 2 contains an acetyl group attached to the konarigenin aglycone and exhibits
characteristic losses of this residue (C2H4O2) (Figure S2). Saponins 3 and 4 bear a C-31
aglycone of the 16-keto-tetrahydroxydammar-24-methylene type, whose fragmentation
profiles show losses of C9H16O2 (156Da) corresponding to its side chain (Figures S3 and S4).
Finally, compounds 5 and 6 have jujubogenin as the aglycone, showing ions at m/z 471
[aglycone-H]− or 453 [aglycone-H-H2O]− that are products of the precursor ion identified
as [M-H]−. The Ebelin lactone, m/z 453 [aglycone-H-H2O]−, is commonly formed during
mass spectrometric analysis of jujubogenin derivatives [35]. This process occurs through
common fragmentation reactions in API sources such as APCI. In all MS/MS spectra of the
annotated saponins, characteristic neutral losses of sugar residues were observed (162Da
for hexoses, 146Da for deoxyhexoses, and 132Da for pentoses).

Table 1. Main saponins annotated in the A. amazonicus aqueous and ethanol bark extracts.

Compound Rt
(min)

[M-H]−
m/z

Molecular
Formula MS2 Aglycone Sugar

Residue a

1 13.6 959.4 C48H80O19

941 (-H2O),
817 (-C8H14O2),

797 (-Hex),
779 (-H2O-Hex),

655 (-C8H14O2-Hex),
509 (-C8H1402-Hex-dHex)

16-keto-
tetrahydroxydammar-

23-ene
2Hex, 1dHex

2 15.0 973.3 C49H82O19

913 (-C2H4O2),
841 (-Pen),
811 (-Hex),

781 (-C2H4O2-Pen),
751 (C2H4O2-Pen), 619

(C2H4O2-Pen-Hex)

konarigenin 2Hex, 1Pen

3 16.6 943.4 C48H80O18

811 (-Pen),
781 (-Hex),

763 (-H2O-Hex), 649
(’Hex-Pen),

479 (-C9H16O2-Hex-d-Hex),
347

(-C9H16O2-Hex-dHex-Pen)

16-keto-
tetrahydroxydammar-

24-methylene

1Hex, 1dHex,
1Pen

4 17.0 957.3 C49H82O18

801 (-C9H16O2)
811 (-dHex),
795 (-Hex),

649 (-Hex-dHex)

16-keto-
tetrahydroxydammar-

24-methylene
2dHex, 1Hex

5 18.9 1059.3 C52H84O22

927 (-Pen),
897 (-Hex),

879 (-H2O-hex),
756 (-Hex-Pen),

735 (-2Hex),
603 (-2Hex-Pen),

453 (-H2O-2Hex-2Pen)

jujubogenin 2Hex, 2Pen

6 20.7 897.5 C46H74O17

765 (-Pen), 735 (-Hex), 603
(-Pen-Hex),

471 (-Hex-2Pen)
jujubogenin 1Hex, 2Pen

a: Hex: hexose; dHex: deoxyhexose; Pen: pentose (sugar residues attached to the aglycone skeleton).
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Contrary to the saponins, the MS profile of the extracts in the region of the UV
absorption compounds (0–5 min) is not similar (Figure S7). Preliminary analysis of the
λmax of the UV-absorbing peaks suggested that compounds eluted in this zone of the
chromatogram could be attributable to a phenolic class of compounds such as flavonoids.
In fact, the total phenolic content (TPC) of the most active extract #76 was 46.3 mgEAG/g,
confirming the presence of phenols in the extract.

2.3. Clean-Up Procedure with Lead Acetate Removes Phenolic Compounds and Promotes
Differences in Biological Activity

Taking into account the results of the inhibition rates of the formation of the RBD:ACE2
complex by A. amazonicus extracts (Figure 1), and their chemical characterization by mass
spectrometry showing a similar saponin profile, a clean-up step on the most active ethanol
extract (#76) was performed to separate the UV-absorbing compounds (probably phenolic)
from the saponins, aiming to identify whether they could be responsible for the enhanced
activity of this extract.

