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Abstract: Exterior finishes protect reinforced concrete buildings against environmental factors, im-
prove their durability, and enhance their exterior design. In this study, the influence of different
metal types used in arc thermal metal spraying on the adhesion between concrete and metal coatings
was analyzed. Five metals with different melting points were tested, and the differences between
their melting points and surface temperatures immediately after thermal spraying were measured.
The bonding strength of each metal was evaluated. Additionally, the interface between the concrete
surface and metal coating was analyzed using image analysis and optical microscopy. The results
demonstrated that Zn achieved the highest bonding strength (1.84 MPa), which had the lowest
melting point and surface temperature immediately after spraying, while Cu/Sn achieved the low-
est strength (1.38 MPa), which had the highest temperatures. The bonding strength had a closer
relationship (R2 = 0.9946) with the difference between the melting point and surface temperature
immediately after spraying than that (R2 = 0.9589) with the surface temperature immediately after
spraying. The bonding strength increased as the ratio of the non-interfacial failure area to the total
area increased, ensuring a stronger attachment to the concrete surface. Overall, the results showed
that the bonding strength was significantly affected by the metal type.

Keywords: metals; arc thermal metal spraying; bonding strength; non-interfacial failure

1. Introduction

The exterior finishes of reinforced concrete buildings provide an important protective
element against environmental factors, such as temperature, snow, wind, rain, and external
disasters. Furthermore, they can improve the durability and exterior design of buildings.
Therefore, sufficient considerations are required for appropriately selecting the exterior
finishing materials and methods [1–3].

The finishing methods currently applied to building structures include the wet method
of directly applying paint and plaster materials to the structure and the dry method of
attaching stone materials and panels [4]. The wet finishing method is characterized by
simple construction and low initial construction costs. Still, it requires high maintenance
costs because the maintenance interval is short, owing to surface contamination and low
weather resistance. Moreover, after re-coating, the coating layer becomes thicker, thereby
decreasing the bonding performance. Conversely, the dry finishing method ensures high
durability but involves difficult maintenance and repair processes due to damage to fin-
ishing materials and construction difficulties associated with anchor treatment [3–6]. To
overcome the shortcomings of conventional finishing methods (wet and dry methods),
methods that simultaneously serve as a structure and finish material, such as exposed
concrete, have been developed. In such methods, cracks propagate in the finished area
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if the initial construction of the structure is not performed properly, and the durability
rapidly decreases without appropriate surface maintenance. The exposed concrete also has
limitations in expressing the outer wall color and three-dimensional design of the building.
As such, the development of a finishing method that involves simple construction and
excellent building design while retaining the benefits of the dry method is required, which
uses highly durable metal panels [3,6,7].

Recently, metal-film finishing methods have been developed to apply arc thermal metal
spraying (ATMS) to water treatment and electromagnetic wave shielding facilities [6,8–11].
These new finishing methods apply metal spraying, a conventional technology mainly
used in high-durability anti-corrosion applications for steel structures [5,10]. The anti-
corrosion lifespan of ATMS is up to approximately 100 years, depending on the metal
type, and is approximately three to four times longer than that of the paints used in the
wet method [5,12]. These methods involve almost no defects because quality control
can be performed during construction. They have high maintenance efficiency because
only the damaged section must be repaired in the case of local damage [5,6,8,10,13–15].
However, the bond performance between the metal film and substrate is expected to
vary significantly depending on the substrate conditions and type of metal-film finishing
material [3,5,10,11]. In particular, when a metal film is directly applied to a concrete
structure, the bond performance between the metal film and concrete is expected to vary
depending on the metal because of property changes, such as the melting point. In previous
studies, however, only the surface treatment of concrete, which is the substrate, and change
in bonding strength according to moisture conditions have been considered [6]. No studies
have been conducted on the influence of the metal type on the bonding strength [5,8,10].

