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Abstract

Brain iron homeostasis is necessary for healthy brain function. MRI and histological studies have 

shown altered brain iron levels in the brains of patients with multiple sclerosis (MS), particularly 

in the deep gray matter (DGM). Previous studies were able to only partially separate iron-

modifying effects because of incomplete knowledge of iron-modifying processes and influencing 

factors. It is therefore unclear to what extent and at which stages of the disease different processes 

contribute to brain iron changes. We postulate that spatially covarying magnetic susceptibility 

networks determined with Independent Component Analysis (ICA) reflect, and allow for the study 

of, independent processes regulating iron levels.

We applied ICA to quantitative susceptibility maps for 170 individuals aged 9 to 81 years without 

neurological disease (“Healthy Aging” (HA) cohort), and for a cohort of 120 patients with MS and 

120 age- and sex-matched healthy controls (HC; together the “MS/HC” cohort).

Two DGM-associated “susceptibility networks” identified in the HA cohort (the Dorsal Striatum 

and Globus Pallidus Interna Networks) were highly internally reproducible (i.e. “robust”) across 

multiple ICA repetitions on cohort subsets. DGM areas overlapping both robust networks had 

higher susceptibility levels than DGM areas overlapping only a single robust network, suggesting 

that these networks were caused by independent processes of increasing iron concentration. 

Because MS is thought to accelerate brain aging, we hypothesized that associations between age 

and the two robust DGM-associated networks would be enhanced in patients with MS. However, 
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only one of these networks was altered in patients with MS, and it had a null age association in 

patients with MS rather than a stronger association. Further analysis of the MS/HC cohort revealed 

three additional disease-related networks (the Pulvinar, Mesencephalon, and Caudate Networks) 

that were differentially altered between patients with MS and HCs and between MS subtypes. 

Exploratory regression analyses of the disease-related networks revealed differential associations 

with disease duration and T2 lesion volume. Finally, analysis of ROI-based disease effects in 

the MS/HC cohort revealed an effect of disease status only in the putamen ROI and exploratory 

regression analysis did not show associations between the caudate and pulvinar ROIs and disease 

duration or T2 lesion volume, showing the ICA-based approach was more sensitive to disease 

effects.

These results suggest that the ICA network framework increases sensitivity for studying patterns 

of brain iron change, opening a new avenue for understanding brain iron physiology under normal 

and disease conditions.
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1. Introduction

Maintaining brain iron homeostasis is key in regulating healthy brain function. Iron 

is required for normal metabolic processes in the brain such as myelination and 

neurotransmitter synthesis (Connor and Menzies, 1996; Kuhn et al., 1980). However, excess 

iron that is not properly sequestered (e.g. as cytosolic ferritin) can have deleterious effects 

through the formation of reactive oxygen species (Dixon and Stockwell, 2014). A variety of 

factors can alter the iron homeostasis in the brain including healthy aging (Daugherty and 

Raz, 2013; Hallgren and Sourander, 1958; Li et al., 2021), behavioral factors such as body 

mass index (BMI) and cigarette smoking (Li et al., 2021), as well as neurological disorders 

including Parkinson’s disease and multiple sclerosis (MS) (Acosta-Cabronero et al., 2017; 

Stankiewicz et al., 2014).

In MS, increased iron concentrations have been reported in the putamen, caudate, and 

other deep gray matter (DGM) regions and decreased concentrations have been noted in 

the thalamus (Khalil et al., 2015; Stankiewicz et al., 2014; Walsh et al., 2013). Increased 

iron has also been noted in the Rolandic cortex, although at a lower frequency than for 

DGM iron changes (Bakshi et al., 2000). Iron is also know to concentrate at the rim of 

chronically active WM lesions within microglia (Gillen et al., 2018) whereas post mortem 

studies suggested that iron is depleted from normally-appearing WM (Hametner et al., 

2013). These iron alterations may be caused by a variety of different cellular or biochemical 

mechanisms, such as altered iron transport across the blood-brain barrier, inflammatory 

activity, or iron depletion from glial syncytium (decreased concentration) (Schweser et al., 

2018; Stankiewicz et al., 2014).

Brain iron levels can be monitored in vivo by using iron-sensitive MRI techniques such as 

quantitative susceptibility mapping (QSM), which measures the magnetic susceptibility of 
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tissues (Reichenbach et al., 2015; Schweser et al., 2016, 2011). QSM signals are thought 

to reflect paramagnetic iron, which increases the magnetic susceptibility (Langkammer et 

al., 2012), and diamagnetic myelin, which decreases the susceptibility (Hametner et al., 

2018). Therefore, increased susceptibility may arise from either increased iron levels or 

demyelination, whereas decreased susceptibility may arise from decreased iron levels or 

increased myelin. The codependence on myelin complicates the interpretation of MRI-based 

measurements of iron with most techniques, including QSM, particularly under conditions 

where both myelin and iron may be altered.

Most previous studies analyzed brain images either using region-of-interest (ROI) based 

approaches, which consider iron dynamics in each deep gray matter region independent 

from other regions, or voxel-wise approaches, which consider each voxel separately. A 

limitation of these approaches is that they cannot reveal overlaying, independent patterns 

of iron change; the detected signal change is always the sum of the iron changes of 

all contributing factors. Separating overlaying effects of iron change is critical for the 

understanding of the iron physiology of neurological diseases, such as MS, because the 

patterns may have different relationships to the underlying disease processes and act at 

different stages of the disease.

We propose using independent component analysis (ICA) to identify the overlapping 

patterns of iron change in the brain, and postulate that this strategy allows for improved 

separation of disease-related effects from healthy aging effects as compared to traditional 

ROI-based analysis. ICA is advantageous because it decomposes a set of signals that 

were created by mixing (adding) a number of unknown “source” signals into a set of 

statistically independent estimated source signals (“independent components” or “ICs”), 

which are approximations of the unknown true source signals (Comon, 1994). When applied 

to QSM, ICA decomposes a set of susceptibility maps, each resulting from a number 

of overlapping biological processes, into susceptibility networks (or simply “networks” 

based on standard ICA nomenclature) (McKeown et al., 2003), each of which represents a 

statistically independent pattern of susceptibility change. ICA has the additional advantages 

of obtaining outcome measures without prior assumptions on involved anatomical regions 

in a hypothesis-free manner and without reference to external variables such as subject 

demographics and disease status. ICA explains each observed susceptibility map as the 

weighted sum of all networks, with network- and subject-specific loading coefficients used 

as weights (cf. Fig. 1A and 1B). The relationship between areas involved in a network can 

be revealed by visual analysis of the ICA components (Fig. 1C).

