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Abstract: In the present study, a new series of 1,2,3-triazole derivatives was synthesized via a
click one-pot reaction. The synthesized compounds were found to be active during molecular
docking studies against targeted protein 1T69 by using the Molecular Operating Environment (MOE)
software. The designed and synthesized compounds were characterized by using FT-IR, 1H-NMR
and LC-MS spectra. The synthesized triazole moieties were further screened for their α-amylase and
α-glucosidase inhibitory activities. The preliminary activity analysis revealed that all the compounds
showed good inhibition activity, ranging from moderate to high depending upon their structures
and concentrations and compared to the standard drug acarbose. Both in silico and in vitro analysis
indicated that the synthesized triazole molecules are potent for DM type-II. Out of all the compounds,
compound K-1 showed the maximum antidiabetic activity with 87.01% and 99.17% inhibition at
800 µg/mL in the α-amylase and α-glucosidase inhibition assays, respectively. Therefore these
triazoles may be further used as promising molecules for development of antidiabetic compounds.

Keywords: triazole derivatives; diabetes mellitus; antidiabetic assay molecular docking

1. Introduction

Heterocycles containing nitrogen atoms indicate a main pharmacophore system in a
wide range of pharmaceutical materials [1]. The good binding interactions between the
nitrogen atoms in the heterocycles and the targeted inhibitors result in improved pharma-
cokinetics and metabolism [2]. Triazoles, nitrogen-containing heterocycles, are considered
to be one of the most important nitrogen-containing moieties. The 1,2,3-triazole ring system
is an aromatic five-membered heterocycle containing three adjacent nitrogen atoms as
one of two isomeric structures with the molecular formula C2N3H3 [3]. The 1,2,3-triazole
ring system can form hydrogen bonds, dipole–dipole bonds and Van der Waals forces
interactions with various biomolecules, such as enzymes, proteins, nucleic acids and other
receptors [4]. Thus, compounds containing the 1,2,3-triazole ring system have been used as
agents for different biological activities, such as antimicrobial [5], anticancer [6], antioxi-
dant [7], antiviral and antidiabetic activities [8]. Diabetes is a group of chronic metabolic
disorders characterized by hyperglycemia resulting from defects in the secretion and action
of the insulin hormone. There are different types of diabetes, but the most common ones
are type-I and type-II diabetes. In type-I diabetes, the body’s immune system attacks and
destroys the cells in the pancreas that produce insulin, while in type-II diabetes, the body
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becomes resistant to the effects of insulin or does not produce enough insulin to regulate
blood sugar levels properly. Diabetes is associated with a series of complex and chronic
disorders characterized by indicative glucose intolerance and ensuing from absolute or
relative imbalanced insulin secretion or insulin action [9]. The substrate side chain confor-
mation present in triazoles and other moieties impacts reactivity during glycosylation and
glycoside hydrolysis and is restricted by many glycosidases and glycosyltransferases dur-
ing catalysis [10]. The other heteroatoms present in the structures, such as oxygen, play an
important role in inhibition activity [11]. N-glycopeptides, sugar-derived triazoles and their
structures are of great importance as amino sugars [12]. The synthesis of triazole moieties
opens gates for the production of a series of derivatives containing various substituents to
test their effect on the biological activities of 1,2,3-triazoles containing oxime [13].

1.1. Target Selection

The first step is to identify and select the most appropriate drug target to initiate the
drug design. It is possible to identify the required protein target specifically linked to
human diseases using bioinformatics tools. Insulin protein is considered a target protein
for this study. Its structure is taken from the Protein Data Bank (PDB) under PDB ID 1T69,
as shown in Figure 1.
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Figure 1. Structure of target (PDB ID 1T69).