Therefore, this study aims to evaluate the influence of the metal used as a wire material
in ATMS on the concrete bonding strength. Metal coatings were formed on the concrete
surface using various metals. The surface temperature of the coatings was measured
immediately after spraying, as well as the bonding strength. In addition, the interface
between the concrete surface and metal coating was evaluated through image analysis of
the fracture sections and optical microscopy (OM).

2. Experimental Program
2.1. Experimental Overview

In this study, various experiments were performed to examine the bonding strength be-
tween the metal coating and concrete based on the metal type. Table 1 lists the experimental
levels, factors, and items considered in this study.

Table 1. Experimental factors and measuring catalog.

Experimental Factor Experimental Level Measure Catalog

Types of metals

Zn Temperature measurement
Al Bonding strength

Zn/Al Failure mode analysis
Cu/Zn (Brass) Image analysis

Cu/Sn (Bronze) Optical microscopy

Common list

Substrate: Concrete
Concrete Strength: 27 MPa

Concrete Size: 300 mm × 300 mm × 50 mm
Surface treatment:

(1) Sand blasting→ (2) SH→ (3) SRA
Coating Thickness: 200 µm

Typically, concrete with a strength of 27 MPa is used as the substrate. The most efficient
surface treatment methods in terms of the bonding strength determined in previous studies
(sand blasting→ surface hardener (SH)→ surface roughness agent (SRA)) were used in
this study [2,3]. In the case of sand blasting, silica sands with a particle size of 1.2–1.6 mm
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were blasted onto the concrete surface using high-pressured air to clean up the concrete
surface and achieve a basic roughness.

After surface treatment, metal spraying was performed using five metals. A commonly
used metal spray coating thickness of 200 µm was adopted [16]. The bonding strength and
failure mode were evaluated as experimental parameters. The temperature of the metal
applied to the surface was measured immediately after the spraying. Image analysis was
conducted on fracture sections, and the concrete cross-section subjected to metal spraying
was observed using a microscope.

2.2. Metals

For the appropriate application of ATMS to concrete surfaces, metals with a low
melting point, unique color, and high durability are chosen from the metals that can be
sprayed [2–4]. Therefore, in this study, Zn (SAMHWA NON-FERROUS METAL IND, Seoul,
Republic of Korea), Al (SAMHWA NON-FERROUS METAL IND, Republic of Korea), and
a Zn/Al alloy (SAMHWA NON-FERROUS METAL IND, Republic of Korea), which are
mainly used in anti-corrosion techniques for steel structures, were used. Brass (Cu/Zn,
KORYEO, China) and bronze (Cu/Sn, KORYEO, China), which have excellent color and
metal-spraying efficiency with high corrosion resistance, were also used.

Table 2 lists the properties of the metals used in this study. For Zn, 100% pure white
Zn with a melting point of 420 ◦C and density of 7.13 g/cm3 was used. For Al, 100%
pure white Al with a melting point of 660 ◦C and density of 2.70 g/cm3 was used. In the
case of the Zn/Al alloy, a gray alloy (Zn 85% and Al 15%) with a melting point of 540 ◦C
and density of 4.91 g/cm3 was used in the experiment. Cu/Zn and Cu/Sn with melting
points of 914 and 1018 ◦C, densities of 8.60 and 8.75 g/cm3, and metal ratios of 8:2 and 9:1,
respectively, were used.

Table 2. Properties of metals used in ATMS.

