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Abstract

A computational approach to identifying drug–target interactions (DTIs) is a credible strat-

egy for accelerating drug development and understanding the mechanisms of action of

small molecules. However, current methods to predict DTIs have mainly focused on identify-

ing simple interactions, requiring further experiments to understand mechanism of drug.

Here, we propose AI-DTI, a novel method that predicts activatory and inhibitory DTIs by

combining the mol2vec and genetically perturbed transcriptomes. We trained the model on

large-scale DTIs with MoA and found that our model outperformed a previous model that

predicted activatory and inhibitory DTIs. Data augmentation of target feature vectors

enabled the model to predict DTIs for a wide druggable targets. Our method achieved sub-

stantial performance in an independent dataset where the target was unseen in the training

set and a high-throughput screening dataset where positive and negative samples were

explicitly defined. Also, our method successfully rediscovered approximately half of the

DTIs for drugs used in the treatment of COVID-19. These results indicate that AI-DTI is a

practically useful tool for guiding drug discovery processes and generating plausible hypoth-

eses that can reveal unknown mechanisms of drug action.

1. Introduction

Identifying drug–target interactions (DTIs) is an essential step in drug discovery and repurpos-

ing. Proper understanding of DTIs can lead to fast optimization of small molecules derived from

phenotypic screening and elucidation of the mechanism of action for experimental drugs [1].

However, identifying a candidate drug for a putative target by relying solely on in vivo and bio-

chemical approaches often takes 2–3 years with tremendous economic costs [2, 3]. Computa-

tional approaches have emerged as an alternative strategy for reducing the workload and

resources by efficiently identifying potential DTIs. This strategy has the potential to accelerate the

drug development process by prioritizing candidate compounds for putative targets or vice versa.

Conventional methods for predicting DTIs can be broadly categorized into docking simula-

tions and ligand-based approaches [4, 5]. However, their prediction is often unreliable when
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the 3D structure of a protein or target is unavailable or when an insufficient number of ligands

is known for the target, respectively [6]. Recently, chemogenomic approaches have emerged as

an alternative enabling large-scale predictions by leveraging recent advances in network-based

approaches or machine learning techniques [7–11]. For example, Yunan et al. proposed DTI-

Net, a network-integrated pipeline that predicts DTIs by constructing a heterogeneous net-

work using the information collected from various sources [12]. Other researchers have pro-

posed deep learning-based methods, such as convolutional neural network, graph

convolutional network (GCN), and natural language processing, to predict novel DTIs [13–

15]. Despite their state-of-the-art performance, these models predict simple interactions with-

out the mode of action, necessitating further experimental validation to fully understand the

mechanisms of action of the drug.

Researchers thus attempted to develop a model that predicts DTIs by specifying the mode

of action. Specifically, Sawada et al. proposed a model that predicts activatory and inhibitory

DTIs by combining transcriptome profiles measured after compound treatment and genetic

perturbation [16]. Although the method showed the possibility of predicting DTIs with modes

of action using transcriptome data, it did not provide a satisfactory tool that could be applied

for drug discovery. First, employing compound-induced transcriptome profiles as a represen-

tative vector of compound limited the range of predictable compounds significantly. Second,

the number of predictable activatory and inhibitory targets was 74 and 755, respectively, which

covered only a fraction of the druggable targets. Finally, the employed algorithms, called joint

learning, could not learn nonlinear relationships between input vectors and DTI labels, and

thus, the performance of DTI prediction was insufficient. Therefore, there is still a pressing

need to develop a method with superior performance for predicting a wide range of activatory

and inhibitory targets for novel compounds and natural products.

In this paper, we present AI-DTI, a new computational methodology for predicting activa-

tory and inhibitory DTIs, by integrating a mol2vec method and genetically perturbed tran-

scriptomes (Fig 1). Employing mol2vec enabled our method to expand the drug space to most

compounds with 2D structures. In addition, by inferring the target vector representation

based on the protein–protein interaction (PPI) network, the number of predictable targets was

expanded to cover a majority of druggable targets. We compared the performance of various

classifiers on the training data set and selected the optimized classifier with the best perfor-

mance. The prediction capacity of our model was also evaluated on independent datasets with

unseen DTI pairs, and high-throughput biological assay results. Finally, as a case study, we

evaluated whether our method could be applied to the prediction of DTIs for the novel disease,

coronavirus disease 2019 (COVID-19). All these results demonstrate that AI-DTI is a practi-

cally useful tool for predicting unknown activatory and inhibitory DTIs, which provide new

insights into drug discovery and help in understanding modes of drug action.

2. Materials and methods

2.1. Employing mol2vec-based compound features

The vector representation of compounds was obtained using mol2vec [17], a word2vec-

inspired model that learns the vector representations of molecular substructures. Mol2vec

applies the word2vec algorithm to the corpus of compounds by considering compound sub-

structures derived from the Morgan fingerprint as “words” and compounds as “sentences”.

The vector representations of molecular substructures are encoded to point in directions simi-

lar to those that are chemically related, and entire compound representations are obtained by

summing the vectors of the individual substructures. Among the mol2vec versions, we imple-

mented the skip-gram model with a window size of 10 and 300-dimensional embedding of
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Morgan substructures, which demonstrated the best prediction capabilities in several com-

pound property and bioactivity datasets.