1.2. Dataset Collection

The three standard drugs for diabetes were selected from PubChem. It is a public
database that contains validated chemical structures and detailed information on drugs.
The test set was selected from the literature, consisting of 55 (KS-1 to KS-55) compounds.
The 2D structures of all 55 compounds were drawn in ChemDraw Ultra and saved as two
file types: ChemDraw (*.mnx) and MDL Mofile (*.h.mol). The antidiabetic target protein
(PDB ID 1T69) with the lowest resolution was selected and the 3D structures were obtained
from the PDB (Protein Data Bank). The 2D and 3D structures of the antidiabetic standard
drugs were retrieved from PubChem (Table 1). In addition, energy minimization for the
target and dataset was performed on MOE using force field MMFF94x, and the dataset
structures were saved in the .mdb file format.
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Table 1. Chemical structures and IC50 values of the training set.
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1.3. Lead Identification and Analogue Design 
The most important step was the hit optimization and lead identification. This was 

demonstrated based on three concepts. The predictive ability of the docking was assessed 
using the Root mean square deviation (RMSD) of the top-ranked solution. The most ac-
tive compound was assessed in terms of the greatest number of interactions and binding 
behavior. 

Following the lead selection which contained the core part of the triazole moiety, 
various functional groups were introduced and removed to create analogs. 

2. Results and Discussion 
2.1. Virtual Screening for Antidiabetic Compounds 

A molecular docking analysis of the selected 55 compounds, i.e., KS-1 to KS-55, was 
performed along with ones for the three standard drugs [14]. The target protein (PDB ID 
1T69) was used as a molecular target. Based on the evaluation process, the docking 
modules perfectly docked 70–80% of the ligands [15–18]. The Molecular Operating En-
vironment (MOE 2016) was employed for the molecular docking analysis of the com-
pounds based on the 1,2,3-triazole moiety [19–21]. First of all, the docking log files were 
generated and then, one by one, the ligands present in the dataset were employed for 
docking in the target protein. Each compound was studied for docking and confirmed 
ten times. Afterwards, based on the lead compounds, the active compounds were syn-
thesized and their docking behavior was studied. The generated confirmations of both 
the dataset and synthesized compounds were automatically categorized in ascending 
order based on the binding interactions and binding energies of the ligand with the target 
protein. The best confirmation was chosen on the basis of the docking analysis among all 
of the generated confirmations. The confirmation with the lowest binding energy was 
considered the best confirmation as shown by the flow chart in Figure 2. 
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1.3. Lead Identification and Analogue Design

The most important step was the hit optimization and lead identification. This was
demonstrated based on three concepts. The predictive ability of the docking was as-
sessed using the Root mean square deviation (RMSD) of the top-ranked solution. The
most active compound was assessed in terms of the greatest number of interactions and
binding behavior.

Following the lead selection which contained the core part of the triazole moiety,
various functional groups were introduced and removed to create analogs.

2. Results and Discussion
2.1. Virtual Screening for Antidiabetic Compounds

A molecular docking analysis of the selected 55 compounds, i.e., KS-1 to KS-55, was
performed along with ones for the three standard drugs [14]. The target protein (PDB ID
1T69) was used as a molecular target. Based on the evaluation process, the docking modules
perfectly docked 70–80% of the ligands [15–18]. The Molecular Operating Environment
(MOE 2016) was employed for the molecular docking analysis of the compounds based
on the 1,2,3-triazole moiety [19–21]. First of all, the docking log files were generated
and then, one by one, the ligands present in the dataset were employed for docking in
the target protein. Each compound was studied for docking and confirmed ten times.
Afterwards, based on the lead compounds, the active compounds were synthesized and
their docking behavior was studied. The generated confirmations of both the dataset and
synthesized compounds were automatically categorized in ascending order based on the
binding interactions and binding energies of the ligand with the target protein. The best
confirmation was chosen on the basis of the docking analysis among all of the generated
confirmations. The confirmation with the lowest binding energy was considered the best
confirmation as shown by the flow chart in Figure 2.
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2.2. Drug-Likeness and ADMET Properties