Loading coefficients indicate the relative contribution of a network to the subject’s 

(measured) susceptibility map and, hence, can be used as the basis for patient-control 

comparisons to understand if networks are affected by disease-specific susceptibility 

patterns. Positive loading coefficients add a positive susceptibility contribution to the 

measured map when multiplied by a positive network area, whereas negative loading 

coefficients will give a negative contribution (i.e., negative susceptibility). When considering 

brain iron, this feature is expected to (i) enable the discovery of networks of anatomical 

regions that are affected by common patterns of iron change and, thereby, (ii) enable the 

study of disease-specific patterns with higher sensitivity than conventional methods.
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A final consideration when interpreting ICA networks is reproducibility across repeated 

runs. There are an infinite number of solutions to classical ICA decompositions (Tikhonov 

et al., 1995), implying that ICA decompositions of the same group with different initial 

conditions, or separate groups from the same population, may yield different sets of 

networks. This limitation can be overcome by template-matching procedures that pair 

ICA networks from different decompositions on the basis of spatial similarity (Garrity et 

al., 2007). Matching of networks implies that a given network is present in both ICA 

decompositions and has not been split into sub-networks.

The present study sought to determine if DGM-associated susceptibility networks exist in 

neurologically normal brains, if these networks are altered in MS, and if other abnormal 

networks are present in patients with MS.

2. Materials and methods

To answer the first question, we identified DGM susceptibility networks and assessed their 

associations with other regions in the DGM, WM, cerebellum, and cortex in a cohort of 

individuals referred to as the “healthy aging” (HA) cohort. We focused the analysis on 

DGM-associated networks for three reasons: (i) Studies showed that DGM iron is associated 

with a wide variety of behavioral and clinical factors, such as smoking, body mass index 

(BMI), and neurological diseases (Daugherty and Raz, 2013; Hallgren and Sourander, 

1958; Li et al., 2021; Pirpamer et al., 2016; Stankiewicz et al., 2014), (ii) MRI-based 

iron assessment is most reliable in the DGM (as compared to cortical and white matter 

regions) (Schweser et al., 2011), and (iii) most previous QSM studies focused on DGM 

regions facilitating the comparison to published findings with conventional analysis methods 

(Ravanfar et al., 2021; Stüber et al., 2016). We hypothesized that DGM areas intersecting 

multiple HA networks would have high iron levels relative to DGM areas intersecting only 

a single network, based on previous findings that most iron-modifying factors increase iron 

levels in healthy individuals (Aquino et al., 2009; Daugherty and Raz, 2013). We also 

hypothesized that identified networks would be differentially associated with demographic, 

clinical, and certain behavioral aspects, based on previous findings that DGM regions are 

differentially associated with these factors (Li et al., 2021; Pirpamer et al., 2016).

To answer the second and third questions, we tested the hypothesis that networks are altered 

in MS patients, as quantified by their loading coefficients using ICA decompositions from 

a cohort of MS patients and age- and sex-matched HCs. Additional regression analyses 

were performed between the disease-related networks and known iron-modifying behavioral 

factors as well as disease duration (“dd”), total T2 lesion volume, and Expanded Disability 

Status Scale (EDSS) score to relate these networks to potential underlying physiological 

mechanisms.

2.1 Participants and data collection

This retrospective, IRB-approved study involved two overlapping cohorts. The healthy aging 

(HA) cohort comprised 170 subjects without a clinically diagnosed neurological disease. 

The second cohort was previously described (Schweser et al., 2018), and comprised 120 

patients with MS and 120 healthy controls (HCs): 40 patients with clinically isolated 
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syndrome (CIS) and 40 age- and sex-matched HCs, 40 patients with relapsing-remitting 

MS (RRMS) and 40 matched HCs, and 40 patients with secondary progressive MS (SPMS) 

with 40 matched HCs. A total of 74 HCs from the MS/HC cohort were also included 

in the HA cohort. The study was approved by the local ethical standards committee, and 

written informed consent was obtained from all participants according to the Declaration of 

Helsinki.

Demographic, clinical, and behavioral data were collected during an in-person interview 

and with additional standardized questionnaires. The full questionnaire form was previously 

published (Dolic et al., 2011). Details on age, sex, disease duration, and EDSS scores of the 

cohorts are provided in Table 1.

2.2 MRI and reconstruction

Imaging was performed at the same 3T scanner (Signa Excite HD 12.0; General Electric, 

Milwaukee, WI, USA) using an eight-channel head-and-neck coil and using the same three-

dimensional gradient-echo sequence with first-order flow compensation in read and slice 

directions (matrix, 512 × 192 × 64; 0.5 × 1 × 2 mm; 12° flip; echo time, 22 ms; retention 

time, 40 ms; bandwidth, 13.89 kHz). Phase images were unwrapped (Abdul-Rahman et al., 

2007), background field corrected (Li et al., 2011; Schweser et al., 2011), and converted 

into field maps, assuming zero-phase at TE=0 (Schweser et al., 2016). Susceptibility maps 

were calculated using homogeneity-enabled incremental dipole inversion with whole-brain 

referencing (Schweser et al., 2012). Susceptibility maps were normalized to a custom 

isotropic 1-mm3 susceptibility brain template using advanced normalization tools (Fig. 2A) 

(Hanspach et al., 2017), which allowed for comparisons between subjects with different 

brain morphologies such as pediatric subjects and adults, and smoothed with a 1-mm3 

Gaussian kernel. This procedure was used because QSM provides much clearer delineation 

of the DGM structures than T1-weighted images, allowing for higher accuracy registration 

in those areas (Hanspach et al., 2017). The following additional sequences were acquired 

during the same imaging session for all subjects: spin-echo T1-weighted imaging (matrix, 

256 mm × 192 mm; FOV, 256 mm × 192 mm; echo time, 16 ms; retention time, 600 ms); 

FLAIR (matrix, 256 mm × 192 mm; FOV, 256 mm × 192 mm; echo time, 120 ms; inversion 

time, 2100 ms; retention time, 8500 ms; flip angle, 90°; echo-train length, 24); dual fast 

spin-echo proton density- and T2-weighted imaging (matrix, 256 mm × 192 mm; FOV, 256 

mm × 192 mm; TE1, 9 ms; TE2, 98 ms; repetition time, 5300 ms; echo-train length, 14); and 

a 3D high-resolution T1w fast spoiled GRE sequence (flip echo time, 2.8 ms; inversion time, 

900 ms; retention time, 5.9 ms; flip angle, 10°; isotropic 1 mm resolution).

2.3 ICA

ICA (FSL MELODIC [multivariate exploratory linear optimized decomposition into 

independent components]) was applied to each cohort to obtain networks of statistically 

independent source components with associated subject-specific weights (loading 

coefficients; see Fig. 1 and the Introduction section for a schematic and interpretation of 

the ICA decomposition process) (Beckmann and Smith, 2004). The number of components 

was set to 70 for comparability with previous studies (Douaud et al., 2014; Smith et al., 

2009), and data were variance-normalized pre-ICA and mixture-modeled post-ICA. The 
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ICA decompositions were then prefiltered by searching for and excluding nonrepresentative 

subjects in the cohort, guided by outliers in the loading coefficients. Reasons for outliers 

were QSM reconstruction errors and extremely high DGM iron.