Treatment with lead acetate is a classic method used to precipitate phenolic com-
pounds [39], and therefore it was used to clean up the resulting extract from these sub-
stances. In sequence, extracts #76 and #76Pb (after clean-up with lead acetate) were
evaluated in the RBD:ACE2 complex formation at different concentrations (Figure 4).
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Figure 4. Inhibition of RBD:ACE2 interaction by A. amazonicus Ducke bark ethanol extracts before
(#76) and after the clean-up step (#76_Pb). #76—Ethanol bark extract, prepared by percolation.
#76_Pb—Ethanol bark extract prepared by percolation, after cleaning with lead acetate. These data
are the result of two independent duplicates. Multiple t-tests between concentrations of each extract
showed a significant statistical difference (p-value < 0.05). #76 R2 = 0.92. #76_Pb R2 = 0.81.

The data show that extract #76 interferes in the RBD:ACE2 complex formation in
all concentrations tested (25 to 125 µg·mL−1), reducing the interaction by at least 40% in
a dose-dependent pattern (Figure 4). The highest concentration (125 µg·mL−1) reduced
the interaction by 92.45 ± 3.65%, which is similar to what was observed at 250 µg·mL−1

(Figure 1). Interestingly, the removal of phenolic compounds by lead acetate clean-up
abolished the inhibition potential of #76 extract by 70% at the highest concentration
(125 µg·mL−1), as shown in Figure 4, suggesting that phenolic compounds and not saponins
are responsible for hampering RDB and ACE2 interaction.

Aiming to compare the chemical profiles of ethanol extracts before and after clean-up,
the samples were subjected to ultra-high performance liquid chromatography coupled to
tandem MS in the negative ion mode (UHPLC-APCI(-)MS/MS), followed by alignment
in MZmine 2.53. Figure 5 clearly shows that the UV-absorbing compounds’ region was
simplified upon the clean-up step, indicating the removal of phenolic compounds, the main
ones of which were tentatively identified.

UHPLC–PDA–MS/MS analysis of extract #76 revealed the presence of 3′,5′di-C-
glucosyl phloretin (8) and quercetin 3-O-deoxyhexoside (9) by comparison of their APCI-
MS/MS spectrometric data (fragmentation patterns) and photodiode array PDA/UV/Vis
with data from the literature (Table 2) [40,41]. Compound (7) remained unidentified, but it
was possible to hypothesize its structure as a C-glycosyl flavonoid based on the similarity
of its mass fragmentation pattern when compared with 3′,5′di-C-glucosyl phloretin, (8).

The tandem mass spectrum produced by compounds 7 and 8, showed a pattern typical
of a C-glycosyl derivative. The fragmentation profiles of these C-glycosylated flavonoids
are characterized by the loss of water molecules followed by the fragmentation of the hexose
units with fragment ions at m/z [M-H-90]− and m/z [M-H-120]− (Figure 6). Compound
7 at m/z 621 [M-H]− follows this pattern with fragment ions at m/z 531 [M-H-90]− and
m/z 501 [M-H-120]− [14,42], in addition to the ion at m/z 603 corresponding to a water loss
[M-H-H2O]− (Figure S8). This same characteristic fragmentation is observed for compound
8 at m/z 597 [M-H]−, which produces the MS/MS at m/z 579 [M-H-H2O]−, m/z 507 [M-H-
90]−, and m/z 477 [M-H-120]− (Figure S9). Compound 8, which exhibits a λmax at 285 nm,
as is typical of the chalcones, was annotated as 3′,5′di-C-glucosyl phloretin (Figure 6).
The similarity of the mass fragmentation patterns of 7 and 8 suggests the hypothesis that
compound 7 is probably a C-glucosyl flavonoid derivative.
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Table 2. Main phenolic compounds annotated by UHPLC-APCI-MS/MS in bark ethanol extract (#76)
before the clean-up step.