The molecular descriptors were calculated by using online software, i.e., SwissADME
and pkCSM, as mentioned in the literature [22]. The training set of 55 compounds (KS-1
to KS-55) was selected from two different classes. All of the compounds were screened
for their drug-like properties. Lipinski’s rule of five parameters was observed for each
compound in the training set (Table 2). The results for the drug-likeness properties indicated
the drug-like behavior of the candidates. Out of the 55 compounds of the training set,
39 drug-like candidates were selected. The compounds violating more than one rule of the
five Lipinski parameters were eliminated from the dataset. The remaining 39 compounds
were used for further pharmacokinetics studies. Compounds were further screened on the
basis of their ADMET properties.

Table 2. Drug-likeness of synthesized compounds.

Sr. No Molecular
Wt. g/mol Log P Rotatable

Bonds Acceptors Donors Surface Area
(g/cm2)

01 321.4 3.1 6 5 01 140.4
02 231.3 2.5 4 5 0 99.2
03 249.3 2.9 4 3 0 112.1
04 235.3 3.7 3 3 0 105.9

Following the drug-likeness study, the absorption, distribution, metabolism, excretion,
toxicity, and ADMET properties were predicted for the 39 selected compounds. Based on
intestinal absorbance, metabolism, and excretion, eight compounds were eliminated. The
remaining 34 compounds were selected for further molecular docking studies. All of these
34 compounds were isolated on the basis of having good intestinal absorbance, metabolism
and excretion. The values for intestinal absorption ranged from 72.063 to 99.985. The
minimum and maximum values for excretion ranged from 0.13 to 0.721.

The numeric values of the compounds KS-09, KS-10, KS-13, KS-14, KS-44, KS-45, KS-48
and KS-49 were far from good in terms of intestinal absorption and excretion. Following the
calculation of drug-likeness and the ADMET properties, 34 compounds were studied for the
docking analysis. The compounds had no hepatotoxicity. On the basis of these properties,
new derivatives were designed and synthesized. The drug-likeness and ADMET properties
of the synthesized compounds are given in the tables below. The results indicated that the
synthesized compounds behaved as drug-like candidates with no hepatotoxicity and very
little oral toxicity (Table 3).

Table 3. Pharmacokinetics of the synthesized compounds.

Sr. No Absorption
mg/L

Distribution
mg/L

Metabolism
mg/L

Excretion
mg/L

Toxicity
Oral/Hepatotoxicity

01 98.726 0.128 Yes 0.394 No/No
02 94.696 0.271 Yes 0.327 0.23/No
03 97.12 0.088 Yes 0.272 No/No
04 94.539 0.191 Yes 0.28 0.8/No

2.3. Molecular Docking Analysis

The main outcome of the molecular docking was to identify the best binding interaction
between the target protein and the synthesized ligands. The structure of the targeted
antidiabetic protein was obtained from the RCSB Protein Data Bank (PDB), PBB ID 1T69. In
order to control the performance of our docking approach, in the case of 1T69, the crystal
structure of the 1T69 protein was selected along with its active site, which was found to be
located at the bottom of a deep and narrow gorge [23]. The key contributing amino acids
along with their interactions with the designed analogues are described in Table 4 below.
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Table 4. Binding interactions and binding energy of synthesized compounds.

Sr. No Compounds Hydrogen Bonding Arene–pi Interactions Binding Energy (S)