We were not able to identify clinical conditions explaining extreme iron load. Considering 

the inclusion criteria, we assumed the findings were related to unidentified, subclinical 

pathology, justifying exclusion from the HA cohort. A second decomposition was applied to 

the remaining subjects to give a final ICA decomposition.

2.4 Identification of DGM-associated networks in the HA cohort

Anatomical network associations were assessed using brain atlases non-linearly registered 

to the brain template, which were visually assessed for registration quality. HA cohort-

derived networks associated with DGM regions (referred to as DGM networks) were 

identified by calculating average Z-scores in the whole thalamus, caudate, and putamen 

(Harvard-Oxford subcortical atlas) as well as in the subthalamic nucleus, substantia nigra, 

red nucleus, and globus pallidus interna (GPi), and globus pallidus externa (AHEAD 

atlas). (Fig. 2B, subcortical atlas) (Alkemade et al., 2020; Desikan et al., 2006). Left and 

right hemispheres were considered separately due to previous reports of inter-hemispheric 

magnetic susceptibility differences in people with neurological disease (Xu et al., 2008) and 

in multiple sclerosis patients (Hagemeier et al., 2018a). DGM networks were those with an 

average absolute Z-score (|Zav|) of > 4.05 across the whole area of one or more regions, 

corresponding to a P value of < 0.001 in two-tailed t tests with Bonferroni correction for 16 

comparisons (regions) (Woo et al., 2014).

Additional anatomical relationships were analyzed by adding a cortical atlas (64 regions 

total) (Desikan et al., 2006), a thalamic subnuclei atlas (14 subregions total) (Najdenovska et 

al., 2018), a cerebellar gray matter atlas (28 regions) (Diedrichsen et al., 2009), and a white 

matter tract atlas (48 regions) (Mori et al., 2008). Percent overlaps were calculated between 

atlas subregions and the robust DGM networks (thresholding at |Zav| > 3.3, corresponding to 

P < 0.001, two-tailed t tests).

2.5 Network robustness analysis and MS/HC network matching

The internal reproducibility (robustness) of each HA cohort DGM network was assessed 

by repeating source separation 20 times on subsets of 84 randomly sampled subjects with 

replacement. The DGM networks were then matched to the maximally Pearson-correlated 

counterpart in each iteration (based on vectorized Z-score maps) (Duann et al., 2003). The 

average of these correlations (Corrav) was defined as network robustness. Low robustness 

was defined as a Corrav of < 0.3, moderate robustness was defined as a Corrav of > 0.3 

and < 0.7, and strong robustness was defined as a Corrav of > 0.7 according to previous 

classifications (Dancey and Ready, 2007). Network robustness was visualized by calculating 

probability maps of the fraction of the 20 DGM network-matched ICA iterations that were 

significant (|Z| > 3.3) for each voxel.

A similar robustness analysis was performed for the additional MS/HC disease-associated 

networks (see section 2.8, “Comparisons of networks”, below). For these networks, source 

separation was repeated 20 times on random subsets of 120 subjects, with 20 subjects 
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randomly selected without replacement from each of the groups to ensure each group was 

represented in the final sample (CIS, RRMS, SPMS, CIS-HVs, RRMS-HVs, and SPMS-

HVs).

Each HA cohort-derived DGM network was matched to an equivalent network in the 

MS/HC group by nonlinearly transforming both sets of Z-score maps to MNI152 space, 

calculating the Pearson correlation with each vectorized Z-score network map in the MS/HC 

group, and selecting the MS/HC network with the highest correlation coefficient (rmax). All 

HA DGM networks were included in this analysis, including networks with low robustness, 

to assess the specificity of HA cohort networks to the HA cohort and the specificity disease-

associated networks to the MS/HC cohort (see section 2.8 “Comparisons of networks”, 

below). Similar to that for the robustness analysis, weakly matched was defined as a rmax of 

< 0.3, moderately matched was defined as a rmax of > 0.3 and < 0.7, and strongly matched 

was defined as a rmax of > 0.7. A similar matched procedure was applied in the reverse 

direction matching MS/HC disease-related networks to HA cohort networks to identify 

disease-specific networks.

2.6 Average susceptibility values in HA cohort DGM networks

Susceptibility values were averaged voxel-wise across subjects in the DGM subcortical 

atlas. Student’s t tests compared mean susceptibilities in subcortical atlas areas overlapping 

the network intersection (i.e., more than one network present) with those overlapping the 

disjoint portions of the networks (i.e., only a single network present; network threshold: |Z| > 

3.3).

2.7 Multivariable regression for ICA networks

Linear regression models were conducted on a subset of 70 subjects from the HA cohort 

with available clinical data using the network loading coefficients as dependent variables. 

Six factors known to modify brain iron were chosen as independent variables based on 

available clinical data: age (Ashraf et al., 2018), sex (Ayton et al., 2020), systolic blood 

pressure (BP) (Li et al., 2021), BMI (Pirpamer et al., 2016), self-reported smoking status 

(Li et al., 2021; Pirpamer et al., 2016), and self-reported migraines (Kruit et al., 2009). An 

age-by-sex interaction (age × sex) was also included in the model (Bartzokis et al., 2007). In 

models with nonsignificant age × sex, the age × sex term was removed and the model was 

rerun.

Similar regression analyses were performed on disease-related DGM networks derived from 

the MS/HC cohort (see section 2.8, “Comparisons of networks”, below). In this regression, 

the disease duration (dd), expanded disability status scale (EDSS), and T2 total lesion 

volume (calculated using a semi-automated contouring/thresholding technique on FLAIR 

images as described previously (Zivadinov et al., 2001)) were used as independent variables 

in addition to the six factors included in the HA cohort regression (nine total independent 

variables).

Additional regression analyses were performed on a combined cohort of 184 patients and 

HCs from the MS/HC cohort who had available data. This regression included disease status 

interaction terms (age, sex, BMI, current smoking status, systolic BP, and migraine status) 
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and main effects of age, sex, BMI, current smoking status, systolic BP, and migraine status 

but excluded dd, EDSS, and T2 total lesion volume.

2.8 Comparisons of networks

In the main analysis, linear models were used to compare loading coefficients of MS/HC 

networks matched to the robust HA networks (DGM only) between disease groups (MS and 

HC) and MS subtypes (CIS, RRMS, and SPMS) while statistically adjusting for age and sex. 

For tests with significant disease group-by-MS subtype interactions, post hoc comparisons 

were conducted between MS patients and matched HCs for each MS subtype (i.e., patients 

with CIS vs. CIS-matched HCs, patients with RRMS vs. RRMS-matched HCs, and patients 

with SPMS vs. SPMS-matched HCs) and between MS subtype groups (i.e., patients with 

CIS vs. patients with RRMS, patients with CIS vs. patients with SPMS, and patients with 

RRMS vs. patients with SPMS). Exploratory analyses involved the same procedure for the 

remaining networks from the MS/HC cohort that were associated with at least one DGM 

region (> 5% overlap). Robustness of the main and interaction effects was tested by adding 

BMI, systolic BP, current smoking status, and migraine status as covariates and retesting for 

statistical significance.