Compound Class
Compound
Molecular
Formula

Rt
(min)

[M-H]−
m/z MS2 λmax Reference

7 flavonoid
C-glycosylated

flavonoid
(UI) *

0.96 621.4

603 (M-H-H2O),
531 (M-H-90),
501 (M-H-120)

441 2x (M-H-90),
381

2x (M-H-120)

295 -

8 chalcone

3′,5′di-C-
glucosyl
phloretin

C27H34O15

0.96 597.5

579 (M-H-H2O),
507 (M-H-90), 477

(M-H-120)
417 2x (M-H-90),

357
2x (M-H-120)

285 [40]

9 flavonol
quercetin 3-O-
deoxyhexoside

C21H20O11

0.98
465.7
[M-H

+H2O]− adduct

319 (-dHex), 301
(-dHex-H2O)

283 (-dHex-2H2O)
255 (-dHex-2H2O

-CO)

255, 355 [41]

* UI: Unidentified.
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tation of the hexose unit.

While compound 8 has been previously described in Ziziphus spina-christi, a member
of the Rhamnaceae family [40], no data were found in the literature for the mass and
fragmentation patterns observed for compound 7, suggesting that this may be an as yet
undescribed C-glucosyl flavonoid.

Compound 9, m/z 465 [M-H+H2O]−, has λmax at 255 and 355 nm, which are charac-
teristic of flavonol derivatives [40]. Its MS/MS spectrum shows a fragment ion at m/z 319
corresponding to the loss of one deoxyhexose unit (146 Da), and a fragment ion at m/z
301 [M-H-dHex-H2O]− (Figure S10), which is in accordance with the mass of a flavonoid
aglycone, probably quercetin. In addition, fragment ions characteristic of this aglycone
were observed at m/z 271, 255, and 179 [41].

This is the first report on the phenolic composition of bark extracts of A. amazonicus,
in which only saponins and triterpenes have been previously identified [31,34,35,37,38].
Despite saponins being the major compounds in the plant extracts, the phenolic compounds
described in this study seem to be responsible for the inhibition of SP and ACE2 interaction.

Polyphenolic compounds are among the most promising chemical class of SARS-CoV-
2 inhibitors [43]. A recent review compiled the structure–activity relationships of plant
phenolics with antiviral activities against human coronaviruses [44], showing that data on
viral entry inhibitors are scarce. The flavonoid luteolin has been shown to inhibit the entry
of HIV-luc/SARS pseudotyped virus and wild-typed SARS-CoV into Vero E6 cells without
substantial cytotoxicity. Emodin, an anthraquinone, inhibited the interaction between
SARS-CoV S protein and ACE2 receptor in a dose-dependent manner.

However, most of the studies with SARS-CoV-2 SP and ACE2 interactions are in silico
studies. Computational studies showed that catechin and curcumin bind the interface of
the ‘RBD:ACE2-complex’, suggesting the efficacy of these two polyphenols in hindering
the formation of SP and ACE2 complex [45]. Structure-based virtual screening of the
Taiwan Database of Extracts and Compounds identified 39 natural products targeting
the viral receptor-binding domain (RBD) of the SARS-CoV-2 spike protein; among them,
amentoflavone was selected as the best one [46]. Recently, surface plasmon resonance of
candidate molecular binders has been performed to determine the binding affinities and
kinetics for RBD of a group of five compounds previously selected by a virtual screening of a
natural product database, one of which was 5,4′-di-hydroxy-6,7-di-glucosyl-flavanone [47].

Concerning chalcones, a recent in silico study screened a library of natural and syn-
thetic chalcones against homology-modeled S protein. Analysis of protein–ligand docking
revealed that phloretin can interact with the spike proteins’ key RBD, pointing to this class
of natural compounds as promising [48].
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Interestingly, in another recent in silico study, phloretin showed a strong inhibitory
effect on the crucial residues ASN417, SER496, TYR501, and HIS505 of the omicron receptor-
binding domain (RBD), which are supported for the inviolable omicron and angiotensin-
converting enzyme II (ACE2) receptor interaction [49]. Additionally, the authors state
that phloretin is suggested as the antiviral drug against omicron B.1.1.529, which strongly
supports our findings that 3′,5′di-C-glucosyl phloretin is in part responsible for blocking
the SP and ACE2 interaction in extract #76.