01 K-1
2.74, 2.86
1.13, 2.64
2.59

Tyr18, Ser39, Tyr24,
Arg37,
Asn136

– −0.6467

02 S-2 2.48, 1.8,
2.52 Lys36, Ser39 Yes −4.0720

03 K-2 2.47, 2.02 Lys33,
Trp141 – −3.0564

04 H-4 2.32, 1.15 Gyl151,
Ser150 yes −2.5427

All of the four analogues designed were found to be active after the docking analysis
on the basis of having the best binding interactions as shown in Figure 3. Compound K-1
had the maximum number of hydrophilic interactions via the O-atom and N-atom with the
core amino acids. Compound K-2 had both arene–pi and hydrophilic interactions with the
surrounding amino acids. Similarly, compound S-2 had hydrophilic interactions only, and
H-4 had both arene–pi and hydrophilic interactions within the minimum possible distance,
as described in Table 4. The compound K-1 had the maximum binding interactions with
the minimum binding energy. The heteroatoms, such as N and O, present in the ligand K-1
and the key contributing amino acids of compound K-1 had good antidiabetic behavior.
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Figure 3. 3D docking structure of lead compounds (a) K-1, (b) S-2, (c) K-2, (d) H-4 in the active site
of 1T69.

All the compounds were synthesized according to the procedure mentioned in the
literature and were characterized by FTIR spectroscopy, mass spectroscopy and H-NMR
spectroscopy (Figure 4). The FTIR spectral data of triazoles (K-1) exhibited characteris-
tic C=O absorption at 1600 cm−1. The other peaks were observed as aromatic C=C at
1569 cm−1, C-N at 1160 cm−1 and C-H stretching at 757 cm−1. The FTIR spectral data of
K-2 exhibited characteristic aromatic C-H absorption at 735 cm−1. The other peaks were
observed as aromatic C=C at 1569 cm−1, C-N at 1162 cm−1 and sp2 C-H stretching at
3170 cm−1. The FTIR spectral data of S-2 exhibited characteristic aromatic C=O absorption
at 1634 cm−1. The other peaks were observed as aromatic N=N at 1220 cm−1, aromatic
C-H at 751 cm−1 and aliphatic C-H stretching at 2341 cm−1. The FTIR spectral data of
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H-4 exhibited characteristic aromatic C-H absorption at 737 cm−1. The other peaks were
observed as aromatic C=C at 1568 cm−1 and C-N at 1157 cm−1. The m/z peaks of the
compounds K-1, K-2, S-2 and H-4 were obtained as 322, 232, 250 and 322, respectively. The
peaks were in the form of (M + H). All the synthesized compounds were obtained in good
yields in the range of 56–79% and they were characterized by their physical constants and
spectroscopic data. The melting points of all the compounds were recorded and found to
be in the range of 140–290 ◦C.
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2.4. In Vitro Antidiabetic Assay

All synthesis and characterize compounds were further evaluated and alpha amylase
and alpha glucosidase inhibition assays (as shown in Tables 5 and 6), the results corre-
sponded closely to the the dry lab results, as the K-1 had the maximum percentage of
inhibition in both of the assays. The compounds K-1 S-2 K-2 and H-4 had more than 80%
inhibition of alpha amylase at the concentration of 800 µg/mL, showed promising antidia-
betic activity and can be used as structural models for developing better antidiabetic agents.
Out of these four compounds, the compound K-1 had the maximum antidiabetic activity.

Table 5. Results of alpha amylase inhibition assay.

Dose
µg/mL

%Age Inhibition at
Different Concentration

800 400 200 100 50 25 12.5 6.25

K-1 87.012 81.11 74.89 64.24 55.81 42.21 37.23 23.11
S-2 84.22 78.56 71.59 59.1 52.22 44.81 32.22 21.47
K-2 81.89 73.45 58.23 48.56 39.76 29.34 20.42 12.78
H-4 83.12 76.11 64.72 53.12 45.12 39.12 25.1 16.89

Table 6. Results of alpha glucosidase inhibition assay.