2.9 ROI-based detection of disease effects and exploratory multivariate regression

For each subject in the MS/HC cohort, average susceptibility values were calculated 

within each DGM atlas region and the two pulvinar atlas regions, and then averaged 

across hemispheres (nine total ROIs). Linear models were used to compare the average 

susceptibility in each ROI between disease groups (MS and HC) and MS subtypes (CIS, 

RRMS, and SPMS) while statistically adjusting for age and sex. For tests with significant 

disease group-by-MS subtype interactions, post hoc comparisons were conducted using the 

same contrasts described in Section 2.8, “Comparison of networks”. Robustness of the main 

and interaction effects was tested by adding BMI, systolic BP, current smoking status, and 

migraine status as covariates and retesting for statistical significance.

Exploratory regression models were applied to each ROI with significant main effect of 

disease status or significant disease group-by-MS subtype using average susceptibility as the 

dependent variable and the same independent variables as used for the disease-related DGM 

network regression (see Section 2.7, “Multivariable regression for ICA networks”). Further 

exploratory regression analyses were conducted on the caudate and pulvinar ROIs, due to 

their direct anatomical comparability to the Pulvinar and Caudate Networks.

2.10 Statistics for regression analyses and disease group comparisons

Statistical analyses were conducted using SPSS (27.0; IBM, Armonk, NY). Model 

assumptions were assessed using standard diagnostic plots.

Bonferroni corrections were applied to the average susceptibility value comparisons 

between overlapping and nonoverlapping network areas. In linear models for disease group 

comparisons, the significance levels (P < 0.05) for the main effect of disease group and for 

the disease group-by-MS subtype interaction were Bonferroni corrected for 18 comparisons 

(disease group main effect and disease group-by-MS subtype interaction effect for the two 
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main comparisons and 7 additional exploratory linear models). Tukey’s least significant 

difference tests were used for post hoc pairwise comparisons for significant disease 

group-by-MS subtype interactions. ROI-based disease group comparisons were Bonferroni 

corrected for 18 comparisons (disease group main effect and disease group-by-MS subtype 

interaction effect for nine ROIs), and Tukey’s least significant difference tests were used for 

post hoc pairwise comparisons for significant disease group-by-MS subtype interactions.

Regression analysis were not corrected for multiple comparisons due to the exploratory 

nature of the analysis (Althouse, 2016).

3. Results

3.1 Five DGM networks linked to healthy aging

In total, four non-representative individuals were excluded from the HA cohort. Figure 3 

shows the five HA cohort DGM networks (Dorsal Striatum, Brainstem, GPi, Thalamus, and 

Cerebellar Networks) that significantly overlapped at least one DGM region.

The Dorsal Striatum and GPi Networks had moderate-to-high robustness (i.e., anatomical 

consistency; Corrav = 0.81 and 0.56, respectively), whereas the Brainstem, Thalamus, and 

Cerebellar Networks had low robustness (Corrav = 0.27, 0.21, and 0.22, respectively). Figure 

4 shows the areas that were most consistently associated with each network by visualizing 

the fraction of the 20 DGM network-matched ICA iterations that were significant (|Z| > 3.3) 

at each voxel.

Figure 5A shows the volume overlap (> 5% only) of the two highly robust DGM networks 

in different anatomical areas. The Dorsal Striatum Network had > 5% overlap with every 

structure in the combined DGM atlas as well as with several regions from the thalamic 

atlas (ventral-lateral-dorsal nucleus and central-lateral + lateral-posterior + medial-pulvinar 

nuclei), cerebellar gray matter atlas (VI cerebellum and vermis VIIIa + IX + X cerebellum), 

and white matter atlas (cerebellar peduncle, anterior and posterior limbs of the internal 

capsule, external capsule, fornix, and superior frontal-occipital fasciculus). The GPi Network 

had > 5% overlap with every area of the combined DGM atlas except the left caudate, left 

red nucleus, right putamen, and left and right whole thalami as well as with several regions 

from the white matter atlas (cerebellar peduncle, anterior limb of the internal capsule, and 

tapetum).

3.2 Regions of network overlap have increased susceptibility

In the DGM of the HA cohort, areas intersecting both the Dorsal Striatum Network and the 

GPi Network had higher mean susceptibility values than areas intersecting only one of the 

networks (e.g., Dorsal Striatum Network but not GPi Network) (Fig. 5B; P < 0.001 for both 

comparisons).

3.3 Robust HA networks distinctly linked to age, sex, and migraine

Regression results for the HA cohort are summarized in Table 2 (left). The Dorsal Striatum 

Network was negatively associated with age × sex (P = 0.021) and positively associated with 
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age (P = 0.004) and male sex (P = 0.022). The GPi Network was positively associated with 

age (P = 0.004) and self-reported migraines (P = 0.022) (see also Fig. 7).

3.4 MS affects the GPi Network and three additional robust MS/HC cohort networks

In total, 2 MS patients and 5 HCs were excluded for the final ICA decomposition for 

the MS/HC cohort. A disease group comparison analysis, with between-group age and sex 

differences statistically corrected by including them as covariates, revealed a main effect 

of disease status (MS vs. HC) for four of the nine MS/HC DGM-associated networks: 

the GPi and MS Pulvinar Networks and two additional DGM-associated networks (MS 

Mesencephalon and MS Caudate Networks; all P < 0.02, Bonferroni corrected). A main 

effect of disease status remained significant with the addition of BMI, systolic BP, current 

smoking status, and migraine status as covariates for MS GPi, Caudate, and Mesencephalon 

Networks (P < 0.02, Bonferroni corrected) but not for the Pulvinar Network (P = 0.054, 

Bonferroni corrected).

A disease group-by-MS subtype interaction effect was significant for the MS Pulvinar 

Network (P < 0.02, Bonferroni corrected). Tukey’s post hoc least significant difference 

tests of the MS Pulvinar Network showed that the mean-adjusted loading coefficients 

were significantly lower for patients with SPMS than for SPMS-matched HCs (−0.697 

vs. 0.345; P < 0.001), but there was no significant difference between patients with CIS 

and CIS-matched HCs (0.117 vs. 0.075; P = 0.833) or between patients with RRMS and 

RRMS-matched HCs (−0.017 vs. 0.258; P = 0.180). Additionally, mean-adjusted loading 

coefficients for the MS Pulvinar Network were significantly lower for patients with SPMS 

than for patients with CIS (−0.697 vs. 0.117; P < 0.001) and patients with RRMS (−0.697 

vs. −0.017; P = 0.001), but were not different between patients with RRMS and those with 

CIS (−0.017 vs 0.117; P = 0.512). The interaction effect did not remain significant with the 

addition of BMI, systolic BP, current smoking status, and migraine status as covariates (P > 

0.1).