On the other side, flavones such as quercetin and their derivatives are currently
considered promising compounds for COVID-19 treatment [50]. Quercetin possesses a
15-carbon skeleton with a chromone core comprising bicyclic 1,4-benzopyrone (A- and C-
rings) substituted on carbon 2 with a catechol moiety (B-ring), with hydroxyl groups at
positions 3′, and 4′ with electron-donating activity [51]. The presence of hydroxyl groups
in the B-ring reflects positively on its binding affinities to the viral target [52]. In silico
and in vitro studies have been focused on quercetin, testing it experimentally against some
targets such the spike protein of SARS-CoV-2, with promising results showing its potential
as an antiviral agent [53,54].

In an in silico study [55], the authors suggest that beyond the interaction with active
sites of the spike protein of SARS-CoV-2, polyphenols from Geranii herba could interact in
the cell surface receptor glucose-regulated protein 78 (GRP78) to regulate the cell signaling
to release ER stress and other processes. They could also interact either directly or indirectly
with the Cys/His dyad of the main protease to inhibit viral replication. In this way,
polyphenols could interfere with viral pathogenesis in various stages [56].

Moreover, flavonoids are known for their potential ability to regulate inflammatory
mediators and inhibit endothelial activation, among other factors, which might be beneficial
in regulating the cytokine storm during SARS-CoV-2 infection, and may positively influence
inflammatory changes associated with COVID-19 [57]. Additionally, phenol-rich extracts
from plants have also demonstrated antiinflamatory activity [58,59].

The results presented here show evidence that supports that compounds belonging to
chalcones and flavones in the A. amazonicus extracts were able to inhibit the binding of the
viral spike protein to its ACE2 receptor, which is one vital mechanism for the entry and
replication of SARS-CoV-2 viruses.

2.4. The Characterized Extracts Can Inhibit SARS-CoV-2 In Vitro Replication

Since plant extracts represent complex matrices composed of a wide range of sub-
stances, it is possible that the same extract targets different steps in the virus life-cycle,
which results in distinguishable antiviral activity. Considering the RBD:ACE2 inhibition
promoted by A. amazonicus extracts, we assessed whether they would be able to act at a
different stage of infection. For this purpose, the Calu-3 cells, a well-established model for
SARS-CoV-2 in vitro experimental infection, were used to evaluate the cytotoxicity and
antiviral activity of all plant extracts [60,61].

Although saponins are known to be potential cytotoxic agents [62], the cell toxicity
determined by MTT assay showed that none of the uncleaned extracts were toxic to Calu-3
cells at the highest concentration tested (200 µg·mL−1). The only exception was #76_Pb,
which reduced cell viability by 40% at the highest concentration (Figure 7A). Despite this,
all the extracts exhibited a concentration required to reduce cell viability by 50%, with
values (CC50) higher than 200 µg·mL−1.

The antiviral activity of the extracts was determined by the reduction in SARS-CoV-
2 replication in Calu-3 cells. All the extracts were able to inhibit SARS-CoV-2 replica-
tion at 24 h (Figure 7B). The concentration required to inhibit viral infection-induced cy-
topathogenicity by half was most promising for the extracts #75 and #156, which presented
EC50 values < 25 µg·mL−1 (Table 3).
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Figure 7. Cytotoxicity and antiviral effects of extracts from Ampelozizyphus amazonicus. Calu-3 cells
were exposed to different concentrations (6.3, 12.5, 25, 50, 100 and 200 µg·mL−1) of extracts for 72 h
at 37 ◦C and 5% CO2. The cell viability was determined by MTT assay (A). Calu-3 cells were infected
with SARS-CoV-2 (MOI 0.01) for 1 h, then the medium was changed to a medium with extracts in
different concentrations (25, 50, 100 and 200 µg·mL−1). The supernatants were harvested 24 at hpi at
37 ◦C and 5% CO2 for virus titration by a Plaque-Forming Units (PFU/mL) assay (B). Extracts R2

varied from 0.85 to 0.97.