2.2. Constructing genetically perturbed transcriptome-based target

features

The genetically perturbed transcriptome of the L1000 dataset was downloaded from the

Gene Expression Omnibus (accession number: GSE92742), which contains 473,647 signa-

tures. Each signature (i.e., transcriptome profile) consists of a mediated z-score of 978 land-

mark genes whose expression levels were measured directly and 11,350 genes whose

expression values were inferred from them. Landmark gene refers to one whose gene expres-

sion has been determined as being informative to characterize the transcriptome and which

is measured directly in the L1000 assay. In our study, level 5 landmark gene data were used

to represent the target vector. Level 5 data are a normalized dataset suggested by the LINCS

team for use without additional processing. Among the types of perturbations, “cDNA for

overexpression of wild-type gene” and “consensus signature from shRNAs for loss of func-

tion” were considered vector representations for activatory and inhibitory targets, respec-

tively. From the downloaded data, the gene expression signatures of the landmark gene set

were parsed using the cmapPy module [18], resulting in 36,720 gene knockdown and 22,205

gene overexpression signatures.

Fig 1. Overview of the AI-DTI pipeline. (A) A structure of AI-DTI. (B) Feature vector generation for activatory and

inhibitory drug-target interactions (DTIs). For activatory DTIs, the feature vector was represented as a concatenation

of the compound vector and aggregated gene overexpression signatures. For inhibitory DTIs, the feature vector was

represented as a concatenation of the compound vector and aggregated gene knockdown signatures.

https://doi.org/10.1371/journal.pone.0282042.g001
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The parsed data contained multiple gene expression profiles for single genetic perturbations

measured in various cell lines and/or under perturbing conditions, which necessitated further

preprocessing. To obtain the representative vector by each target, we applied a weighted aver-

age procedure divided into two steps: aggregation according to experimental conditions and

aggregation across cell lines (Fig 2B). Before introducing the weighted average procedure, we

described the process of applying the aggregation procedure. Specifically, the signatures mea-

sured after the same genetic perturbation in a specific cell, but with different perturbational

dose or time, were first aggregated by weighted averaging. Then, the representative vector for a

particular target is obtained by reapplying weighted averaging to these signatures (i.e., the

aggregated signatures measured after the same genetic perturbation in different cell lines).

This segmentation process reduces the potential biases on the representative vector calculation

Fig 2. Schematics of aggregation and inference for a genetically perturbed transcriptome. (A) Weighted averaging

for combining individual signatures into consensus gene signatures. Individual profiles were weighted by the sum of

their correlations to other individual signatures and then averaged. (B) Generation of target vectors by cross-

perturbation and cross-cell line aggregation. Multiple signatures measured after the same genetic perturbation in a

specific cell, but with different perturbational doses or times, were first aggregated by weighted averaging. The same

procedure was performed between multiple signatures measured after the same genetic perturbation in different cell

lines. (C) Examples of inferring target vector representation. AGT, AGTR1, and KNG1 interacted with ACE in the PPI

network, and their inhibitory target vectors were available. The inhibitory target vector of ACE was inferred by

aggregating these three representative inhibitory target vectors using weighted averaging.

https://doi.org/10.1371/journal.pone.0282042.g002
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that occurs when the number of genetically perturbed signatures skewed on a particular cell

line. The process also allows us to compute embedding for targets that are at least 15% wider

than when using gene expression in a single cell line (S1 Table).

The weighted average procedure is a method of weighted averaging of multiple signatures

based on a pairwise correlation matrix (Fig 2A) [19, 20]. Suppose that xt 2 R
978 (t = 1, 2. . ., n)

is a vector representing each L1000 signature of a landmark gene (normalized gene expression

profiles for directly measured genes) for a specific functional perturbation, where t represents

the elements of the signatures and n represents the total number of signatures to be aggregated.

To generate the aggregated vector xAgg, a pairwise correlation matrix Rn×n is defined as the

Spearman coefficient between signature pairs,

R ¼

r11 � � � r1n

..

. . .
. ..

.

rn1 � � � rnn

2

6
6
4

3

7
7
5 ð1Þ

where ρij denotes the Spearman correlation coefficient between the signature pairs xi and xj for

i, j 2 {1, 2, . . ., n}.

The weight vector (w) is obtained by summing across the columns of R after excluding triv-

ial self-correlation and then normalizing them,

w ¼
1

jT R � Ið Þj
R � Ið Þj; ð2Þ

where I denotes the identity matrix, and j denotes column vectors of 1s.

Finally, xAgg is obtained from the average of xt based on the weight vector w,

xAgg ¼
Xn

t¼1
wtxt; ð3Þ

where wt denotes the t-th entries of w. By aggregating the signatures across experimental con-

ditions and cell lines, we obtained the representative vectors of 3,114 and 4,345 activatory and

inhibitory targets, respectively, embedded in 978 dimensions (Fig 2B). The obtained target vec-

tor representation was used as target features of DTIs in an original dataset to be constructed

later.