Robustness analysis showed that each of the three additional disease-associated MS/HC 

cohort networks had moderate to high robustness (Corrav = 0.53, 0.73, and 0.49 for the 

Mesencephalon, Pulvinar, and Caudate Networks, respectively).

3.5 MS networks have distinct anatomical associations

Figure 6B shows the volume overlap (> 5%) of the three additional MS networks (MS 

Mesencephalon, Pulvinar, and Caudate Networks) in different anatomical areas. The MS 

Mesencephalon Network had > 5% overlap with several white matter structures, including 

the pontine crossing tract and the left and right corticospinal tracts and superior cerebellar 

peduncles, and with the left and right red nuclei, substantia nigra, and cerebellar I–IV. The 

MS Pulvinar Network overlapped primarily with the left and right pulvinar of the thalamus. 

The MS Caudate Network overlapped with the left and right caudate and the left and right 

anterior limbs of the internal capsule.

The Dorsal Striatum and GPi Networks in the HA cohort (Fig. 3) were moderately matched 

to similar networks from the MS/HC cohort (rmax = 0.540 and 0.541, respectively) (Fig. 6A), 

the Thalamus Network was moderately matched to the Pulvinar Network (rmax = 0.407) 
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(Fig. 6B), and the Brainstem and Cerebellar Networks matched only weakly to MS/HC 

cohort networks (rmax = 0.191 and 0.221, respectively).

The MS Caudate Networks were moderately matched to a network from the HA cohort 

(rmax = 0.386). By contrast, the MS Mesencephalon Network was weakly matched (rmax 

= 0.207). Cereb. = cerebellar; Front-Occ. Fasc. = fronto-occipital fasciculus; Int. Cap. = 

internal capsule; Sup. = superior; VL = ventral-lateral.

3.6 MS networks distinctly associated with disease duration and lesion burden

The MS Pulvinar Network had a negative association with dd (P = 0.005), whereas the MS 

Caudate and Mesencephalon Networks had positive associations with total T2 lesion volume 

(P = 0.018 and 0.013, respectively) (Table 2, right). These associations are visualized as a 

schematic in Fig. 7. The GPi Network was not associated with any of the variables in the 

MS-only regression, in contrast to the association found in the regression analysis for the 

HA cohort.

Additional regression analyses with the full MS/HC cohort showed significant interaction 

effects of disease status by age for the MS GPi (P = 0.023) and Pulvinar (P = 0.002) 

Networks, and disease status by BMI for the MS Mesencephalon Network (P = 0.026).

3.7 ROI-based analysis has lower sensitivity to disease effects and disease-related 
factors

A disease group comparison analysis showed that the putamen, caudate, and GPi had main 

effects of disease status (MS vs. HC) with P < 0.05. However, only putamen ROI survived 

Bonferroni correction for multiple comparisons (after Bonferroni correction, P < 0.001 for 

putamen and P = 0.06534 and 0.774 for caudate and GPi, respectively). The putamen ROI 

main effect of disease status remained significant with the addition of BMI, systolic BP, 

current smoking status, and migraine status as covariates (P = 0.036 Bonferroni corrected). 

The thalamus and GPe ROIs had disease group-by-MS subtype interaction effects with P 
< 0.05, but neither effect survived correction for multiple comparisons (P > 0.4 Bonferroni 

corrected for both).

Exploratory regression analysis (Tab. 3) showed the putamen ROI had a positive association 

with age (P = 0.001). Additional exploratory regression analysis showed a negative 

association between smoking status and the pulvinar ROI (P = 0.036). No associations were 

seen between the caudate ROI and any of the independent variables (P > 0.05).

4. Discussion

The results of this study show that DGM iron variation in healthy aging is organized 

into two robust, partially-overlapping networks which are differentially associated with 

demographic and clinical factors (i.e. age by sex interaction and self-reported migraine 

status). We found that these networks were differentially affected by MS disease status, 

and discovered three additional MS-related networks. These networks allowed for higher 

sensitivity in detecting MS disease effects when compared to a ROI-based analysis on the 

same subjects.
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4.1 DGM networks detect MS disease effects with higher sensitivity than ROI-based 
analyses

ICA analysis revealed four networks that were significantly associated with MS. In 

contrast, only the putamen ROI was associated with MS disease status in the ROI-based 

analysis, despite using the same set of subjects and having the same alpha level as the 

ICA analysis (P < 0.05 corrected for eighteen comparisons). Notably, the Pulvinar and 

Caudate Networks loading coefficients were significantly associated with MS whereas the 

pulvinar and caudate ROI mean susceptibility values were not, despite covering similar 

anatomical areas. This finding is likely due to the ICA analysis separating the disease effects 

from the effects of healthy aging, as evidenced by the presence of the Dorsal Striatum 

Network, which covers the pulvinar and caudate, in the MS/HC cohort ICA decomposition. 

Another contributing factor may be that the ICA procedure separated artifacts and noise 

into separated components from the healthy aging and disease-associated components. 

This feature of ICA is widely used in fMRI studies and may have similar effects here 

(Salimi-Khorshidi et al., 2014). Additionally, unlike the Pulvinar and Caudate Networks, 

exploratory regression analysis for the pulvinar and caudate ROIs did not show any 

significant associations to disease duration or T2 lesion volume. These results suggest that 

the ICA analysis allows for higher sensitivity in detecting disease effects than ROI analyses 

and highlight the advantage of the ICA approach for studying specific disease factors.

4.2 Independent patterns of susceptibility change and no support for accelerated iron 
aging in patients with MS

Both the Dorsal Striatum and GPi Networks showed age associations, which we interpret as 

evidence of two separate naturally occurring, age-related iron/myelin networks on the basis 

of the differential effects of age × sex in the two networks. Specifically, the results indicate 

the Dorsal Striatum Network, but not the GPi Network, undergoes iron changes in response 

to potential factors such as menstruation and menopause, which are specific to females 

and have been shown to alter peripheral blood iron levels (Whitfield et al., 2003). The 

differential effect of age × sex suggests that these networks may be governed by different 

biological processes.

Another piece of evidence for independent processes of iron change in the two robust DGM 

networks comes from the differential effect of MS disease status on the matched Dorsal 

Striatum and GPi Networks from the MS/HC cohort. There was a significant effect of 

disease status, independent of age and sex, in the GPi Network but not in the Dorsal Striatum 

Network. The processes that underlie this effect are not clear. The positive association 

between the GPi Network and self-reported migraine status is consistent with previously 

reports of increased iron in the globus pallidus and red nucleus (Kruit et al., 2009). It 

is unlikely that migraine status contributed to GPi Network differences between patients 

with MS and HCs because the prevalence was similar between the two groups (18.6% 

for HA cohort, 12.0% for MS-only cohort) and there was no disease status-by-migraine 

interaction effect in the regression analysis. Confirmatory studies showing that the GPi 

Network is enhanced in patients clinically diagnosed with migraines compared to that in 

healthy controls would confirm this link.
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We validated our hypothesis that healthy individuals have higher susceptibility values in 

DGM areas overlapping multiple networks (i.e., the Dorsal Striatum and GPi Networks) 

than in regions in only one of those networks. These overlapping areas, including the red 

nucleus and substantia nigra, are well known to have higher iron levels than other DGM 

regions. The processes underlying relatively high iron accumulation in these regions with 

regard to aging and disease are currently unknown (Ramos et al., 2014; Snyder and Connor, 

2009). When combined with the evidence described above, it is possible that iron levels are 

comparatively high in these regions because they involve multiple independent processes 

of iron accumulation, represented in our study as separate overlapping iron networks (Fig. 