Table 3. Extracts EC50 (µg·mL−1) values.

Time
Post-Infection

(h)
#74 #75 #76 #76_Pb #156

EC50

(µg·mL−1
)

24 32.79 ± 3.4 <25.0 26.50 ± 1.3 33.61 ± 3.2 <25.0

According to the chromatographic profile shown in Figure 2, the samples seem to
be very similar regarding the saponins profile, which may explain the fact that they are
all active in inhibiting SARS-CoV-2 replication. Although the results obtained previously
demonstrate that A. amazonicus extracts can act on the ligand–receptor interaction of a
structural protein and that this action is linked to the phenolic compounds in the extract,
antiviral activity is a complex process and can exhibit different possibilities of interference.

In this section, the results shown reflect that A. amazonicus extracts (especially #75
and #156) also act on a distinct target, quite possibly non-structural proteins, since the
model represents a scenario in which the infection is already established. RBD:ACE2
binding assays demonstrate that saponins are not important for the interaction’s in-
hibition, unlike the polyphenols in the extract. However, it is known that saponins
have anti-inflammatory and immunomodulatory effects, properties already demonstrated
for these same extracts and that are important in the clinical approach to COVID-19
treatment [30,31,63,64]. Additionally, this action would also support the traditional use of
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this species by Amazonian communities [32]. Interestingly, there is one record for an anti-
SARS-CoV-2 compound in the Rhamnnaceae family: jubanine B, a cyclopeptide alkaloid
from Ziziphus spina-christii (L) Desf. was demonstrated to be a promising ligand of 3CLpro

protein, the main protease of the SARS-CoV-2 virus [65].
A. amazonicus is an Amazonian adaptogen [29], and plants with this characteristic

could consist of interesting models to be explored in drug discovery against SARS-CoV-
2. Several traditional Chinese medicine protocols have been evaluated since 2020 in the
treatment of COVID-19, using in silico, in vivo, and in vitro approaches [66]. As the basis
of these practices are contained in medicinal plants and natural products, the good results
presented here show that alternatives from plant secondary metabolites are very promising.

Panax ginseng Meyer, popularly known as Korean ginseng, is a plant with a high con-
tent of saponins structurally similar to the ones present in A. amazonicus, with dammarane
triterpene structure [67]. It has been shown, in vivo that transgenic mice that were fed with
ginseng extracts had much lower virus titers than the ones that were not. Additionally,
interferon-gamma (IFN-γ) production was significantly higher in the lung tissue of the mice
fed with ginseng extracts [68], demonstrating the potential of this species in SARS-CoV-2
infection, not only in virus replication but also in host response. Similarly to A. amazonicus,
P. ginseng is also used in traditional medicine as an immune system fortifier, and has been
pointed out as a potential treatment for COVID-19 [69]. Therefore, A. amazonicus is an
interesting species to be considered in new drug discoveries to counter SARS-CoV-2, since
it presents promising substances with proven action in its replication process.

3. Materials and Methods
3.1. Chemicals, Materials and Plant Extracts

Lead acetate trihydrate crystal reagent (Spectrum®, Chemical MFG Corp., Gardenia,
CA 90248, New Brunswick, NJ, USA), absolute ethanol 96% (EtilRio®/p.a.), acetonitrile
(HPLC/spectrum grade), and formic acid (LC-MS grade) were from Tedia (Fairfield, CA,
USA). Water (18.2 MΩ·cm) was from a Millipore Direct-Q® purification system.

Four different A. amazonicus bark extracts from our biobank library (registered at
the Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional
Associado, SISGEN, under the registration number CB8C853), coded with numbers #74,
#75, #76 and #156, were used for in vitro assays.

Ampelozizyphus amazonicus was collected in August 2008, in the Brazilian Amazon
region of Oriximina (Para state). Bark was dried in a ventilated oven (Marconi, model
MA037) and ground in a hammer mill (Marconi, model MA340, serial 9304176). The
preparation of extracts #74, #76 and #156 is reported in the literature (#74) [30], (#156) [31]
and (#76) [34].