The target list of the obtained vector contained only a fraction of the druggable targets, thus

significantly limiting the target space of our method. Therefore, the target space was extended

by inferring the vector representation of activatory or inhibitory signatures based on the PPI

network. The PPI network was constructed from the STRING database (v 11.0) [21] by setting

the organism as “homo sapiens” and an interaction score> 0.9 (highest confidence score sug-

gested by STRING). The vector representation of the activation or inhibition target was

inferred by aggregating the vector representation of the interacting protein in the PPI network

using a weight averaging procedure (Fig 2C). To ensure the quality of the data, we limited the

inferred targets to proteins with at least three neighbours whose target vectors are available.

The inferred target vector representation was used as target features of DTIs in an additional
dataset to be constructed later.

2.3. Collection of activatory and inhibitory DTIs

Known activatory and inhibitory DTIs used as ground truth in our model were obtained from

the Therapeutic Target Database (TTD) 2.0 (accessed October 15, 2020) [22] and DrugBank

5.1.7 (accessed January 12, 2021) [23]. We selected DTIs that explicitly defined activatory or
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inhibitory interactions (“activator” or “agonist” for activatory DTIs and “inhibitor” or “antago-

nist” for inhibitory DTIs). Identifiers of compounds and targets with their annotations were

standardized by PubChem chemical ID and gene symbols, respectively. The chemical struc-

tures of our dataset were retrieved in canonical SMILE format using the Python package Pub-

ChemPy. From TTD, we obtained 2,925 activatory and 32,417 inhibitory DTIs between 24,145

compounds and 2,117 targets. From DrugBank, we obtained 919 activatory and 4,719 inhibi-

tory DTIs between 1,600 compounds and 1,022 targets.

2.4. Dataset construction

Two types of data sets were constructed respectively, which we refer to as the original dataset
and the additional dataset (Fig 3A). Specifically, original dataset was constructed by selecting a

known pair of activatory and inhibitory DTI pairs that include a compound for which ECFPs

can be calculated and a target for which transcriptome data are available. Another dataset,

additional dataset, was constructed by selecting DTI pairs that include a compound for which

ECFPs can be calculated and a target for which inferred transcriptome data are available.

Finally, the integrated dataset was constructed by combining these data sets and contained

1,755 activatory DTIs between 1,265 compounds and 273 targets, and 17,873 inhibitory DTIs

between 12,259 compounds and 1,034 targets (Table 1).

Two independent datasets, Drugbank dataset and LIT-PCBA dataset, were constructed to

measure the generalized ability of the trained model on predicting unseen DTIs (Fig 3B). We

Fig 3. Construction of a dataset of known DTIs and features. (A) Training dataset construction. Transcriptome

profiles were obtained from the L1000 array data and then aggregated to generate a representative target vector. A

mol2vec method was used to generate representative vectors for compounds. DTIs with modes of action were collected

from the TTD. The original dataset was constructed by selecting activatory and inhibitory DTI pairs that include a

compound for which ECFPs can be calculated and an original target (i.e., a target for which genetically perturbed

transcriptome data are available). The additional dataset was constructed by selecting activatory and inhibitory DTI

pairs that include a compound for which ECFPs can be calculated and an additional target (i.e., a target for which

inferred transcriptome data are available). (B) Independent dataset construction. Two independent datasets,

Drugbank and LIT-PCBA datasets, were constructed to evaluate the reliability of predictions for unseen DTI in

training datasets.

https://doi.org/10.1371/journal.pone.0282042.g003
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selected two datasets as independent datasets because Drugbank provides broad and highly

versatile DTI information, and LIT-PCBA offers systematically integrated high-throughput

screening assay results. It is noteworthy that LIT-PCBA provides whether compounds are

active/inactive for a specific target, so evaluation in this dataset can measure generalized per-

formance in independent datasets where both negative samples and positive samples are

explicitly defined. Each dataset was constructed by gathering a known pair of activatory and

inhibitory pairs that include a compound with ECFPs and a target with (inferred) transcrip-

tome data. Collectively, Drugbank datasets contained 808 activatory DTIs and 4,267 inhibitory

DTIs (all positive samples), and LIT-PCBA datasets contained 318,096 activatory DTIs (30

positive and 318,066 negative samples) and 2,490,674 inhibitory DTIs (10,003 positive and

2,480,671 negative samples).

2.5. Training classifier models

The features of activatory and inhibitory DTIs were fed into classifier models to predict their

interactions. The DTI prediction performance was evaluated by logistic regression (Logit), ran-

dom forest (RF), multilayer perceptron (MLP), and cascade deep forest (CDF) models. RF is

ensemble model that combine the probabilistic predictions of a number of decision tree-based

classifiers to improve the generalization capability over a single estimator. MLP is a supervised

learning algorithm that can learn nonlinear models. The architecture and hyperparameters of

the MLP models in this study are summarized in S1 Fig. CDF employs a cascade structure,

where the model consists of a multilayered architecture, and each level consists of an RF and

extra trees [24]. Each level of cascade receives feature information processed by the preceding

level and conveys its result to the next level. A key feature of the updated CDF model, deep for-

est 21, is that it automatically determines the number of cascade levels that are suitable for the

training data by terminating the training procedure when performance improvements through

adding cascade levels are no longer significant [25]. Greedy-search methods were used to select

optimized hyperparameters of CDF as follows: the number of estimators in each cascade layer,

the number of trees in the forest, the function to measure the quality of a split, maximum

depth, minimum number of samples to be split, maximum features, and minimum impurity

decrease. The detailed search range of the optimization is summarized in S2 Table.