1C and 3A). However, histological and pathological studies comparing these networks are 

needed to confirm this hypothesis.

It was previously suggested that MS and other neurodegenerative diseases accelerate 

naturally occurring biological processes underlying healthy aging (Franke and Gaser, 2019), 

and MRI studies indicate an increased morphological “brain age” in individuals with 

MS (Cole et al., 2020; Høgestøl et al., 2019). Here, we did not find evidence for the 

enhancement of aging-related processes in patients with MS that manifested as altered 

susceptibility in MRI to support this hypothesis. On the contrary, our results suggest that the 

normal aging-related changes are disrupted in MS, not accelerated, because the GPi Network 

was positively associated with age in the HA cohort but not in the MS cohort. This may 

indicate a dissociation between aging-related atrophy and iron homeostatic processes in MS, 

i.e., aging-related atrophy is accelerated whereas aging-related iron homeostasis is disrupted, 

resulting in a decline in total brain iron content in MS (Schweser et al., 2021). Further 

studies on the relationship between MS-associated telomere shortening and disease-related 

iron networks are needed (Hecker et al., 2021).

The high robustness of the Dorsal Striatum and GPi Networks makes them good targets for 

future studies. They may be used to study other clinical and behavioral factors that affect 

brain iron, such as diabetes mellitus, or to study the effects of other neurological disorders 

such as Parkinson’s disease.

4.3 Additional MS networks suggest distinct disease processes in different regions

The results from the analysis of MS-related DGM networks are consistent with previous 

studies showing iron alterations in the caudate (Hagemeier et al., 2018b), thalamus 

and pulvinar (Khalil et al., 2015; Zivadinov et al., 2018), red nucleus (Blazejewska et 

al., 2015), and substantia nigra (Blazejewska et al., 2015). These areas represent four 

statistically independent networks rather than a single network. This suggests that MS 

affects these networks differentially, potentially through distinct iron- and myelin-related 

disease processes. Note that each of the comparisons between MS patients and HCs and 

between MS subtypes was corrected for age and sex, so that any remaining effects were 

specific to disease and not caused by e.g. increased age in patients with SPMS compare to 

patients with CIS. Robustness analysis confirmed that these networks had moderate to high 

internal reproducibility, indicating they are reliable targets for future studies. Additionally, 

the robustness analyses used 120 subjects (half of the full sample), showing that these 

networks were not simply pieces of the HA cohort networks that had been fragmented due 
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to increased sample size (compared to the 166 subjects used in the HA full cohort source 

separation). Future studies will further test the relationship between these iron networks and 

additional clinical factors, such as diabetes status, and markers of clinical outcomes such as 

cognitive tests (e.g., paced auditory serial addition test) (Macías Islas and Ciampi, 2019).

4.4 Support for Wallerian degeneration as a cause of caudate atrophy

Studies of patients with MS have shown evidence of internal capsule lesions and axonal 

damage and, in separate studies, selective caudate atrophy (Bermel et al., 2003; Dalton et 

al., 2012; Lee et al., 2000). In our study, the anterior limb of internal capsule and caudate 

appeared together in a single disease-related network, the MS caudate network. Both areas 

had positive susceptibility associations within the network, likely because of increased iron 

concentration in the caudate and demyelination in the anterior limb of internal capsule (Lee 

et al., 2000). Additionally, the MS caudate network was positively associated with T2 lesion 

volume. These results support the previously-proposed hypothesis that caudate-specific 

atrophy is caused by Wallerian degeneration in associated white matter tracts (i.e. white 

matter connections between the lentiform and caudate nuclei as contained in the anterior 

limb of internal capsule) (Bermel et al., 2003). It should be noted that this interpretation 

is potentially limited by the relatively low resolution of the QSM images and the close 

proximity of the caudate and internal capsule. However, visual inspection of the MS Caudate 

Network confirmed that it extended into the anterior limb of the internal capsule, indicating 

that this association was not entirely accounted for by atlas misalignment.

4.5 Susceptibility decrease in the pulvinar is independent of the optic pathway

The MS Pulvinar Network was moderately matched to the Thalamus Network (0.407). 

However, the Thalamus Network had low robustness (i.e., high anatomical variation), with 

only a small area (13 voxels) appearing in half or more of the 20 DGM network-matched 

ICA iterations. Low Thalamus Network robustness could occur because thalamic subnuclei 

are weakly associated with each other but have strong heterogeneous connectivity to the 

cerebral cortex (Fama and Sullivan, 2015). These subnuclei may be subjected to different 

iron-related factors and metabolic demands (Cho et al., 2011). Thus, the thalamus may 

not act as a single cohesive unit with regard to its iron behavior and complicate attempts 

to disentangle specific networks with ICA. Indeed, thalamic subnuclei have different iron-

related effects in MS (Schweser et al., 2018). Whatever the cause, low robustness weakens 

the claim that two networks derived from separate subject groups are manifestations of 

the same network, and so it remains unclear whether the MS Pulvinar Network is disease 

specific or is also present in the HA cohort.

A previous ROI-based study using the same cohort found that susceptibility decreases in 

the pulvinar with increases in disease duration and suggested the effect was secondary 

to damage elsewhere in the optic pathway (Schweser et al., 2018). The null association 

between T2 lesion volume and MS Pulvinar Network loading coefficients (P = 0.717) does 

not support this hypothesis. However, this lack of relationship may reflect a poor association 

between overall lesion burden and optic pathway lesion burden, because only a small 

fraction of the overall lesion burden affects the optic nerve. Other contradicting evidence 

comes from the pulvinar specificity of the MS Pulvinar Network. Despite the strong 
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connections between the pulvinar and other optic processing areas such as the occipital 

cortex, statistical independence of the MS Pulvinar Network implies that iron and myelin 

in these other areas are not altered in the same way as in the pulvinar. Future QSM studies 

could test this theory by comparing the longitudinal susceptibility trajectories of these 

areas. Additionally, postmortem histological comparisons between these brain regions would 

confirm whether similar disease processes occur in these areas. Instead, the strong negative 

effect of dd indicates that the MS-related pulvinar susceptibility decrease may be due to 

local disease processes, such as diffuse microglial activation in the thalamus, as shown 

previously (Rissanen et al., 2018). Nevertheless, it is possible that injury to optic pathways 

also influences the pulvinar but to a lesser extent than previously thought (Zivadinov et al., 

2014).