In brief, extract #74 was prepared with 250 g of dried and ground bark submitted to
extraction with boiling water (5% w/v) for 15 min and filtered. A second extraction was
performed with boiling water (2.5%, w/v, 30 min). The extracts were mixed and infused
into a spray-dryer nozzle unit of a Buchi ¨Mini Spray Dryer B-290 (Buchi Laboratorius-
Technik AG, Flawil 1, Switzerland) [30]. The extractive yield was 4.5%. Extract #75
was prepared with commercial ethanol (96%) from the cake resulting from the aqueous
extraction that generated extract #74, until exhaustion of plant material. It was then filtered
and concentrated under reduced pressure in a rotary evaporator, at a temperature not
exceeding 40 ◦C. The extractive yield was 7.3%. For extract #76, ground and dried bark
(346.544 g) were extracted with commercial ethanol (96%) by percolation until exhaustion.
The extract was filtered, and ethanol was removed by rotary evaporation at 40 ◦C under
reduced pressure [34]. The extractive yield was 8.61%. Finally, to extract #156, dried and
ground bark was used for the preparation of extract at the Centroflora Group facility,
Botucatu, SP, Brazil. The bark (14.9 kg) was submitted to a two-step extraction process as
follows: extraction with boiling water (5% w/v) for 15 min, followed by a second extraction
with boiling water (2.5%, w/v) for 30 min. The extracts were mixed and filtered (using a
rotary drum filter with a mesh of 30 µm) and then concentrated until the total solid level
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reached 24% (w/v) (Bernauer evaporator). Final drying was achieved by spray drying as
reported in [31]. The extractive yield was 4.52%.

A brief description of the methodologies is presented in Table 4. The work was
authorized by Conselho de Gestão do Patrimônio Genético (CGEN) to access the traditional
knowledge with bioprospecting purposes, by the Resolution CGEN no. 213 (6 December
2007), renewed in the Resolution CGEN no. 87/2012, and by the authorizations AEAC3E9
in 2018, and A5A49CA in 2022.

Table 4. Code number and extract preparation methods for each A. amazonicus extracts.

Code
Number Code Extraction Preparation Method Ref.

#74 SART Aqueous bark extract prepared in the laboratory scale
according to the traditional beverage [30]

#75 SET-MT Ethanol bark extract prepared after the aqueous
extraction of extract #74 -

#76 SETMA Ethanol bark extract prepared by percolation [34]

#156 SARFLORA Aqueous bark extract prepared in a pilot-scale
industrial plant, according to the traditional method [31]

3.2. Clean-Up Procedure with Lead Acetate

Separately, 0.5 g of #76 was mixed with 20 mL of 50% ethanol (EtOH) solution and
vortexed for 15 min. Then, 10 mL of 10% lead acetate was added in each tube and vortexed
for 25 min at 50 ◦C. After centrifugation, the supernatant was collected, lyophilized, and
coded as #76_Pb.

3.3. Sample Preparation for Chemical Investigation

Separately, 10 mg of each sample (#76, and #76_Pb) was transferred to 2 mL microtubes.
Then, 1 mL of acetonitrile (ACN) was added to each microtube, sonicated for 15 min and
vortexed for 30 s. After that, 200 µL of each solution was transferred to a 1.5 mL microtube
and then 300 µL of ACN and 500 µL of purified water were added. The final solution (1:1,
v:v) was vortexed for 30 s and centrifuged at 10,000 RPM for 15 min. 750 µL of supernatants
were injected and analyzed.

3.4. Sample Preparation for RBD:ACE2 Inhibition Assays

Separately, 1 mg of each sample was transferred to a microtube and solubilized in
20 µL of dimethyl sulfoxide (DMSO—Sigma-Aldrich, St. Louis, MO, USA) and 80 µL
ultrapure water. The solutions were vortexed for 1 min and then centrifuged (5804 R—
Eppendorf) for 5 min at 10,000 RPM. After, the supernatant of each solution was collected,
identified, and refrigerated.