2.6. Performance evaluation

The performance on the training set was evaluated using fivefold cross-validation (CV). In

each fold, a training set was constructed by randomly selecting a subset of the 80% known DTI

Table 1. Overview of the drug–target interaction dataset for model training and external validation.

Activatory DTIs Inhibitory DTIs

No. of compounds No. of targets No. of DTIs No. of compounds No. of targets No. of DTIs

Internal sets

Original dataset 457 87 513 6,789 702 8,328

Additional dataset 887 186 1,242 6,781 332 9,545

Integrated dataset 1,265 273 1,755 12,259 1,034 17,873

External sets

DrugBank* 374 172 808 1,217 909 4,267

LIT-PCBA 130,412 3 30/318,066# 302,567 12 10,003/2,480,671#

*A dataset with only DTIs unseen in the TTD dataset.
#Number of active and inactive DTIs.

https://doi.org/10.1371/journal.pone.0282042.t001
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pairs (assigned as the positive sample) and the randomly selected DTI pairs (assigned as the

negative sample), and the test set was constructed by selecting the remaining 20% of the

known DTI pairs and a matching number of randomly selected DTI pairs. For each fold of the

predictive model, the following metrics were calculated:

Precision ¼ TP= TPþ FPð Þ

True positive rate ¼ TP= TPþ FNð Þ

False positive rate ¼ FP= FPþ TNð Þ;

where TP is true positive, FP is false positive, FN is false negative, and TN is true negative. We

plotted the receiver operating characteristic (ROC) curves based on different recall and false

positive rates and precision-recall curves based on different precision and recall values under

the conditions of different classification cut-off values. Area under the receiver operating char-

acteristic curve (AUROC) and Area under the precision-recall curve (AUPR) were calculated

over each fold, and their average values were recorded as measures of model performance.

AUPR provides a better assessment in highly skewed datasets, whereas AUROC is prone to be

an overoptimistic metric. Thus, we used AUPR as the key metric for model selection [26, 27].

To evaluate the performance in the specific threshold in the ROC curve, the enrichment in

true actives at a constant x% false positive rate over random picking (EFx%) was calculated as

follows:

EFx% ¼
TPx%=ðTPx% þ FPx%Þ

ðTPx% þ FNx%Þ=ðTPx% þ TNx% þ FPx% þ TNx%Þ

Where TPx%, FPx%, FNx% and TNx% are the number of true positive, false positive, false nega-

tive and true negative samples at the threshold showing a false positive rate of x%, respectively.

The EFx% value represents the enriched true positive rate compared to the expected value at

the threshold representing a false positive rate of x%. For example, the EF1% value indicates

the enrichment of the true positive rate compared to the chance level (0.01) at the threshold

where the false positive rate is 0.01.

3. Results

3.1. Overview of AI-DTI

We developed AI-DTI for the in silico identification of activatory and inhibitory DTIs. AI-DTI

is composed of two models that predict activatory DTIs and inhibitory DTIs (Fig 1A). When

an input query (drug-target pair) is received, AI-DTI transforms it into activatory and inhibi-

tory DTI feature vectors, and then estimated their interaction scores using each prediction

model. The feature vector of DTIs was constructed by concatenating the compound vector cal-

culated by mol2vec and genetically perturbed transcriptomes (gene-over expression signatures

for activatory DTIs and gene-knock out signatures for inhibitory DTIs, Fig 1B). The mol2vec

method transforms the structural information of a 2D compound into a continuous multidi-

mensional vector. A genetically perturbed transcriptome reflects the response of the biological

system following genetic perturbations, which is associated with the biological responses when

drugs activate or inhibit specific gene targets [28–30].

The procedure for constructing AI-DTI and demonstrating its performance on indepen-

dent dataset consisted largely of the following three steps below. First, we constructed three

types of data sets–Original dataset, additional dataset, and integrated dataset–consisting of
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DTI labels and their feature vectors. Original and additional datasets were constructed by

selecting known pairs of activatory and inhibitory DTIs that contained targets for which tran-

scriptome data could be measured or inferred, respectively. Integrated Dataset refers the sum

of these two datasets. We assigned known DTIs for each mode of action constructed from

each dataset as positive samples. Due to the lack of an adequate golden-standard negative set,

negative samples are inevitably generated by random selection of non-interacting pairs from

these drugs and targets in each dataset. Then, we trained various classifiers to discriminate

positive (activatory or inhibitory) and negative DTIs on Original dataset and selected the opti-

mized one with the best performance. The performance of the classifier was also evaluated in

additional datasets and integrated datasets. Finally, the generalized performance of the opti-

mized classifier trained on the integrated dataset was measured using independent datasets

consisting of unseen DTIs [23, 31].

