Skip to main content
. 2023 Mar 31;19(3):e1011036. doi: 10.1371/journal.pcbi.1011036

Table 9. Performance comparison of BiComp encoding, against LZMA and SW encodings, for drug-target binding affinity prediction, for Davis and Kiba datasets, using feature ablation experiments.

Experiments Davis Kiba
CI(std) MSE rm2(std) AUPR(std) CI(std) MSE rm2(std) AUPR(std)
Feature ablation SW 0.869 (0.001) 0.284 0.541 (0.014) 0.623 (0.005) 0.886 (0.001) 0.168 0.713 (0.016) 0.812 (0.004)
Feature ablation LZMA 0.885 (0.001) 0.279 0.597 (0.015) 0.681 (0.003) 0.877 (0.002) 0.177 0.693 (0.014) 0.803 (0.005)
BiComp-DTA 0.904 (0.001) 0.237 0.696 (0.012) 0.753 (0.006) 0.891(<0.001) 0.167 0.757 (0.012) 0.834 (0.003)

Values of CI, MSE, rm2 and AUPR are provided for BiComp compared to those of LZMA and SW encodings for Davis and Kiba datasets.