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Abstract

Dry pea (Pisum sativum L.) is a cool-season food legume rich in protein (20–25%). With

increasing health and ecosystem awareness, organic plant-based protein demand has

increased; however, the protein quality of organic dry pea has not been well studied. This

study determined the genetic variation of individual amino acids (AAs), total AAs (liberated),

total protein, and in vitro protein digestibility of commercial dry pea cultivars grown in organic

on-farm fields to inform the development of protein-biofortified cultivars. Twenty-five dry pea

cultivars were grown in two USDA-certified organic on-farm locations in South Carolina

(SC), USA, for two years (two locations in 2019 and one in 2020). The concentrations of

most individual AAs (15 of 17) and the total AA concentration significantly varied with dry

pea cultivar. In vitro protein digestibility was not affected by the cultivar. Seed total AA and

protein for dry pea ranged from 11.8 to 22.2 and 12.6 to 27.6 g/100 g, respectively, with

heritability estimates of 0.19 to 0.25. In vitro protein digestibility and protein digestibility cor-

rected AA score (PDCAAS) ranged from 83 to 95% and 0.18 to 0.64, respectively. Heritabil-

ity estimates for individual AAs ranged from 0.08 to 0.42; principal component (PCA)

analysis showed five significant AA clusters. Cultivar Fiddle had significantly higher total AA

(19.6 g/100 g) and digestibility (88.5%) than all other cultivars. CDC Amarillo and Jetset

were significantly higher in cystine (Cys), and CDC Inca and CDC Striker were significantly

higher in methionine (Met) than other cultivars; CDC Spectrum was the best option in terms

of high levels of both Cys and Met. Lysine (Lys) concentration did not vary with cultivar. A

100 g serving of organic dry pea provides a significant portion of the recommended daily

allowance of six essential AAs (14–189%) and daily protein (22–48%) for an average adult

weighing 72 kg. Overall, this study shows organic dry pea has excellent protein quality, sig-

nificant amounts of sulfur-containing AAs and Lys, and good protein digestibility, and thus

has good potential for future plant-based food production. Further genetic studies are war-

ranted with genetically diverse panels to identify candidate genes and target parents to

develop nutritionally superior cultivars for organic protein production.
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Introduction

The plant-based protein market has been steadily growing globally. Globally, the plant-based

protein market will continue to increase to a $9.5B industry by 2025. American retail sales

increased by 6% in 2021, bringing the plant-based protein market’s total value to $7.4B in 2021

[1]. About 39% of Americans consume plant-based protein alternative foods due to various

health and ecosystem concerns [2,3]. To meet the global demand for plant-based protein,

ingredient suppliers have expanded the need for novel, pesticide-free, and gluten-free plant

proteins from organic pulse crops, including dry pea (Pisum sativum L.). Dry peas are the

most in-demand ingredient for this segment of the food industry due to their high protein

(20–25%) and low fat (<1%) levels. Global dry pea production is approximately 14.6 million

metric tons, and the United States of America (USA) accounted for 0.9 million metric tons in

2020 [4]. Dry pea is a vital pulse crop to provide global nutritional security, especially for pro-

tein and low digestible carbohydrates at a low cost. Canada, Russian Federation, France,

China, and India have become the world’s most extensive dry pea producers [4]. Certified

organic dry pea production has increased globally and in US regions, but the exact statistics

for the current production and harvested area for regional states are unavailable. However, US

regions that have not been historically used to grow these pulse crops, including South Caro-

lina (SC), will increase pulse production to meet the demand for plant-based protein [5,6].

Current food choices, including the “Beyond Burger,” use dry pea as their primary protein

ingredient. However, concerns related to plant-based proteins focus on amino acid (AA) bal-

ance, i.e., legume-based protein is low in sulfur-containing AAs (SAAs: cystine, Cys, and

methionine, Met) and poor digestibility. The development and selection of nutritionally supe-

rior organic dry pea cultivars will bring significant economic benefits to organic growers and

nutritional value to consumers.