3.2. Selecting an optimized classifiers of AI-DTI

We first aimed to select the optimized classifier of the model on the original dataset. The data-

set contained 1,755 and 17,873 activatory and inhibitory DTIs (assigned as the positive sam-

ple). Because the golden negative data set is not available, we randomly selected the non-

positive samples as many as the number of positive samples and assigned them as negative

samples. We trained Logit, RF, MLP, and CDF models on the dataset and then evaluated the

performance. The performance of the model was evaluated under a condition where 5-fold

CV was repeatedly conducted 5 times with different data split. Our results showed that the

CDF model yielded the highest AUROC and AUPR values in both situations when predicting

activatory or inhibitory targets (Table 2). We subsequently tried to optimize the CDF model

and found that the highest AUROC and AUPR values were obtained in all situations when the

following hyperparameters were selected: ‘500’ as the number of trees and ‘8’ as the number of

estimators (S2 Table). The optimized CDF model achieved AUROC and AUPR values of 0.880

and 0.899 for predicting activatory DTIs and 0.935 and 0.946 for predicting inhibitory DTIs,

respectively.

Actually, DTI prediction in real world is an imbalanced classification problem where posi-

tive labels are sparse, so the performance measured on the dataset in which positive and nega-

tive samples are balanced does not fully reflect the situations in real drug discovery scenarios.

To mimic the practical situation in which positive DTI is sparse, we also performed an addi-

tional CV test, in which the negative set in the test data contained ten times more negative

samples than positive samples. With this experimental setup, the known DTI (i.e., positive

samples) accounts for only 9% of the total data set, allowing a performance assessment closer

to the situation of real drug discovery. Although the scores dropped when compared to the

Table 2. Assessment of performance using the original datasets through fivefold cross-validation.

Sample ratio = 1:1 (mean±S.D) Sample ratio = 1:10 (mean±S.D)

Activatory DTIs Inhibitory DTIs Activatory DTIs Inhibitory DTIs Activatory DTIs Inhibitory DTIs Activatory DTIs Inhibitory DTIs

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Logit 0.725±0.032 0.690±0.041 0.823±0.007 0.806±0.006 0.697±0.027 0.166±0.016 0.823±0.007 0.340±0.004

RF 0.868±0.022 0.890±0.021 0.921±0.004 0.932±0.003 0.858±0.026 0.559±0.054 0.923±0.004 0.729±0.010

MLP 0.841±0.029 0.851±0.035 0.920±0.004 0.918±0.006 0.835±0.020 0.379±0.038 0.916±0.004 0.559±0.018

CDF# 0.876±0.021 0.899±0.020 0.934±0.004 0.945±0.004 0.871±0.021 0.611±0.046 0.936±0.004 0.775±0.011

Boldface indicates the highest value for each performance metric. Logit, logistic regression; RF, random forest; MLP, multilayer perceptron; CDF, cascade deep forest.
# CDF model with 2 estimators in each cascade layer and 100 trees in each forest.

https://doi.org/10.1371/journal.pone.0282042.t002
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previous test, we observed that the optimized CDF and RF models still achieved high AUPR

values (Table 2). The AUPR of the MLP model was significantly lower than that of the above

two models, indicating that the performance of the MLP model was insufficient in the skewed

dataset. Considering the highest performances in the experimental setup, we decided to

employ the optimized CDF model as the classifier model of AI-DTI in subsequent analyses.

3.3. Performance comparison with previous models

The performances of our model were evaluated with previous approaches. We first focused on

the performance evaluation in terms of different molecular embedding methods. Performance

was measured under the same conditions as above in which 5-fold CV was repeated 5 times

using a dataset in which the same number of positive and negative samples were selected. We

found that the combination of mol2vec and CDF showed the highest performance for both

AUROC and AUPR (Table 3). This result is consistent with a previous report that showed

superior performance in the prediction of compound properties and bioactivity compared to

Morgan fingerprints, chemical descriptors and some deep learning-based embedding models

[17]. Taken together, we showed that mol2vec can provides rich information that can help

accurately classify activatory and inhibitory DTIs.

The performance of our model was also compared with joint learning, a previous approach

proposed by Sawada et al [16]. They constructed feature vectors based on the drug-induced

signature and trained classifier models that predicts activatory and inhibitory DTIs for each

target using joint learning. For comparison under the same conditions, we selected DTIs and

their features from the original dataset for which drug-induced signatures were available in

L1000 dataset. We obtained 55 activatory DTIs between 28 targets and 47 drugs and 592 inhib-

itory DTIs between 217 targets and 367 drugs. We note that any target included in all activa-

tory DTIs have an insufficient number of DTIs (less than 5). Since this sparsity makes it

difficult to properly assign a positive DTI to each fold during CV experiments, so we trained

models and evaluate their performances focusing on the inhibitory DTI dataset which have

sufficient number of DTIs for each target. As a result of comprehensive comparative evalua-

tion over hyperparameters of joint learning and classifiers of AI-DTI, we found that AI-DTI

showed higher AUROC and AUPR than joint learning (S3 Table). These results indicate that

feature vectors calculated utilizing mol2vec could be more useful than drug-induced signatures

in predicting DTIs.

3.4. AI-DTI can predict diverse druggable targets

The drawback of previous models using genetically perturbed transcriptomes is that the range

of predictable targets is constrained to the targets for which the genetically perturbed

Table 3. Assessment of performance across compound embedding methods.