3.5. LC-DAD-APCI-MS/MS Analysis

Ultra-high-performance liquid chromatography with an ultraviolet detector coupled to
tandem mass spectrometry (UHPLC-UV-MS/MS) analyses was performed using a UHPLC
DionexTM UltiMateTM 3000 system, coupled to an LCQ Fleet (ThermoFisher Scientific,
Waltham, MA, USA) consisting of an oven, a solvent degasser, an ultra-high-pressure
pump, an autosampler, a diode array detector and a column temperature manager. An
ACQUITY UPLC® BEH C18 reversed-phase column (2.1 × 100 mm, 1.7 µm, Waters) was
used at a flow rate of 0.35 mL·min−1. The column temperature was kept at 30 ◦C, and the
mobile phases were 0.1% formic acid in water for A, and acetonitrile for B. The gradient
elution mode was as follows: 25% B in 0–2 min, 25–50% in 2–30 min, 50–98% in 30–31 min,
98–98% in 31–33 min, 98–25% in 33–35 min, and 25–25% in 35–38 min. Wavelength channels
used in the DAD instrument were 210 nm, 254 nm, 275 nm, and 360 nm with a bandwidth
of 2 nm.
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The mass spectrometer (MS), equipped with an atmospheric pressure chemical ion-
ization (APCI) source and an ion trap analyser (with 1.000 of resolution), was operated
in negative ion mode. High-purity nitrogen (N2) was used as the sheath gas (30 arbitrary
units) and auxiliary gas (15 arbitrary units). High-purity helium (He) was used as the
collision gas. The MS parameters used were 6.0 kV of source voltage, −2 V of capillary
voltage, −116 V of tube lens voltage, 400 ◦C of capillary temperature and 400 ◦C of APCI
vaporizer temperature. Full scan data acquisition (mass range: m/z 100–1500) and data-
dependent acquisition (topN = 3) were performed. The normalized collision energy of
the collision-induced dissociation (CID) cell was set at 35 eV. Data obtained from LC–MS
analyses were converted to mzML format using the Proteowizard software. Then, the data
were processed in Mzmine 2.53.

3.6. Total Phenolic Content (TPC)

The phenolic content of the most active extract (#76) was assessed as previously
described [70]. Briefly, 5 mg of the ethanol extract was diluted in 1 mL of commercial
ethanol. Then, an aliquot of 200 µL of this solution was transferred to a new microtube
with 800 µL of ultrapure water. The 1 mg/mL solution was used for quantification. In a
flat-bottom 96-well plate, 0.1 mL aliquots were added to 0.5 mL of Folin–Ciocateu reagent
(10% w/v). The calibration curve was constructed using gallic acid ranging from 0.5 mg/mL
to 0.003 mg/mL. The sample was tested in 500 and 250 µg·mL−1. The total phenolic content
of the extract was expressed in milligrams of gallic acid equivalent per gram of extract
(mg GAE/g).

3.7. Lumit™ RBD:ACE2 Interaction Assays

To assess if A. amazonicus extracts would have any potential in blocking SARS-CoV-
2 entry into cells, we used the commercial kit Lumit™ SARS-CoV-2 spike RBD:ACE2
immunoassay (Promega), following the instructions of the manufacturer. Lumit™ method-
ology relies on the use of the RBD (receptor-binding domain) portion of the SARS-CoV-2
spike protein, as the one responsible for recognizing and binding to the ACE2 receptor.
Briefly, samples were added to a white, flat bottom, 96-well plate in a concentration of
250 µg·mL−1 (80% ultrapure water, 20% dimethylsulfoxide), followed by the addition of
RBD and ACE2 reagents (7.5 nM). Detection is performed by secondary antibodies coupled
to light particles and the substrate for this reaction. The binding of the antibodies to proteins
promotes the reconstitution of NanoBiT particles, a technology developed by Promega,
generating bioluminescence which was recorded in a SpectraMax M5 (Molecular Devices)
microplate reader.