Organic agriculture is the fastest-growing segment of US agriculture, with total sales of

$9.9B in 2019 [6]. Organic grains, including corn, wheat, and soybean, accounted for $1.18B of

this total, an increase of 55% from 2016 [6]. Pulse crops are an integral part of the global food

system and can provide protein, low-digestible carbohydrates, and micronutrient-rich foods at

a lower price than systems centered on animal proteins [5,7–9]. Certified organic dry pea pro-

duction in the USA is small, with 16,666 ac in 2019 and a $5.9M value of sales from 104

USDA-certified organic farms [6]. Legume-inclusive cropping systems bring multiple benefits

to organic agriculture: (1) at the food system level, pulses provide a significant amount of pro-

tein, low-digestible carbohydrates, and a range of micronutrients with low phytate for both

humans and animals; (2) at the production system level, legumes fix atmospheric N and

improve soil phosphorus (P), which provides economic value to organic producers, making

them more suitable for low-input cropping systems and mitigating greenhouse gas emissions

as a result of reduced rates of N and P fertilizer inputs; and (3) at the cropping system level,

legumes can be used as diversification crops in agroecosystems (e.g., in rotation with cereals),

resulting in increased cereal crop yields due to disrupted pest (disease, insect, and weed) cycles,

conserved soil moisture, and improved soil health via soil microbial activity [5,10–12].

Plant-based protein represents about 60% of the total global protein consumed, with the

remainder from animal sources [13]. Developing countries mainly depend on plant-based

proteins, and the global population is shifting toward alternative proteins. However, the quan-

tity of protein in plant-based foods is not the only indicator of their ability to meet the nutri-

tional demands of growing populations; protein quality, i.e., AA balance, must be considered

[14]. Animal and plant-based proteins have different AA profiles and digestibility. Humans

cannot synthesize essential AAs; therefore, these must be obtained from dietary sources

[15]. Cereals have low lysine (Lys) concentrations and moderate-to-high concentrations of the
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SAAs, namely methionine (Met) and cysteine (Cys); however, pulses have high Lys and low-

to-moderate levels of Met and Cys. Therefore, plant-based diets require cereals supplemented

with Lys-rich ingredients such as dry pea [9,16]. With the increasing global population, depen-

dence on animal sources for daily human protein requirements is not viable (e.g., higher

energy and labor requirements, antibiotic resistance, and greenhouse gas emissions). There-

fore, breeding traditional pulse crops for protein biofortification is essential to provide clean,

allergen- and gluten-free, and highly nutritious plant-based protein to meet the world’s protein

demands by 2050 [9,16,17].

Biofortification is a sustainable approach to increasing nutritional quality using conventional

plant breeding and genomic tools to develop staple food crops with bioavailable micronutrients

[18–20]. Dry pea micronutrient enrichment has been successful over the years, and breeding

programs worldwide use available tools to develop mineral- and vitamin-rich cultivars with low

phytic acid [21–23]. These biofortified cultivars perform well under non-organic growing sys-

tems but have low yields and protein content when grown under an organic system without

synthetic fertilizers and pesticides [5,24]. Therefore, organic nutritional breeding of pulse crops

for increased protein quality is vital to overcome the issues related to growers, the food industry,

and the nutrition community to meet growing consumer demand. This study aimed to evaluate

if the current dry pea cultivars in production vary in protein quality (AA composition, total

AA, total protein, and in vitro protein digestibility) in response to organic cropping systems.

This study did not include the non-organic system for comparison. The objectives of this study

were to assess 25 dry pea cultivars grown in two organic on-farm locations for two years to

determine the genetic variation of AA profiles, total AA, protein, and in vitro digestibility to

identify suitable cultivars for organic production with increased nutrition quality.