Activatory DTIs Inhibitory DTIs

AUROC AUPR AUROC AUPR

MACCS 0.883±0.023 0.852±0.028 0.941±0.005 0.923±0.006

Morgan 0.861±0.026 0.837±0.033 0.935±0.004 0.923±0.006

Mol2vec 0.885±0.024 0.863±0.027 0.945±0.004 0.934±0.005

Boldface indicates the highest value for each performance metric. Logit, logistic regression; RF, random forest; ERT, extremely randomized trees; MLP, multilayer

perceptron; CDF, cascade deep forest.
# CDF model with 2 estimators in each cascade layer and 100 trees in each forest.

https://doi.org/10.1371/journal.pone.0282042.t003
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transcriptome is measured. For example, in a previous study [16], the number of predictable

activatory and inhibitory DTI targets was only 77 and 769, respectively, covering only a frac-

tion of druggable targets. To broaden the applicability of our method, we attempted to expand

the target space of our model by inferring target vectors based on PPI networks (see Materials
and Methods, Fig 2C). The assumption for using this method is that genetically perturbed tran-

scriptomes are correlated with those of functionally interacting proteins. The inferring proce-

dure calculates a representative vector for a target whose genetically perturbed transcriptome

was not measured, thus enabling the construction of the input feature for wider targets. To

check the reliability of the method, we first measured correlation between inferred data and

genetically perturbed transcriptome. We estimated 1,673 activatory target vectors and 2,805

inhibitory target vectors for genes with measured transcriptome and computed the Spearman

correlation between the inferred vectors and genetically perturbed transcriptome for the same

gene. For comparison, we also calculated the Spearman correlations between genetically per-

turbed transcriptomes and inferred vectors of other genes. We found that the values of correla-

tion between the same gene was significantly higher than those of other genes (p< 0.001 for

both activatory and inhibitory targets, S2 Fig).

We then evaluated the predictive performance of the DTI in an additional dataset where

target vectors consist of the inferred transcriptome. The performance of the model was mea-

sured in the same manner as in the above experiments. The results showed that the CDF

model achieved satisfactory AUROC and AUPR values in the extended dataset (Table 4), indi-

cating that activatory and inhibitory DTIs can be accurately predicted even with the inferred

target vectors. We observed that there was no significant change in the performance when

training the model by integrating the original dataset and extended dataset and when training

the model using a separate dataset (Table 4). For ease of use, we decided to conducted subse-

quent analysis using a trained model in an integrated dataset that incorporates the original
dataset and the extended dataset. It is noteworthy that our model trained in the datasets can

predict more than 70% of druggable targets (targets that appeared in TTD), indicating that

AI-DTI can be employed to predict a wide range of drug targets.

3.5. AI-DTI achieved substantial performance on independent datasets

To test the generalization abilities of the model, the performance of AI-DTI was further evalu-

ated on independent datasets. We obtained activatory and inhibitory DTIs from DrugBank

and selected DTIs that meets the following two criteria: (1) DTI pairs that include a compound

for which ECFPs can be calculated and a target for which (inferred) transcriptome profiles are

available and (2) DTIs that were not seen during the training phase (Table 1). We were

Table 4. Assessment of the performance of the optimized CDF model for various datasets.

Sample ratio = 1:1 (mean±S.D) Sample ratio = 1:10 (mean±S.D)

Activatory DTIs Inhibitory DTIs Activatory DTIs Inhibitory DTIs

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Original dataset 0.880±0.029 0.899±0.019 0.935±0.003 0.946±0.003 0.873±0.007 0.629±0.033 0.939±0.004 0.780±0.007

Additional dataset 0.873±0.011 0.869±0.013 0.953±0.002 0.957±0.002 0.864±0.012 0.430±0.030 0.955±0.002 0.800±0.008

Separate model* 0.875±0.011 0.878±0.011 0.944±0.002 0.952±0.002 0.867±0.009 0.488±0.022 0.947±0.002 0.790±0.004

Integrated model# 0.875±0.010 0.881±0.008 0.943±0.002 0.951±0.001 0.869±0.008 0.489±0.023 0.946±0.002 0.786±0.005

Boldface indicates the highest value for each performance metric between the separate model and integrative model.

*Models trained on the original and additional datasets separately.
#Models trained on an integrated dataset.

https://doi.org/10.1371/journal.pone.0282042.t004
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extremely careful that data leakage can significantly affect the performance of the model, and

found that this process could successfully identify independent DTIs that are unseen in the

training phase. All the remaining non-positive samples between drugs and targets were

assigned to the negative samples. We predicted interaction scores using AI-DTI and evaluated

their performances on predicting activatory and inhibitory DTIs. We found that our models

achieved satisfactory AUROC and AUPR values (Fig 4A). Note that only a small ratio of the

samples of the datasets are positive samples (1.26% and 0.03% for activatory and inhibitory

DTIs, respectively), and this imbalance could be more unfavourable condition for DTI classifi-

cation. Even on the highly skewed dataset, the optimized CDF-based model achieved the high-

est AUROC of 0.773 for activatory DTIs and 0.723 for inhibitory DTIs. The precision-recall

curves also revealed that the performance of the optimized CDF model was still better than

that of the other models. Taken together, these results indicate the generalizability of our

model to predict DTIs in which the targets were unseen during the training phase.