Metal Melting Point (◦C) Density (g/cm3) Weight Ratio (%) Color

Zn 420 7.13 100 Light gray

Zn/Al 540 4.91 85/15 (Zn/Al) Gray

Al 660 2.70 100 White

Cu/Zn 914 8.60 80/20 (Cu/Zn) Red brown

Cu/Sn 1018 8.75 90/10 (Cu/Sn) Red gold

2.3. Fabrication of Concrete as a Substrate

The cement used in the substrate concrete was ordinary Portland cement (Asia cement,
Seoul, Republic of Korea), adhering to the KS L 5201 regulations [17]. Tables 3 and 4 list
the chemical composition and physical properties of the cement used. Table 5 lists the
mixing proportions of the concretes used in this study. The water-to-binder (W/B) ratio
was set to 0.5. Ordinary crushed stone with a maximum size of 25 mm (specific gravity
of 2.64 and water absorption of 0.77%) was used for the coarse aggregate, and sea sand
with a fineness modulus of 2.9 (specific gravity of 2.59) was used for the fine aggregate. In
addition, a polycarboxylate superplasticizer (HMS, Republic of Korea) was used to improve
the workability of concrete. Immediately after mixing, the concrete was poured into a
300 mm × 300 mm × 50 mm mold and compacted using a vibration table. The specimen
was left in the mold for one day and subjected to water curing for 27 days. The strength [18],
slump [19], and air content [20] of the cured concrete were evaluated according to the KS
standards; the results are listed in Table 6.
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Table 3. Chemical composition of the cement used in this study.

SiO2
(%)

Al2O3
(%)

Fe2O3
(%)

CaO
(%)

MgO
(%)

Na2O
(%)

K2O
(%)

SO3
(%) LOI

Cement 19.5 5.2 2.7 61.8 3.7 2.5 0.1 0.8 2.6

Table 4. Physical properties of the cement used in this study.

Density
(g/cm3)

Blaine
(cm2/g)

44 µm on
Residue (%)

Setting Time (min) Compressive Strength (MPa)

Initial Final 3 Day 7 Day 28 Day

Cement 3.14 3200 12.5 240 370 22.5 30.0 39.5

Table 5. Mix proportion of the concrete used in this study.

Specimen W/B
Unit Weight (kg/m3)

Superplasticizer (%)
Water Cement Fine Aggregate Coarse Aggregate

Concrete 0.5 175 350 905 835 0.8

Table 6. Physical properties of the concrete used in this study.

Specimen Slump (mm) Air content (%) 7D-Compressive Strength
(MPa)

28D-Compressive Strength
(MPa)

Concrete 180 4.5 20 27

2.4. ATMS

ATMS is a technology that forms a porous, strong, and stable film on the material
surface by melting wire or powder metals using gas or electric arcs and spraying the molten
metals under a high-pressure environment with six bars or higher [21–24]. ATMS can be
categorized into gas and electrical spraying, according to the heat source. Because gas
metal spraying has certain safety concerns owing to using a gas as the heat source, the
experiments in this study were performed using high-frequency arc thermal metal spraying,
which is an electrical spraying technique, as shown in Figure 1. High-frequency arc thermal
metal spraying enables a safe construction, relatively high lamination speed, and a wide
range of coatings [5,21,24].

The concrete cured for 28 days was dried at 100 ◦C for two days and subjected to sand
blasting for surface cleaning. Subsequently, SH (TAS, Republic of Korea) was applied to
increase the concrete surface strength, which is expected to affect the bonding strength as
well [3,25]. SRA (EMS, Republic of Korea) was then applied to increase the roughness of the
concrete surface. According to the experimental program, five metals were applied with a
thickness of 200 µm. To ensure that metal spraying coatings with a constant thickness were
obtained, the coating thickness was measured using a Vernier caliper after the operation.
Figure 2 shows the specimen preparation process, and Table 7 lists the physical properties
of the SH and SRA used in this study.

2.5. Test Methods
2.5.1. Temperature Measurement

Immediately after metal spraying, the surface temperature was measured using an
infrared thermometer (FLUKE-62 Mini) on three points at a distance of 300 mm, as shown
in Figure 3. Table 8 lists the basic technical specifications of the thermometer. In this study,
the three measurements were averaged to evaluate the overall surface temperature. At the
time of measurement, the ambient temperature in the laboratory was adjusted to 20 ± 2 ◦C
to minimize the influence of the external temperature.
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Figure 2. Procedure of ATMS. (a) Cleaning surface with sand blasting; (b) Surface hardener (SH);
(c) Surface roughness agent (SRA); (d) ATMS.