Materials and methods

Experimental details

The experimental field design was a randomized complete block design (RCDB) with 25 culti-

vars with two replications at two locations in 2019 and three replications at one location in 2020

(n = 175; [5]. The seeds were purchased from Pulse USA (Bismark, ND, USA), Meridian Seeds

(Mapleton, ND, USA), and the Washington State Crop Improvement Association (Pullman,

WA, USA). Material transfer agreements (MTAs) were signed with the seed companies before

planting these cultivars in SC, USA. Detailed experimental design, agronomic details, and

results (grain yield and nutritional quality) have already been published [5]. In brief, the experi-

mental field design was a randomized complete block design (RCDB) with 25 cultivars with two

replications at two locations in 2019 and three replications at one location in 2020 (n = 175).

USDA-certified organic on-farm locations were WP Rawl and Sons (Pelion, SC, USA) and Cal-

houn Fields Laboratory (Clemson University, SC, USA). Before planting, fields were tilled using

a disc harrow and smoothly leveled. The plot size was 1.4×6 m (8.4 m2) with seven rows spaced

20 cm apart, a seeding depth of 5–7 cm, and a seeding rate of 90 seeds m-2. USDA-certified

organic inoculant (Peaceful Valley Farm Supply, Inc., USA) was added at 3.1 g kg-1 seeds. At

physiological maturity (110–115 days after planting), the plots were harvested, and 500 g of

seeds were hand cleaned, finely ground using a UDY grinder, and stored at −10˚C until protein

quality analysis. All protein quality data are reported on a dry mass (15% moisture).

Protein analysis

Total seed N concentration was measured using N combustion at the Soil Testing Laboratory,

Clemson University, SC, and then values were converted to total protein content by multiply-

ing by 6.25. Protein data are reported in our previous publication [5].
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Amino acid (AA) analysis

Reagents, solvents, and high-purity standards for AA analysis were purchased from Sigma

Aldrich Co. (St. Louis, MO), Fisher Scientific (Waltham, MA), and VWR International (Rad-

nor, PA). Ultrapure water and deionized water (ddH2O) to a resistance of�18.2 MO×cm

(PURELAB flex 2 system, ELGA LabWater North America, Woodridge, IL) were used. The

AA analysis method is reported elsewhere [25] with modifications from the literature [26,27].

Samples (40 mg) of dry pea powder (particle size� 0.5 mm) were weighed into glass culture

tubes (16×125 mm, PTFE lined cap). Performic acid was synthesized from formic acid and

hydrogen peroxide (9:1 ratio). Once chilled in an ice bath, 5 mL of performic acid was added

to each tube, which was then gently swirled on a vortex mixer before being capped and refrig-

erated for 16 h to convert Cys and Met to their derivatives, methionine sulfone and cysteic

acid, which are more stable under acid hydrolysis. A 1/8 in. × tube length PTFE boiling rod

was inserted into each tube before evaporating to dryness in a vacuum oil bath (3 gal. resin

trap, BACOENG, Suzhou, China) at ~70–80˚C and ~610 mmHg. Once cooled, tubes were

removed, and 4.9 mL of 6 M HCl and 0.1 mL of the standard internal mix (25 mM norvaline,

25 mM sarcosine) were added to each tube, which was then capped and gently swirled. Tubes

were then placed in a gravity convection oven at 110˚C for 24 h to hydrolyze peptide bonds.

Samples were cooled to room temperature, vortex mixed, and filtered through a 0.22 μm poly-

propylene syringe filter. As before, one mL of the sample was added to a clean culture tube

and evaporated to dryness. Samples were rehydrated with 1 mL of HPLC mobile phase A and

pipetted into HPLC vials for analysis.