%Age Inhibition at
Different Concentrations

Dose
µg/mL 800 400 200 100 50 25 12.5 6.25

K-1 99.17 97.01 95.55 91.11 88.96 83.11 72.37 68.04
S-2 ±96.22 ±95.01 93.81 90.24 86.02 72.41 69.23 65.10
K-2 87.19 83.12 71.03 65.10 57.8 51.69 44.32 31.09
H-4 89.12 81.01 75.00 67.11 55.21 49.11 40.81 41.09

The current study involved both dry and wet lab analyses of multiple rounds of
experiments, as discussed in the above sections. The in vitro studies showed that all the
synthesized compounds showed antidiabetic potential. The antidiabetic activity of these
four compounds was already predicted in molecular docking studies. Hence, all the tests
performed for these compounds showed they had good binding energies and all the nec-
essary chemical features required for binding in the active site. It was observed that all
the active compounds were deeply embedded in the active site of 1T69 and all these com-
pounds were stabilized by the presence of hydrophobic and hydrophilic interactions. The
antidiabetic activity of the synthesized compounds was confirmed via age (%) inhibition
assays as well.

3. Materials and Methods
3.1. Materials

Benzyl azide, sodium azide, and benzyl chloride were purchased from J&K Scientific
from China and were used without further purification. Copper phenylacetylide was
prepared according to the procedures reported in the literature [24]. Solvents such as
tetrahydrofuran (THF), chloroform, petroleum ether and ethylacetate of analytical reagent
(AR) grades were purchased from Sigma Aldrich, Saint Louis, MO, USA and used with-
out purification.

3.2. Experimental Equipment

The synthesized compounds were characterized by FT-IR, H-NMR and mass spec-
trometry. 1H NMR spectra were recorded on a Bruker, San Jose, CA, USA spectrometer at
300 MHz, respectively, in DMSO solution. In this study, solvent was used as an internal
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reference. Chemical shifts were given at δ scale (ppm), and abbreviations s, d, t, q and
m were used for singlet, doublet, quartet and multiple, respectively. Coupling constants
were presented in Hz. Mass spectra of the new synthesized compounds were recorded
on Agilent Technologies 6890 N, Santa Clara, CA, USA inert mass selective detector. The
melting points of the chemical compounds were determined in open capillaries using
Gallenkamp, Cambridge, US melting point (MP-D). FT-IR spectra of all the compounds
were recorded in the 4000–380 cm–1 range with samples in KBr discs via a PerkinElmer,
Waltham, MA, USA apparatus.

3.3. Docking Procedure

Molecular docking analysis was carried out using MOE-Dock (Chemical Computing
Group Inc.) on a machine with a Pentium 1.6 GHz workstation with 512 MB of memory
using the Windows operating system. Docking studies were executed in order to study
the drug correlation and ADMET parameters for antidiabetic activity. All of the steps
in docking studies were performed by the procedure in the literature [23]. These steps
included target preparation, docking and scoring. The crystal structure of the protein
against type-II diabetes was downloaded from Protein Data Bank (PDB) and the pdb
ID was 1T69. The protein structure was imported into MOE. The target structure was
protonated in 3D and its energy was minimized, eliminating the water molecules and
adding all hydrogen atoms with the standard structural geometry. The site finder tool was
used to search the systematic conformation of the resulting model at default parameters
with root mean square (RMS) gradient of 0.0001 kcal/mol. The active site of the protein
was searched by the site finder. In order to identify the active sites, dummy atoms were
created from the resulting alpha spheres. The energy was minimized while the backbone
and residues were kept fixed. RMSD values were used to compare the ligand between
the predicted and its corresponding crystal structure. The resulting docked poses were
clustered together with RMSD less than 1.3 Å.

Docking analysis was conducted, and 10 conformations for each ligand were generated
by using MDB file. The energy minimization for the target and dataset was performed
on MOE using force field MMFF94x, and the dataset structures were saved in the .mdb
file format. Molecular docking was performed between the dataset and the target. The
best (in terms of energy minimization) conformation of the ligands was selected out of ten
conformations on the basis of their binding interactions and lowest binding energy. As a
result, among these confirmations, the lowest energy confirmation, besides those of all the
ligands, was selected and appended at the end of the original protein file. This process
produced docked files based on the molecular operating environment for the specific set.