Table 7. Physical properties of SH and SRA.

Type Element Density (g/m3) Usage (g/m2)

Surface hardener (SH) Silicate 1.10 500–700

Surface roughness agent (SRA) Epoxy, silica 1.30 50

Table 8. Properties of the infrared thermometer used in this study.

Temperature Range
(◦C) Distance: Spot Size Accuracy (◦C) Emissivity Response Time (ms)

−30–500 ◦C 10:0.1 ±1 0.95 <500

2.5.2. Bonding Strength and Failure Mode

The bonding strength was evaluated according to the KS F 4716 [26] and ASTM D
4541 [27]. As shown in Figure 4, a 40 mm × 40 mm square tensile attachment was adhered
to the specimen with a metal spraying coating for each experiment using an epoxy adhesive
and dried for 24 h. A vertical cut was made on the concrete surface around the attachment,
as shown in Figure 4b. The bonding strength was calculated using Equation (1) after
measuring the maximum load applied during the tensile bond test. The average of nine
bonding strength measurements was evaluated as the overall bonding strength. Thereafter,
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the bond failure behavior of the metal film was visually observed, and an image analysis
was conducted.

Bonding Strength
(

N/mm2
)
=

Maximum tensile load (N)

Attachment area (1600 mm2)
(1)
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2.5.3. Image Analysis

After the bonding strength measurements were completed, image analysis was con-
ducted on the fracture sections to examine the failure pattern between the metal spraying
coating and concrete surface and quantitatively calculate the non-interfacial failure area.
Figure 5 shows the image analysis procedure adopted in this study to calculate the area
quantitatively. ImageJ software was used for image analysis [28]. After completing the
bonding strength measurements, images of the fracture section were captured using a
high-definition camera (Figure 5a). Thereafter, a 2 cm × 2 cm area was set in the center
of the fracture section as the measurement area (Figure 5b). Because the SRA used in this
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study was red, the area that did not exhibit a red color was quantitatively calculated using
the color thresholding function (Figure 5c). In the case of non-interfacial failure, concrete
failure occurs rather than failure between the metal spraying coating and concrete surface
coated with SRA. Therefore, the areas that did not exhibit a red color were quantitatively
measured. Finally, the ratio of the non-interfacial failure area to the total area (RN) was
calculated using the following equation:

RN(%) =
Non− inter f acial f ailure area

Total area
× 100 (2)
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2.5.4. OM

An OM (HT004, HiMaxTech) was used to observe the cross-sectional area of the specimen,
as shown in Figure 6. To minimize the damage inflicted on the concrete surface and metal
coating, OM samples were prepared in two steps. First, samples of 4 cm × 4 cm × 2 cm were
cut using a sawing machine, and samples of 1 cm × 1 cm × 0.5 cm were prepared using a
diamond cutting machine. The samples were then immersed in low-viscosity epoxy for 24 h.
Once the epoxy was completely hardened, the cut surfaces of the samples were polished using
a polishing machine (EcoMet 30) in the order of P400 -> P2400 -> P4000 -> 3 µm -> 1 µm using
a SiC paper and IPA solution. The SiC paper was first washed in an ultrasonic bath before
being replaced to prevent contamination by impurities on the cut surface.
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3. Results and Discussions
3.1. Temperature