AA analysis was performed via high-performance reverse phase chromatography on an

1100 series Agilent system (Agilent Technologies, Santa Clara, CA, USA) [28,29] with a diode

array detector at two wavelengths (338 nm, 10 nm bandwidth, reference 390 nm, 20 nm band-

width; and 262 nm, 10 nm bandwidth, reference 390 nm, 20 nm bandwidth). An aqueous and

an organic solvent were used for mobile phases A and B, respectively. Mobile phase A con-

tained 10 mM sodium phosphate, 10 mM sodium tetraborate decahydrate, and 5 mM sodium

azide with a pH adjusted to 8.2 with 12 M HCl. The solution was then filtered through 0.2 μm

regenerated cellulose. Mobile phase B consisted of 45% methanol, 45% acetonitrile, and 10%

water (v/v/v). A lab reference dry pea sample was included in every digestion batch to monitor

batch-to-batch variation; an AA standard mix was run on the high-performance liquid chro-

matography (HPLC) before analyzing each batch of samples. Calibration standards (9–900

pmol/μL) with internal standards norvaline and sarcosine (500 pmol/μL) were run, and linear

calibration models were generated based on peak areas for calculating sample AA concentra-

tions, which were converted into percent of dry pea flour. The total AA concentration was cal-

culated by summing all AA concentrations for each sample.

In vitro protein digestibility analysis

Protein digestibility was measured using the Megazyme Protein Digestibility Amino Acid

Score assay kit with the modified protocol for a 100 mg sample size (Megazyme K-PDKAAS

kit, Lancing, MI). Ground samples (100 mg) were weighed into 50 mL plastic falcon tubes, to

which 3.8 mL of 0.06 N hydrochloric acid was added, and the mixture vortexed. The tubes

were then placed into a tabletop heated air shaker at 37˚C for 30 min at 300 rpm. After shak-

ing, 0.2 mL of pepsin solution was added to the tube, and the mixture vortexed. The tubes

were then placed back into the shaker at 37˚C for 60 min at 300 rpm, and after the pepsin incu-

bation, 0.4 mL of TRIS buffer was added. The tubes were then vortexed, and 40 μL of trypsin/

chymotrypsin solution was added to the tubes and then placed back in the air shaker for 4 h.

After the trypsin/chymotrypsin incubation, the tubes were placed in a 100˚C water bath for 10
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min and then vortexed and brought to room temperature on the counter for a minimum of 20

min. After the overnight cold incubation, the tubes were centrifuged for 10 min. Ninety-six

well plates were utilized for the colorimetric analysis. The Megazyme Excel calculator was

modified to change the approximate sample mass from 0.5 to 0.1 g. In addition to the controls

in the assay kit, a lab reference lentil sample was included in every batch to monitor batch-to-

batch variation. The protein digestibility corrected amino acid score (PDCAAS) was calculated

based on the Megazye Excel calculator, determined by comparing the AA profile of the dry pea

against a standard AA profile, with one as the highest possible score.

Statistical analysis

Replicates, years, and cultivars were used as class variables. Data from both years were com-

bined (after testing for heterogeneity) and analyzed using a general linear model procedure

(PROC GLM) mixed model. Fisher’s least significant difference (LSD) at� 0.05 was per-

formed for mean separation. Correlations (Pearson correlation coefficients) among traits were

determined. A statistical model was developed to estimate broad-sense heritability (H2) with

the class variables and genotype as random effects. The model was fit using restricted maxi-

mum likelihood (REML). H2 was estimated as the proportion of variance due to cultivar, and

analyses were performed using JMP 14.0.0 and SAS 9.4 [30]. Percent recommended dietary

allowance estimates (%RDA) were calculated for the essential AAs [Cys, histidine (His), isoleu-

cine (Iso), leucine (Leu), Lys, Met, phenylalanine (Phe), threonine (Thr), valine (Val)] and

total AA concentration. Estimates were based on a 72 kg adult consuming 100 g of dry pea

(15% moisture content) per day: 8–12 mg/kg His, 10 mg/kg Iso, 14 mg/kg Leu, 12 mg/kg Lys,

13 mg/kg Met + Cys, 14 mg/kg Phe + Tyr, 10 mg/kg Val, and 0.8 g/kg protein [31].

