Skip to main content
. 2023 Apr 12;18(4):e0282042. doi: 10.1371/journal.pone.0282042

Table 3. Assessment of performance across compound embedding methods.

Activatory DTIs Inhibitory DTIs
AUROC AUPR AUROC AUPR
MACCS 0.883±0.023 0.852±0.028 0.941±0.005 0.923±0.006
Morgan 0.861±0.026 0.837±0.033 0.935±0.004 0.923±0.006
Mol2vec 0.885±0.024 0.863±0.027 0.945±0.004 0.934±0.005

Boldface indicates the highest value for each performance metric. Logit, logistic regression; RF, random forest; ERT, extremely randomized trees; MLP, multilayer perceptron; CDF, cascade deep forest.

# CDF model with 2 estimators in each cascade layer and 100 trees in each forest.