Figure 7 shows the melting points of the metals used in this study and their surface
temperatures immediately after spraying. Zn exhibited the lowest surface temperature
of approximately 14.2 ◦C, whereas Cu/Sn exhibited the highest surface temperature of
approximately 44.8 ◦C. For the sprayed metals, the surface temperature increased in the
order of Zn (14.2 ◦C), Zn/Al (20.2 ◦C), Al (25.8 ◦C), Cu/Zn (32.8 ◦C), and Cu/Sn (44.8 ◦C),
indicating that the surface temperature was higher for metals with higher melting points.
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Figure 8 shows the difference between the melting point and surface temperature
immediately after spraying for each metal. Cu/Sn exhibited the largest difference (approxi-
mately 973.2 ◦C), followed by Cu/Zn (881.2 ◦C), Al (634.2 ◦C), Zn/Al (519.8 ◦C), and Zn
(405.8 ◦C). ATMS is a technology that applies a coating to a surface by instantly melting a
metal wire heated using electric arcs, and then spraying the molten metal using compressed
air under six bars or higher. The metal temperature at the concrete surface was significantly
lower than its melting point because the metal wire that was melted by the arc point was
cooled by compressed air [21–24].
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3.2. Bonding Strength

Figure 9 shows the results of the bonding-strength evaluation for each metal. Zn
exhibited the highest bond performance of approximately 1.84 MPa. Zn/Al and Al showed
bonding strengths of approximately 1.75 and 1.63 MPa, respectively. These results exceed
the performance criterion of KS F 9001 (1.5 MPa). However, it was found that Cu/Zn
and Cu/Sn, with bonding strengths of 1.47 and 1.38 MPa, respectively, did not meet
the criterion.
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Visual inspection of the failure pattern revealed that the non-interfacial or partial
non-interfacial failures of Zn, Zn/Al, and Al met the performance criterion of KS F 9001, as
shown in Figure 10. In other words, concrete failure (non-interfacial failure) was dominant
rather than failure at the interface between the metal spraying coating and concrete surface
(interfacial failure). Conversely, the interfacial failures of Cu/Zn and Cu/Sn did not meet
the performance criterion. Therefore, within the scope of this study, non-interfacial failure
was determined to occur at approximately 1.63 MPa based on the bonding strength.
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Figure 11 shows the correlation between the surface temperature and bonding strength
when metals were sprayed. Figure 12 shows the correlation between the bonding strength
and the difference between the melting point and surface temperature. The bonding
strength decreased as the surface temperature increased immediately after metal spraying.
Moreover, an increase in the surface temperature immediately after metal spraying had
a negative impact on the bonding strength. Similarly, the bonding strength decreased as
the difference between the melting point and surface temperature increased immediately
after metal spraying. Because the bonding strength was found to have a closer correlation
(R2 = 0.9946) with the difference between the melting point and surface temperature im-
mediately after metal spraying compared to its correlation (R2 = 0.9589) with the surface
temperature immediately after metal spraying, the difference between the melting point
and surface temperature immediately after metal spraying was assessed to have a more
significant effect on the bonding strength. Voids are generated in the metal spraying coating
because of the shrinkage between the metal particles as the sprayed metal rapidly cools.
Furthermore, the bonding strength is decreased by the voids between the concrete surface
and metal spraying coating [29].
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3.3. Image Analysis

Figure 13 shows the interfacial and non-interfacial failure areas of the samples in black
and white. RN results were calculated using image analysis. The RN values for Zn, Zn/Al,
Al, Cu/Zn, and Cu/Sn were 90.56%, 86.51%, 55.66%, 42.41%, and 4.32%, respectively. Zn
exhibited the highest RN value. This indicates that non-interfacial failure was dominant
in the failure area. Moreover, Zn exhibited the highest bonding strength because non-
interfacial failure was dominant. In contrast, Cu/Sn exhibited the lowest RN value, which
indicates that interfacial failure was dominant compared to non-interfacial failure. The
interfacial failure is judged to have a negative impact on the bonding strength rather than
the concrete failure itself.
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Figure 14 shows the correlations between RN and bonding strength and temperature
difference. As the RN value increased, the bonding strength of the samples also increased.
This indicates that the bonding strength increased because non-interfacial failure was
more dominant than interfacial failure. Conversely, as shown in Figure 14b, the difference
between the melting point and surface temperature immediately after metal spraying
tended to decrease as the RN value increased. The temperature difference and bonding
strength showed a close correlation (R2 = 0.99), as mentioned in the previous section. In
other words, the significant difference between the melting point of the metal and surface
temperature immediately after metal spraying had a negative impact on the bonding
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strength because it induced more failures at the interface between the concrete surface and
metal coating (interfacial failure) than that of the concrete (non-interfacial failure).
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3.4. OM