Results

Analysis of variance

Cultivars showed significant variation at P<0.05 and P<0.1 for most traits except for His,

hydroxyproline (Hpr), Lys, and in vitro protein digestibility (Table 1). Location was significant

for most cases except for serine (Ser) and total AAs. Similarly, the year effect was significant at

P<0.05 and P<0.1 for 12 of 17 AAs, total AAs, total protein, and in vitro digestibility. Signifi-

cant interactions of either cultivar × location or cultivar × year varied with the traits. The in
vitro protein digestibility showed a significant effect only with the location and year; no effect

was evident with cultivar × location or cultivar × year (Table 1). Broad-sense heritability esti-

mates were very low to moderate (0.06–0.42), with the highest for arginine (Arg; 0.42) and

total protein (0.25). Broad-sense heritability estimates were very low for SAAs (Met and Cys)

and Lys (Table 1).

Protein quality

Organic dry pea cultivars had values of 11.8 to 22.2 g/100 g for total AAs (liberated), 12.6 to

27.6 g/100 g for total protein, 0.18 to 0.64 for PDCAAS value, and 83 to 95% for in vitro protein

digestibility (Table 2). Dry pea contained a range of individual AAs, including nine essential

AAs with a mean of 0.22 g/100 g for SAAs and 0.88 g/100 g for Lys (Table 2). These organic

dry pea cultivars provide a significant amount of the recommended daily allowance (%RDA)

of several AAs (14–66% His, 79–138% Iso, 76–169% Leu, 57–147% Lys, 15–85% Met + Cys,

76–189% Phe + Tyr, 94–169% Val) as well as protein (22–48%) (Table 2). Pearson’s correlation

analysis revealed that most correlations were significantly positive except for Hpr vs. His

and in vitro protein digestibility vs. Lys (Table 3). Total protein showed a significant positive
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correlation with all AAs except Hpr; Lys and Cys were also not correlated; and Hpr showed

non-significant correlations in several cases (Table 3). The first two principal components

(PCA) of the principal component analysis (PCA) accounted for 12.46, and 1.83 for the eigen-

values. Cluster summary showed components of the total variance: (1) component 1 (62.3%):

total AAs and 13 of 17 AAs; (2) component 2 (9.17%): Hpr and His; (3) component 3 (8.07%):

in vitro protein digestibility; (4) component 4 (5.34%); protein and Arg; and (5) component 5

(2.93%): Cys (Fig 1). Most of the variation was captured by the first component (62.3%), which

is highly correlated with the values of most AAs excluding Hpr and His.

Cultivar responses

Dry pea cultivars showed a normal distribution pattern for Cys, Met, total AAs, and in vitro
protein digestibility (Fig 2). Out of 175 observations, 6.4% were high in Cys and Met, 8.8%

were high in total AAs, and 5.6% were high for in vitro protein digestibility (Fig 2). Among the

25 cultivars tested, 10 cultivars showed more than 18 g/100 g of total AAs, with Fiddle being

the highest and AAC Carver and AC Earlystar the lowest (Fig 3). For in vitro protein digestibil-

ity, 17 of 25 cultivars showed a digestibility of 87% or better, with Fiddle having the highest

value and AAC Carver the lowest (Fig 3). CDC Saffron, CDC Spectrum, and CDC Striker

showed significantly higher concentrations of SAAs than AAC Carver and AC Earlystar (Fig

4). AAC Comfort showed higher Lys concentrations than other cultivars, but the effects were

not significant (Fig 4).

Table 1. Analysis of variance and broad-sense heritability estimates of protein quality traits evaluated for dry pea tested in SC, USA.