3.8. Calu-3 Cytotoxicity Assay

Calu-3 (a submucosal gland cell line, generated from a bronchial adenocarcinoma and
kindly donated by the Farmanguinhos platform RPT11M) cells (1.5 × 104 cell/well) were
incubated in 96-well plates with the extracts #74, #75, #76, #76_Pb and #156 in different
concentrations (6.3, 12.5, 25, 50, 100 and 200 µg·mL−1) for 72h at 37 ◦C, 5% CO2. Afterward,
cell viability was determined by MTT assay, according to the manufacturer’s instructions.
Briefly, 5 mg·mL−1 of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT,
Sigma) in 1× PBS was added to monolayers of cells for 2 h at 37 ◦C, 5% CO2. Then, 10%
SDS was added, and plates were read in spectrophotometer at 570 nm. All the compounds
were resuspended in 100% dimethyl sulfoxide (DMSO) for the in vitro tests. The DMSO
final concentrations do not exceed 1% (v/v) in the experiments, thereby not affecting the
cells growth.

3.9. Inhibition of SARS-CoV-2 Replication in Calu-3 Cells

Monolayers of Calu-3 cells (1.5× 104 cell/well) cultured in 96-well plates were infected
with SARS-CoV-2 B.1 lineage isolate (GenBank MT710714, SisGen AC58AE2) in multiplicity
of infection (MOI) 0.01 for 1 h at 37 ◦C, 5% CO2. After this period, the cells were treated
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with the extracts #74, #75, #76, ##76_Pb and #156 at concentration curve (25, 50, 100 and
200 µg·mL−1) for 24 h. Afterward, the supernatants were harvested and the virus titrated
by plaque-forming units (PFU/mL) to determine viral growth.

For the PFU/mL assay, the monolayers of Vero E6 (African green monkey kidney,
ATCC CRL-1586) cells (1.5 × 104 cell/well) were exposed to different dilutions of viral
supernatants (1:200–1:25,600) for 1h at 37 ◦C, 5% CO2. Then, the same well volume of
carboxymethylcellulose 2.4% medium (DMEM-HG 10×, 2.4 carboxymethylcellulose and
2% fetal bovine serum) was added, and the cells were incubated at 37 ◦C, 5% CO2 for 72 h.
After this, the cells were fixed with formalin 10% and stained with crystal violet 0.04%, and
the quantification of PFUs was carried out to determine the virus titer. All experimental
procedures were executed at a biosafety level 3 (BSL3) multi-user facility, according to
WHO guidelines [71].

3.10. Statistical Analysis

Graphs were generated using the GraphPad Prism 8.0 software. Values of EC50 were
determined by non-linear regression of log (inhibitor) vs. normalized response. Values
correspond to the best curve generated based on R2 values ≥ 0.9. All experiments were
realized with three technical replicates.

4. Conclusions

Until now, all studies regarding A. amazonicus have attributed the species’ promising
pharmacological potential to saponins, its class of major compounds. This work is the
first to report the phenolic composition of A. amazonicus and to show the important role
that these substances hold in inhibiting the binding between SARS-CoV-2 spike protein
and ACE2 receptor. However, when evaluating a different target, such as viral replication
post-infection, saracura-mirá extracts also present promising activity reducing viral titers,
which means that saponins may also contribute to the antiviral potential of A. amazonicus.
In addition, the anti-inflammatory and immunomodulatory activity of these extracts has
already been proven and attributed to this class of compounds. These two features represent
very important approaches to the treatment of SARS-CoV-2 infection, as they are able to
control symptoms and prevent evolution into severe cases, as has been highlighted in the
popular use of A. amazonicus. Therefore, it is believed that A. amazonicus can contribute to
controlling the infection caused by SARS-CoV-2 through several mechanisms, standing
out as a multitarget agent. The data presented here, together with the literature and recent
reports on the medicinal use of A. amazonicus, strongly suggest that this species could be a
possible candidate and model for the development of new drugs to treat COVID-19.
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