3.4. Synthesis of the Hits Identified
General Procedure for the Synthesis

All the triazole derivatives were synthesized by the procedure mentioned in the
literature with few modifications [24]. In this case, tetrahydrofuran (THF) served as solvent,
and all the reactants, A (0.08 g), B (0.09 g) and C (0.07 g), were added into one pot and
allowed to react upon stirring for 4 h at room temperature (Table 7, Figure 5). The reaction
was followed by flash column chromatography elution with 10% ethyl acetate in petroleum
ether. After stirring it for four hours, the product was obtained. In some cases, the product
was recrystallized using the solvent. Triazoles (K-1 to H-4) were characterized through
their physical constants, and their melting points were found to be in agreement with those
of the literature [12].
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Table 7. List of reactants and products with percentage yield.

Samples
Reactants Product

Yield
A B C R1 R2 R3

K-1
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3.5. In Vitro Analysis
3.5.1. α-Amylase Inhibition Assay

α-Amylase is considered to be an endoamylase, and it can be purified from the
salivary gland and pancreas by various purification methods. By catalyzing the starch’s
breakdown into maltose, it is further hydrolyzed, producing glucose that can be absorbed
in the blood. The glucose level is precisely regulated in the blood, as slight increase in
the blood glucose level could in turn cause hyperglycemia. Inhibitors of alpha-amylase
are an important therapeutic approach for lowering elevated blood glucose levels in post-
prandial hyperglycemia. This research paper suggests that the presence of specific group
containing this compound may have potentially important role in managing hyperglycemia
via inhibiting alpha amylase. In this assay, acarbose is used as a standard antidiabetic drug
and the activity of the synthesized compounds is measured as compared to acarbose [25,26].

The assay was performed in 96-well microliter plates [25]. To prepare the reaction
mixture, 37.5 µL of phosphate buffer (pH 6.8), 10 µL of the enzyme, 12.5 µL of the sample
(distilled water/DMSO)/acarbose and 40 µL of starch were added to wells. It was then
incubated at 50 ◦C for 30 min. The reaction was terminated by the addition of 20 µL of
1 M HCl. A total of 100 µL of iodine was added to all the wells and the microplate reader
measured absorbance at 540 nm [26] as shown by pictorial representation in Figure 6. The
inhibition percentage was calculated by using the following formula:

Percentage Inhibition =

[
1 − Absorbanceo f untreatedcontrol

Absorbanceo f sample

]
× 100
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3.5.2. Alpha-Glucosidase Inhibition Assay

Alpha-glucosidase inhibitory activity was determined according to the previously
reported method with minor modifications [26]. The reaction mixture was prepared in a
96-well plate by adding the following chemicals in sequential order: 25 µL p-NPG (20 mM),
69 µL phosphate buffer (50 mM, pH6.8) and 1 µL α-glucosidase enzyme (3 U/mL). They
were mixed in a 96-well microtiter plate. Five µL of the compound with final concentrations
of 800, 400, 200, 100, 50, 25, 12.5 and 6.25 µg/mL was added into respective wells. Acarbose
and DMSO were used as positive and negative controls, respectively. The mixture prepared
in 96-well plate was incubated at 37 ◦C for 30 min, followed by the addition of 100 µL of
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NaHCO3 (0.5 mM) to stop the reaction. The absorbance was measured at 405 nm using a
microplate reader (BioTek Elx-800, Winooski, VT, USA).

Inhibitory activity (%) = (AC - AS)/AC × 100

where AS is the absorbance in the presence of the test substance, and AC is the absorbance
of control.

4. Conclusions

The aim of the current study was to systematically and methodically find out the
lead compounds that can act as strong antidiabetic agents. Different types of binding
interactions were observed between the designed and synthesized compounds with the
target protein 1T69 during in silico analysis and have shown good responses for in vitro
inhibition assays as well. All the compounds were found to be active, as predicted by
dry lab approaches which lent a hand in the suppression of DM type-II. Out of these
compounds, the compound K-1 has the maximum antidiabetic activity. These compounds
may function as a starting point for our understanding of promising antidiabetic agents.
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