Component Cultivar Location Year Cultivar × Location Cultivar × Year H2

Alanine ** ** * ** ** 0.11

Arginine ** ** ** NS * 0.42

Asparagine ** ** ** ** ** 0.08

Cystine * ** NS ** ** -

Glutamine ** ** NS ** ** 0.24

Glycine ** * ** ** ** 0.19

Histidine NS ** NS NS NS 0.14

Hydroxyproline NS ** ** NS NS -

Isoleucine ** ** ** ** ** 0.23

Leucine ** ** ** ** ** 0.18

Lysine NS * ** NS NS 0.17

Methionine ** * NS NS NS 0.12

Phenylalanine * ** NS ** * 0.23

Proline ** ** ** * ** 0.18

Serine ** NS ** ** ** 0.13

Threonine ** * ** ** ** 0.06

Valine ** ** ** ** ** 0.13

Total AA ** NS ** ** ** 0.19

Total Protein ** ** ** NS * 0.25

In-vitro Digestibility NS ** ** NS NS 0.09

** significant at P<0.05;

* significant at P<0.1;

Not significant (NS); H2 broad-sense heritability estimate.

https://doi.org/10.1371/journal.pone.0284380.t001
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Discussion

Our results demonstrate that current dry pea cultivars bred for conventional systems vary in

terms of seed AA profile, total AAs, total protein, and in vitro protein digestibility when grown

under organic cropping systems. Organic dry pea is a rich source of essential AAs, as a 100 g

serving of organic dry pea provides 0.02–3.07 g/100 g of nine essential AAs (14–180% of

RDA), 11.8–22.2 g of total AAs, and 22–48% of the daily protein requirement, with an in vitro
protein digestibility of 83–95% (Table 2). In contrast to previous literature that states pulses

are generally low in SAAs, our results demonstrate organic dry pea is a good source of SAAs

(Met and Cys), with a 100 g serving providing 220 mg of total SAAs (Met+Cys) and 0.88 g of

Lys (Table 2; Fig 4) [32,33]. According to our knowledge, this study is the first report on the

detailed protein quality of commercial dry pea cultivars grown in an organic system to adapt

these cultivars for organic produciton.

The dry pea cultivars tested under organic field conditions in this study had mean protein

and total AA (liberated) concentrations of 20.9 g/100 g and 17.5 g/100 g, respectively (Table 2).

Table 2. Range and mean amino acid concentrations of organic dry pea grown in SC.

Composition (g/100 g) Range Mean Genotype Effect %RDA

Alanine 0.61–1.01 0.86 **
Arginine 0.95–2.22 1.5 **
Asparagine 1.59–3.07 2.36 **
Cystine 0.02–0.10 0.05 * 15–85ǂ

Glutamine 1.82–3.56 2.86 **
Glycine 0.60–1.08 0.88 **
Histidine 0.08–0.38 0.26 NS 14–66

Hydroxyproline 0.48–2.00 1.16 NS

Isoleucine 0.57–0.99 0.8 ** 79–138

Leucine 0.77–1.70 1.33 ** 76–169

Lysine 0.49–1.27 0.88 NS 57–147

Methionine 0.12–0.26 0.17 **
Phenylalanine 0.38–1.16 0.89 * 76–189

Proline 0.42–1.32 1.04 **
Serine 0.58–1.09 0.89 **
Threonine 0.39–0.74 0.59 **
Valine 0.68–1.22 0.97 **
Total AA (liberated) 11.8–22.2 17.5 **
Total Protein± 12.6–27.6 20.9 ** 22–48

PDCAAS value 18–64 54 ND

In vitro digestibility (%) 83–95 87 NS

** significant at P<0.05;

* significant at P<0.1;

Not significant (NS); ND: Not detected; PDCAAS: Protein digestibility corrected amino acid score.
± Protein values are from [4]. Values are based on the combined statistical analysis of 175 data points for the current study (dry weight basis). Percent recommended

dietary allowance estimates were calculated for the essential amino acids cystine (Cys), histidine (His), isoleucine (Iso), leucine (Leu), lysine (Lys), methionine (Met),

phenylalanine (Phe), threonine (Tyr), and valine (Val), as well as for total AA concentration. Estimates were for a 72 kg adult consuming 100 g of dry pea (15% moisture

content) per day given the following dietary requirements: 8–12 mg/kg His, 10 mg/kg Iso, 14 mg/kg Leu, 12 mg/kg Lys, 13 mg/kg Met + Cys, 14 mg/kg Phe + Tyr, 10

mg/kg Val, and 0.8 g/kg protein [31].
ǂ%RDA was calculated for both Cys+Met.

https://doi.org/10.1371/journal.pone.0284380.t002
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Several dry pea cultivars had high total AAs (>18 g/100 g) and >87% in vitro protein digest-

ibility (Fig 3), demonstrating they are suitable for organic plant-based protein production.