4.6 Mesencephalon and brainstem networks differentially affected

The MS Mesencephalon Network was associated with the brainstem and select cerebellar 

areas. However, it was weakly matched with the Brainstem Network, indicating these two 

networks are composed of different structures. The positive association between T2 lesion 

volume potentially points to demyelination as the basis of this network. It is possible that 

spinal cord lesions also influence this network, although spinal cord MRI scans were not 

available for the patients in this study.

4.7 Limitations and future directions

The interpretation of QSM studies is generally limited by the fact that both iron and myelin 

influence magnetic susceptibility. Increased iron levels and demyelination both increase 

susceptibility, whereas decreased iron levels and increased myelin decrease susceptibility. 

Other biological factors such as calcium can also affect susceptibility values but likely to 

a lesser extent in healthy individuals and patients with MS (Schweser et al., 2018). The 

interpretation of susceptibility values can be aided by comparisons to histological studies 

or to other iron-sensitive MRI techniques such as transverse relaxation rate (R2*), which 

is affected by myelin in the opposite way (i.e., increased myelin increases R2* values) 

(Hametner et al., 2018). With these considerations, any interpretation of susceptibility 

values needs to carefully consider modifying factors and the anatomical regions analyzed. 

Extension of the ICA method to include other quantitative MRI metrics such as R2* 

through the use of linked ICA could enable the separation of iron and myelin networks 

and provide even higher specificity and sensitivity for evaluating brain iron (Douaud et al., 

2014). Alternatively, recently introduced methods to separate paramagnetic and diamagnetic 

sources (Chen et al., 2021; Shin et al., 2021) could be applied prior to ICA to a similar 

effect.

The ability of ICA to detect networks depends on the number of subjects, the number of 

components used in the ICA decomposition, and the sensitivity of the imaging technique 

itself. For example, in functional MRI-based ICA analysis of the default mode network, 

increasing the number of components for the ICA decomposition can split the default mode 

network into subnetworks (Manoliu et al., 2013). Future studies could test how altering the 

number of components affects these networks.
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Although visual analysis showed excellent registration of the anatomical atlases to the 

subject template, the relatively large slice thickness (2mm) may have limited accurate 

assessment of smaller DGM structures such as the globus pallidus interna or the substantia 

nigra. This consideration also limits conclusions about network associations of neighboring 

structures, such as the caudate and internal capsule. Future studies could address this issue 

with higher resolution scan sequences. However, this limitation also highlights a benefit 

of the ICA approach, which does not require atlases to generate the networks, unlike ROI 

analyses in which manual or automatic anatomical segmentation is necessary.

Our preliminary exploratory study provides unique insight into brain iron physiology but 

was limited by the cross-sectional retrospective design. Future studies should include a 

larger number of subjects with migraines and smoking exposure and analyze other variables 

known to affect brain iron, such as apolipoprotein E gene mutations (Yim et al., 2022). A 

longitudinal study design would enable analysis of the susceptibility networks over time, 

which may better reveal individual differences in the networks than the between-subjects 

design used in the present study.

The methodology presented here provides a step forward in studies of brain iron physiology, 

which were previously restricted to voxel- or ROI-based analyses. Given the ability of 

ICA to separate independent sources, ICA can be applied to QSM images to potentially 

filter out nonrelevant susceptibility variations and detect disease-relevant patterns with 

higher specificity. The methodology of this study could also be applied to other diseases 

with presumed iron dyshomeostasis, such as Parkinson’s disease, to analyze susceptibility 

networks occurring in other disease contexts. Future studies could also analyze networks 

not associated with the DGM, which would be most easily interpreted if combined with 

methods to separate the effects of iron and myelin (Chen et al., 2021; Shin et al., 2021). 

As we have shown, the proposed methodology produces networks that are highly internally 

reproducible and could be used as biomarkers for disease progression or to quantify the 

effects of disease-modifying therapies. Just as the application of ICA to functional and 

anatomical MRI images has revealed important scientific knowledge about brain function 

and structure (Garrity et al., 2007; McKeown et al., 2003), the proposed technique may 

reveal equally important knowledge about brain iron physiology.

5. Conclusion

Our work introduces a novel approach to separate independent patterns of susceptibility 

change to understand the variation in magnetic susceptibility among subjects. We found two 

internally reproducible covarying networks of DGM brain iron associated with age, which 

are affected differently in patients with MS than in controls. When applied to a combined 

cohort of patients with MS and HVs, the ICA network framework was more sensitive 

to disease-related effects than a ROI-based approach. Our results provide evidence that 

several known disease-related effects act independently of one another, such as increased 

DGM susceptibility in the caudate and decreased susceptibility in the pulvinar. Conversely, 

we also showed that several MS-related findings reported in other studies are related and 

may be caused by the same disease process, e.g., internal capsule myelin damage and 

increased caudate iron concentrations. This study advances knowledge of healthy brain iron 
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physiology and MS pathophysiology, and provides a conceptual and technical framework for 

future studies to build on.
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Figure 1. ICA methodology applied to QSM.
(A) Visual representation of the ICA network decomposition process. (B) Representation 

of the reconstruction of an original MRI scan from networks and loading coefficients. (C) 

Interpretation of ICA network spatial patterns.
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Figure 2. Sample susceptibility map and subcortical atlas.
(A) Representative template-normalized susceptibility map scaled from −0.1 ppm (black) to 

0.2 ppm (white). (B) Subcortical atlas used to determine DGM-associated networks.
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Figure 3. Five HA cohort networks.
Axial slices of the five HA cohort networks that were significantly associated with at least 

one DGM structure. Image threshold: |Z| > 3.3, corresponding to P < 0.001 two-tailed 

voxel-wise t tests uncorrected.
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Figure 4. Robustness of HA Cohort Networks.
Probability maps showing the fraction of the 20 DGM network-matched ICA iterations that 

were significant (|Z| > 3.3) at each voxel. Transparent areas indicate voxels that were not 

significant for that network in any of the 20 iterations.
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Figure 5. Anatomical overlap of the two robust HA cohort networks and susceptibility values in 
areas of network overlap.
(A) Bar graph showing the percent volume overlap of the robust DGM-associated networks 

within anatomical regions (threshold: |Z| > 3.3). Only DGM areas with > 5% overlap by 

volume are displayed. (B) Violin plots of susceptibility values of voxels in the subcortical 

atlas. ***P < 0.0001, Bonferroni corrected for two comparisons. Ant. = anterior; Cereb. = 

cerebellar; CL-LP-MP = central-lateral, lateral-posterior, and medial-pulvinar; Ext. Cap. = 

external capsule; Front-Occ. Fasc. = fronto-occipital fasciculus; GP = globus pallidus; Int. 