Evaluating the performance on the dataset by assigning nonpositive samples as negative

samples does not fully reflect practical drug discovery scenarios. To this end, we evaluated the

performance of AI-DTI in another benchmark dataset, LIT-PCBA [31]. A key feature of

LIT-PCBA is that it systematically integrates high throughput screening datasets consisting of

components that active or inactive to targets. Therefore, performance evaluation on this data-

set could reflect more realistic drug discovery scenarios where negative samples are explicitly

defined as well as positive samples. We predicted activatory and inhibitory DTIs using the

optimized CDF model and compared the performance with the baseline three virtual screen-

ing (VS) methods presented by LIT-PCBA, i.e., the 2D fingerprint similarity method, 3D

shape similarity method, and molecular docking. To reduce the bias of the performance, we

trained our methods ten times using different negative samples and measured the mean per-

formance on a fully processed target set. The results show that AI-DTI achieved a higher mean

AUROC than those achieved by conventional VS methods optimized with a max-pooling

approach (Fig 4B). Specifically, our method achieved the highest AUROC values in all target

sets (FEN1, IDH1, KAT2A, and VDR) where the other VS methods produced worse AUROC

values than chance and for three target sets (ALDH1, FEN1, and KAT2A) that were unseen in

the training phase. Moreover, our method achieved higher EF1% values than conventional

methods for all activatory ligands (ESR_ago, FEN1, and OPRK1) and one inhibitory ligand

(FEN1). It is worth noting that AI-DTI is a large-scale method that can predict a wide range of

targets, whereas the other comparative models are local models built separately to predict spe-

cific protein targets. In summary, we found that our model still offers superior performance

for classifying active and inactive compounds in high-throughput screening datasets contain-

ing DTIs with an unseen target and/or an unseen compound.

3.6. AI-DTI can predict DTIs for novel diseases

Another approach to assessing the practicality of a DTI predictive model could be whether it

can aid the drug discovery process for unseen diseases. In other words, evaluating the perfor-

mance of DTIs for unseen diseases is expected to assess their generalized ability to guide tar-

get-based drug discovery processes. We thus attempted to test whether AI-DTI could identify

the DTIs of candidate drugs for COVID-19 treatment. Validated DTIs for COVID-19 were

collected from DrugBank, and DTIs that met two criteria were further selected as follows: (1)

DTIs containing a compound for which ECFPs could be calculated and a target with (inferred)

transcriptome profiles available and (2) DTIs that were not seen during the training phase. We

employed optimized CDF-based models to predict the activatory or inhibitory interaction

scores for validated DTIs. We regard the validated DTI to be rediscovered when the predicted
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score exceeds the default threshold of our model (0.5). To assess how uncommon the predicted

score is, we constructed a reference distribution and compared a relative rank of the score (i.e.,

top %) to the reference distribution of interaction scores. The reference distribution was

defined as the distribution of interaction scores calculated using our method for DTI pairs

between 2500 FDA-approved drugs and a target of interest.

Fig 4. Assessment of performance on independent datasets. (A) Performance curves for activatory (top) and

inhibitory (bottom) DTIs on the DrugBank dataset. *CDF model with 8 estimators in each cascade layer and 500 trees

in each forest. Logit, logistic regression; RF, random forest; MLP, multilayer perceptron. CDF, cascade deep forest. (B)

Performance comparison between our optimized model and the conventional virtual screening methods on

LIT-PCBA. * CDF model with 8 estimators in each cascade layer and 500 trees in each forest.

https://doi.org/10.1371/journal.pone.0282042.g004
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We found that approximately half of the DTIs (12/25) were successfully rediscovered by

our method, of which three and five activatory and inhibitory DTIs were found to be in the

top 5%, respectively (Table 5). It is noteworthy that the targets of two activatory DTIs (meten-

kephalin—OPRM1 and metenkephalin—OPRM1) and two inhibitory DTIs (ifenprodil—

GRIN1 and ifenprodil—GRIN2B) were included in the extended dataset, so the high top per-

centages of these DTIs support the reliability of our results within the extended target space.

On the other hand, the low true positive rate of the inhibitory DTIs (33%, 6/18) might raise

concerns about the reliability of our method’s prediction results. However, except for the three

targets (TNF, HMGB1m and JAK1), we found that all DTI scores between the FDA-approved

drugs and targets showing false-negative results did not exceed the default threshold, which

indicates that these false-negative results did not affect the precision of the predicted results.

Also, we calculated a confusion matrix focused on DTIs between FDA-approved drugs and

related targets with COVID-19, and found that AI-DTI achieved an F1-score more than twice

the chance level (S3 Fig). To facilitate drug repurposing, we used our method to summarize a

list of FDA-approved drugs yielding high scores for COVID-19 targets (S4 and S5 Tables).

Table 5. Predicted results for validated DTIs related to COVID-19.