Among the cultivars tested, Fiddle had the highest total AA concentrations (19.6 g/100 g), and

AAC Carver (15.5 g/100 g) and AC Earlystar (16.1 g/100 g) the lowest. Our previous study on

the agronomic adaptability of dry pea [5] indicated AAC Carver, Jetset, and Mystique as the

highest yielding cultivars (>2000 kg/ha) and most suitable for organic production without a

yield penalty compared to conventional growing systems. However, the current study indicates

Table 3. Pearson’s correlation analysis of nutritional traits among dry pea cultivars grown in the organic system.

Cys Asp Glu Ser His Gly Thr Met Arg Ala Val Phe Iso Leu Lys Hpr Pro AA Pr Dig

Cys -

Asp ** -

Glu ** ** -

Ser ** ** ** -

His ** ** ** ** -

Gly ** ** ** ** ** -

Thr ** ** ** ** ** ** -

Met ** ** ** ** ** ** ** -

Arg ** ** ** ** ** ** ** ** -

Ala ** ** ** ** ** ** ** ** ** -

Val ** ** ** ** ** ** ** ** ** ** -

Phe ** ** ** ** ** ** ** ** ** ** ** -

Iso ** ** ** ** ** ** ** ** ** ** ** ** -

Leu ** ** ** ** ** ** ** ** ** ** ** ** ** -

Lys NS ** ** ** ** ** ** ** ** ** ** ** ** ** -

Hpr NS ** * ** -** ** ** ** NS NS ** NS NS ** NS -

Pro ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** -

Total AA ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** -

Total Protein± ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** NS ** ** -

Digestibility ** ** ** ** * ** ** ** ** ** ** ** ** ** -** ** ** ** ** -

** significant at P<0.05;

Not significant (NS);
± Protein values are from [4].

https://doi.org/10.1371/journal.pone.0284380.t003

Fig 1. Principal components of individual amino acids (g/100 g), total amino acids (g/100 g), protein (g/100 g), and in vitro
digestibility of organic dry pea: (A) scatter plots and (B) biplots of components 1 and 2.

https://doi.org/10.1371/journal.pone.0284380.g001
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Fig 2. Dry pea cultivar distribution for cystine, methionine, and total amino acid (liberated) concentration as well as in vitro
digestibility.

https://doi.org/10.1371/journal.pone.0284380.g002

Fig 3. Total amino acids (liberated, g/100 g) and in vitro protein digestibility (%) of dry pea cultivars grown in the organic system. The bars

indicate the total amino acids (liberated) g/100g and the line indicates in-vitro digesterbility (%). The bars/lines with different letters indicate

significant difference at P<0.05.

https://doi.org/10.1371/journal.pone.0284380.g003
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these three cultivars have low total AAs and in vitro protein digestibility (Fig 3). A negative

correlation between protein quality and crop adaptability suggests further testing is needed

with diverse dry pea germplasm to develop biofortified organic cultivars with better grain

yield, agronomic adaptability, and protein quality for organic systems [5,9,34]. Earlier litera-

ture [32,35] indicates the AA composition of dry pea varies with cultivar and growing environ-

ment, similar to the current study’s results. Further, one of these earlier studies shows dry pea

has high concentrations of Arg, Leu, Lys, aspartic acid, and glutamic acid and low concentra-

tions of His, Met, Thr, and Cys [35]. Another study compared several plant-based protein iso-

lates for essential and non-essential AAs and found dry pea protein isolates contained only

5.9% Lys and low concentrations of Met [36]. In contrast, our study results show most modern

cultivars have higher Cys, Met, and total AA concentrations and good in vitro protein digest-

ibility (Fig 3). The best options to use for better protein quality are CDC Spectrum for Met and