Figure 15 shows the cross-sections of Zn, which exhibited the highest bonding strength,
and Cu/Sn, which showed the lowest bonding strength. The application of SRA to the
concrete surface, followed by ATMS using different metals while preparing the specimens,
allowed the red epoxy (SRA) between the metal coating and the concrete surface to be
observed in the two cross-sectional images.

As shown in Figure 15a, the concrete and SRA were in close contact, and the SRA
was closely attached to the metal coating in the Zn specimen. Conversely, in the case of
Cu/Sn, the concrete and SRA were in close contact, as shown in Figure 15b; however, the
metal coating and SRA were not closely attached to each other, which confirmed the gap
between them.

Concrete surface treatment was conducted for the application of ATMS (SHA and SRA
were applied). Metal coatings were generated on the concrete surface by applying ATMS. In
this instance, only the metal type differed, whereas the distance between the concrete and
metal spraying gun (300 mm) and the ambient temperature (20 ± 2 ◦C) were kept constant.
Therefore, the adhesion between the concrete surface and metal coating was only affected
by the metal type. During the application of ATMS, rapid cooling occurred because of the
temperature difference between the ambient environment and metal particles when the
metal particles collided with the concrete surface, causing the deposited metal particles to
contract [29]. Therefore, the amount of contraction is expected to be larger for metals with
high melting points than those with low melting points because of the larger temperature
difference. For this reason, Cu/Sn, with the highest melting point, could not develop
sufficient cohesiveness with SRA.

In addition, a close look at the metal coating revealed that the metal coating with Zn
had a more compact cross-sectional geometry than that with Cu/Sn. In particular, voids of
various sizes are observed in the red dotted circle depicted in Figure 15b. This indicates
that voids were generated between the metal particles because adhesion between the metal
particles and adhesion between the SRA and metal was not sufficient owing to contraction,
as mentioned above.
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4. Conclusions

1. The surface temperature varied depending on the type of metal used. Zn showed the
lowest surface temperature, while Cu/Sn exhibited the highest. The surface tempera-
ture immediately after metal spraying increased with the metal’s melting point.

2. The strength of the bond between the concrete and metal coatings also differed
depending on the type of metal used. Zn exhibited the highest bonding strength
(1.84 MPa), while Cu/Sn showed the lowest (1.38 MPa). Upon examining the failure
modes, non-interfacial failure occurred mostly with Zn, whereas interfacial failure
occurred mostly with Cu/Sn.

3. Because the bonding strength exhibited a close relationship (R2 = 0.9946) with the
difference between the melting point of the metal and surface temperature immedi-
ately after metal spraying compared to its relationship (R2 = 0.9589) with the surface
temperature immediately after metal spraying, the difference between the melting
point and surface temperature immediately after metal spraying was assessed to
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have a greater impact on the bonding strength between the sprayed metal coating
and concrete.

4. The non-interfacial failure area was quantitatively evaluated using image analysis,
and the results exhibited a tendency similar to the bonding strength. Zn exhibited
the highest ratio of the non-interfacial failure area to total area (RN), whereas Cu/Sn
exhibited the lowest RN value.

5. The metal coating was found to be closely attached to the concrete surface with Zn;
however, there was a gap between the metal coating and the concrete surface with
Cu/Sn. This gap induces interfacial failure and ultimately has a negative impact on
the bonding strength.

6. The metal type (namely, the melting point of the metal) was found to have a significant
influence on the bonding strength. For the application of metals with a high melting
point to the concrete surface, further research on surface treatment methods is required
to ensure adequate bonding strength.
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