Cap. = internal capsule; Post. = posterior; Sup. = superior; VL = ventral-lateral.
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Figure 6. MS networks and their anatomical representations.
(A) Axial slices of the networks derived from the MS/HC cohort that had a significant 

main effect of disease status. Image threshold: |Z| > 3.3, corresponding to P < 0.001 two-

tailed voxel-wise t tests, uncorrected. (B) Bar graph showing the percent volume overlap 

of additional disease-related MS/HC networks and anatomical regions (threshold: |Z| > 

3.3). Only areas with > 5% overlap by volume are shown. Ant. = anterior; CL-LP-MP = 

central-lateral, lateral-posterior, and medial-pulvinar;
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Figure 7. Diagram of the factors associated with the HA Networks and MS Networks.
Associations are shown separately for the HA cohort regression (blue arrows) and MS-only 

regression (gold arrows). Green plus sign = positive association; red negative sign = negative 

association; grey “X” = no association in MS cohort only.
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Table 1

Cohort characteristics

Characteristic HA cohort MS/HC cohort

CIS RRMS SPMS HC-CIS HC-RRMS HC-SPMS All patients All HC

Total cohort 

No. 170 40 40 40 40 40 40 120 120

Age, yrs (mean±SD 
[range])

39±17
(9–81)

37±10
(20–58)

44±10
(27–65)

52±7
(33–64)

37±12
(20–59)

43±10
(19–60)

53±12
(23–76)

44±11
(20–65)

45±13
(19–76)

Sex, no.

 Female 85 29 27 29 28 30 29 85 88

 Male 85 11 13 11 12 10 11 35 33

dd, yrs (mean±SD) 2.2±2.6 9.8±6.0 24.0±10.2 12.1±11.3

EDSS (median 
[range])

1.5
(0–4.5)

2.0
(0–8)

6.5
(2.5–8)

2.5
(0–8)

ICA final cohort 

No. 166 40 40 38 39 37 39 118 115

Age, yrs (mean±SD 
[range])

39±16
(9–81)

37±10
(20–58)

44±10
(27–65)

52±7
(33–64)

37±12
(20–59)

43±10
(19–60)

52±12
(23–76)

44±11
(20–65)

44±13
(19–76)

Sex, no.

 Female 83 29 27 29 27 28 28 85 83

 Male 83 11 13 9 12 9 11 33 32

dd, yrs (mean±SD) 2.2±2.6 9.8±6.0 24.1±10.1 11.7±11.3

EDSS (median 
[range])

1.5
(0–4.5)

2.0
(0–8)

6.5
(2.5–8)

2.5
(0–8)

Regression cohort 

No. 70 30 31 30 32 28 33 91 93

Age, yrs (mean±SD 
[range])

44±15
(12–76)

38±11
(20–58)

44±10
(27–65)

53±7
(33–64)

37±12
(20–59)

43±10
(19–60)

52±11
(26–76)

45±11
(20–65)

44±13
(19–76)

Sex, no.

 Female 39 23 19 22 22 18 25 64 65

 Male 31 7 12 8 10 10 8 27 28

Systolic BP 
(mean±SD)

131±14 133±19 137±21 140±22 132±15 133±18 131±16 137±21 132±16

BMI (mean±SD) 27.0±5.9 26.4±6.1 26.8±6.3 25.5±4.3 25.4±5.4 28.7±5.8 26.5±5.4 26.2±5.6 26.8±5.6

Current smoker

 Yes 14 2 3 1 0 1 0 6 1

 No 56 28 28 29 32 27 33 85 92

Reported migraines

 Yes 13 3 5 3 7 9 4 11 20

 No 57 27 26 27 25 19 29 80 73

dd, yrs (mean±SD) 2.0±2.4 10.0±6.3 25.1±9.3 12.4±11.6

EDSS (median 
[range])

1.5
(0–4.5)

2.5
(0–8)

6.1
(2.5–8)

3.3
(0–8)
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Table 2

Results of exploratory DGM network regression models

Variable Network for HA cohort
a

Network for MS-only cohort
a

Dorsal striatum GPi GPi Pulvinar Caudate Mesencephalon

Adjusted R2 0.175 0.194 0.171 0.234 0.096 0.039

Age 1.176
(0.004)**

0.377
(0.004)**

0.098
(0.524)

−0.037
(0.795)

0.228
(0.146)

0.083
(0.588)

Sex 0.811
(0.022)*

−0.060
(0.598)

0.122
(0.239)

0.067
(0.497)

0.066
(0.552)

0.153
(0.175)

Age × Sex −1.162
(0.021)*

n.s. n.s. n.s. n.s n.s.

Systolic BP 0.075
(0.511)

0.211
(0.085)

−0.003
(0.976)

−0.194
(0.079)

−0.117
(0.361)

−0.097
(0.478)

BMI 0.176
(0.115)

0.017
(0.886)

−0.129
(0.219)

0.028
(0.764)

0.031
(0.771)

0.021
(0.856)

Smoking 0.052
(0.651)

−0.212
(0.086)

0.197
(0.066)

−0.091
(0.369)

0.103
(0.371)

0.095
(0.410)

Migraine 0.061
(0.594)

0.285
(0.022)*

0.050
(0.645)

0.088
(0.391)

−0.090
(0.439)

0.100
(0.390)

dd - - −0.003
(0.986)

-0.488
(0.005)**

0.076
(0.680)

0.291
(0.141)

T2 lesion volume - - 0.161
(0.131)

0.047
(0.643)

0.272
(0.018)*

0.288
(0.013)*

EDSS - - 0.306
(0.080)

0.106
(0.518)

0.113
(0.545)

0.361
(0.057)

a
Standardized beta values are given with uncorrected P values below in parentheses. Significant effects are bolded. “n.s.” indicates a nonsignificant 

age × sex term that was removed from the final model.

*
P < 0.05

**
P < 0.01.
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Table 3

Results of exploratory ROI-based regression models

Variable Putamen Pulvinar Caudate

Adjusted R2 0.150 0.016 0.037

Age 0.514 (0.001)** −0.009 (0.958) 0.163 (0.314)

Sex 0.082 (0.444) 0.034 (0.772) 0.057 (0.618)

Age × Sex n.s. n.s. n.s.

Systolic BP −0.158 (0.192) −0.154 (0.236) −0.095 (0.462)

BMI −0.059 (0.582) 0.142 (0.223) 0.047 (0.680)

Smoking −0.159 (0.139) −0.244 (0.036)* −0.002 (0.989)

Migraine 0.045 (0.665) −0.070 (0.535) 0.091 (0.413)

dd −0.182 (0.331) −0.183 (0.365) 0.234 (0.242)

T2 lesion volume 0.036 (0.757) 0.135 (0.365) 0.145 (0.244)

EDSS 0.150 (0.408) 0.081 (0.678) −0.082 (0.672)

a
Standardized beta values are given with uncorrected P values in parentheses. Significant effects are bolded. “n.s.” indicates a nonsignificant age × 

sex term that was removed from the final model.

*
P < 0.05

**
P < 0.01.
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