Cys, CDC Inca and CDC Striker for Met, and CDC Amarillo and Jetset for Cys (Fig 4). These

cultivars have AA values within the range of the AAs reported in the literature for conventional

cropping systems [33,36]. Incorporating these cultivars into dry pea breeding programs would

benefit the development of better protein quality cultivars; however, more field testing is

required to understand the genetic, environmental, and management interactions. Organic

agriculture management varies with respect to on-farm practices for weeds, diseases, pests,

and fertilizer; therefore, breeding dry pea cultivars best suited for organic management with

increased nutritional quality is challenging [37].

AAs are critical for all forms of life. Humans cannot synthesize all 20 AAs needed for pro-

tein synthesis for good health. Nine essential AAs must be obtained from the diet: Lys, Met,

and Thr of the aspartate (Asp) family pathway; phenylalanine (Phe) and tryptophan (Trp) of

the aromatic AAs; Val, Ile, and Leu of the branched-chain Aas (BCAAs); and His [38]. Lys,

Met, Thr, and Trp levels limit the nutritional quality of plant-based foods because levels of

these four AAs in plants are very low compared with those required for optimal human

Fig 4. Organic dry pea cultivar genetic variation for seed cystine, methionine, and lysine concentrations. The bars/lines with different

letters indicate a significant difference at P<0.05.

https://doi.org/10.1371/journal.pone.0284380.g004
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nutrition [9,38]. PCA analysis in the current study revealed seven essential AAs (Val, Iso, Thr,

Leu, Met, Lys, and Phe) of organic dry pea in component 1, and one essential AA (His) in

component 2 (Fig 1). These essential AAs are also positively correlated with total AA, protein,

and in vitro digestibility (Table 3), indicating biosynthesis of these AAs could be upregulated

using available genomic and biotechnology tools for early prediction of protein quality traits

in breeding programs [9,38,39]. Plant-soluble Met and Lys levels might represent limiting fac-

tors for synthesizing Met- or Lys-rich proteins [37]. Expressing genes that increase Lys and

Met biosynthesis in combination with genes encoding proteins rich in Lys and Met codons

appears to increase the levels of Lys in transgenic corn [39]. However, these transgenic

approaches are not approved in USDA-certified organic agriculture systems. Conventional

breeding approaches for selecting genetic material with higher levels of AAs and protein qual-

ity using association mapping and genomic prediction tools are the only recommended meth-

ods for organic pulse breeding.

Dietary protein quality has two components: AA composition and availability. Availability

is “the proportion of the dietary amino acids that are digested and absorbed in a form suitable

for body protein synthesis” [40]. PDCAAS is the most common method used to determine

protein availability [41]. We determined in vitro protein digestibility using an enzyme assay

and then calculated PDCAAS based on the AA scores. This method is inexpensive and high-

throughput and can be used to screen a larger number of seed samples for breeding programs

than available in vivo methods [42]. The PDCAAS values for organic dry pea cultivars tested in

this study ranged from 0.18 to 0.64 with 83–95% in vitro protein digestibility. Most organic

dry pea cultivars have high protein digestibility (>87%), and these values are similar to those

from the literature [43]. Plant-based proteins are an inexpensive, healthy choice for many peo-

ple and a vital source of daily essential AAs. These proteins have several limitations in terms of

human nutrition: they often lack one or more essential AAs, they are often not fully digestible,

and toxins and pesticides are concentrated during protein extraction and drying procedures

[44]. Therefore, pursuing nutritional breeding or biofortification of dry pea using an organic

system approach is vital to overcome these nutritional and production issues for pulse growers

and consumers. Organic nutritional breeding of pulses is challenging and demands better phe-

notyping and genetic resources for cultivar development. With the increasing availability of

genomic resources, expanding organic pulse breeding targets to produce better-quality pro-

teins with higher digestibility will be possible.
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