Mode of action Target name Gene symbol Drug name Score* Top percentage (rank)#

Activation

Peroxisome proliferator-activated receptor gamma PPARG Ibuprofen 0.89 21.52 (538)

Peroxisome proliferator-activated receptor alpha PPARA Ibuprofen 0.61 41.12 (1028)

Nuclear receptor subfamily 1 group I member 2 NR1I2 Dexamethasone 0.75 5.12 (128)

Annexin A1 ANXA1 Dexamethasone 0.17 48.36 (1209)

Glucocorticoid receptor NR3C1 Dexamethasone 0.97 1.48 (37)

Mu-type opioid receptor OPRM1 Metenkephalin 0.92 1.16 (29)

Delta-type opioid receptor OPRD1 Metenkephalin 0.96 1.28 (32)

Inhibition

Tumour necrosis factor TNF Chloroquine 0.21 86.84 (2171)

Glutathione S-transferase A2 GSTA2 Chloroquine 0.11 74.64 (1866)

Glutathione S-transferase Mu 1 GSTM1 Chloroquine 0.15 71.68 (1792)

Toll-like receptor 9 TLR9 Chloroquine 0.09 59.08 (1477)

High mobility group protein B1 HMGB1 Chloroquine 0.10 65.44 (1636)

Tubulin beta chain TUBB Colchicine 0.10 58.84 (1471)

Prostaglandin G/H synthase 2 PTGS2 Ibuprofen 0.95 2.84 (71)

Cystic fibrosis transmembrane conductance regulator CFTR Ibuprofen 0.19 80.56 (2014)

Glutamate receptor ionotropic, NMDA 2B GRIN2B Ifenprodil 1.00 0.08 (2)

Glutamate receptor ionotropic, NMDA 1 GRIN1 Ifenprodil 0.78 6.28 (157)

G protein-activated inward rectifier potassium channel 1 KCNJ3 Ifenprodil 0.07 93.24 (2331)

G protein-activated inward rectifier potassium channel 4 KCNJ5 Ifenprodil 0.07 93.24 (2331)

G protein-activated inward rectifier potassium channel 2 KCNJ6 Ifenprodil 0.07 93.24 (2331)

Histone deacetylase 1 HDAC1 Fingolimod 0.69 17 (425)

Tyrosine-protein kinase JAK3 JAK3 Baricitinib 0.60 2.44 (61)

Tyrosine-protein kinase JAK1 JAK1 Baricitinib 0.44 2.76 (69)

Tyrosine-protein kinase JAK2 JAK2 Baricitinib 0.65 4.2 (105)

Protein-tyrosine kinase 2-beta PTK2B Baricitinib 0.14 27.2 (680)

* Scores that exceed the model’s default threshold are in boldface.
# The top percentage and rank were calculated against the score for 2500 FDA-approved drugs and the corresponding genes.

https://doi.org/10.1371/journal.pone.0282042.t005
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4. Discussion

Accurately identifying DTIs with a mode of action is a crucial step in the drug development pro-

cess and understanding the modes of action of drugs. Here, we present AI-DTI, a novel compu-

tational approach for identifying activatory and inhibitory targets for small molecules. By

leveraging a mol2vec model and genetically perturbed transcriptome, AI-DTI was able to accu-

rately predict active and inhibitory DTIs for a wide range of small molecule and drug targets. The

comprehensive evaluation demonstrated that AI-DTI accurately predicts activatory and inhibi-

tory DTI pairs, even in datasets containing sparse positive samples, DTI pairs unseen in the train-

ing phase, and high-throughput biological assay results. A case study of COVID-19 DTIs shows

that AI-DTI can be used to prioritize activatory and inhibitory DTIs even for unseen diseases.

We believe that AI-DTI can bring significant contributions and advantages in drug discov-

ery and research on the mechanisms of drugs. In drug discovery, our method can be applied to

discover candidate compounds for diseases involving a variety of targets by providing large-

scale predictions between a series of small molecules and a wide range of targets. Also, by pre-

dicting DTIs using only 2D structures, our method can generate plausible hypotheses for

understanding the mechanisms of action including novel compounds and natural products

whose known target information is scarce or sparse.

Among the employed classifier models, we found that the CDF model yielded the highest

performances in our comprehensive experiments. Unlike the deep learning model, the CDF

model automatically determines the complexity of the model in a data-dependent way with

relatively few parameters and achieves excellent performance across various domains, includ-

ing simple DTI prediction [7, 9, 25]. It is difficult to compare performance directly due to dif-

ferences in datasets; however, the our method using the CDF model not only outperformed

the previous model that predicts activatory and inhibitory DTIs but also competed with some

state-of-the-art models that predict only simple interactions while requiring functional anno-

tations of compounds such as drug-drug interactions, drug-disease relationships, and drug

side effects [12, 32, 33].

We showed that AI-DTI is a practical tool that accurately predicts DTIs and their modes of

action; however, there are several limitations of this study with potential for further improve-

ment. First, the prediction performance can be further improved by applying advanced algo-

rithms, such as GCN, which have been recently reported to show state-of-the-art performance

[14]. Since the previous model still requires functional annotation of drugs, such as drug-drug

interactions, an interesting future study will be to develop a model that predicts DTIs more

accurately, even for novel compounds. Second, we used transcriptome profiles transduced

with cDNA and shRNA as target vectors, which could include signal-to-noise issues due to

background noise. The performance of our model may be improved further by upgrades based

on large-scale datasets created using advanced techniques, such as CRISPR. A future direction

of our work is to develop a versatile predictive model that accurately predicts DTIs with vari-

ous modes of action.
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