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Abstract

Aims/Hypothesis: Islet autoantibodies can be detected prior to the onset of type 1 diabetes 

and are important tools for etiologic studies, prevention trials, and disease screening. Current 

risk stratification models rely on positivity status of islet autoantibodies alone, but additional 

autoantibody characteristics may be important for understanding disease onset. This work 

aimed to determine if a data-driven model incorporating characteristics of islet autoantibody 

development, including timing, type, and titer, could stratify risk for type 1 diabetes onset.

Methods: Data on autoantibodies against GAD (GADA), tyrosine phosphatase islet antigen-2 

(IA-2A) and insulin (IAA) were obtained for 1,415 children enrolled in The Environmental 

Determinants of Diabetes in the Young study with at least one positive autoantibody measurement 

from years 1 – 12 of life. Unsupervised machine learning algorithms were trained to identify 

clusters of autoantibody development based on islet autoantibody timing, type, and titer. Risk for 

type 1 diabetes across each identified cluster was evaluated using time-to-event analysis.

Results: We identified 2 – 4 clusters in each year cohort that differed by autoantibody timing, 

titer, and type. During the first 3 years of life, risk for type 1 diabetes onset was driven by 

membership in clusters with high titers of all three autoantibodies (1-year risk: 20.87–56.25%, 

5-year risk: 67.73–69.19%). Type 1 diabetes risk transitioned to type-specific titers during ages 4 

– 8, as clusters with high titers of IA-2A (1-year risk: 20.88–28.93%, 5-year risk: 62.73–78.78%) 

showed faster progression to diabetes compared to high titers of GADA (1-year risk: 4.38–6.11%, 

5-year risk: 25.06–31.44%). The importance of high GADA titers decreased during ages 9 – 12, 

with clusters containing high titers of IA-2A alone (1-year risk: 14.82–30.93%) or both GADA 

and IA-2A (1-year risk: 8.27–25.00%) demonstrating increased risk.

Conclusions/Interpretation: This unsupervised machine learning approach provides a novel 

tool for stratifying risk for type 1 diabetes onset using multiple autoantibody characteristics. These 
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findings suggest that age-dependent changes in IA-2A titers modulate risk for type 1 diabetes 

onset across 12 years of life. Overall, this work supports incorporation of islet autoantibody 

timing, type, and titer in risk stratification models for etiologic studies, prevention trials, and 

disease screening.
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INTRODUCTION:

Type 1 diabetes is a chronic autoimmune disease with increasing incidence worldwide 

[1–3]. Individuals with type 1 diabetes experience significant disease burden [4–6], 

making prevention a priority. Current strategies for type 1 diabetes prevention focus 

on modifying the pre-symptomatic disease course in individuals with significant disease 

risk. Pre-symptomatic type 1 diabetes is characterized by progressive immune-mediated 

destruction of insulin-producing pancreatic islet cells [7]. Autoantibodies against islet 

cells, including glutamic acid decarboxylase (GADA), tyrosine phosphatase islet antigen-2 

(IA-2A), and insulin (IAA), are important biomarkers for type 1 diabetes that can be 

detected during this period [8, 9].

Current risk stratification models for type 1 diabetes rely on positivity status of islet 

autoantibodies in genetically susceptible individuals [7]; however, not all individuals that 

develop islet autoantibody positivity go on to develop type 1 diabetes and the time to disease 

onset varies considerably. Islet autoantibody characteristics, including age at appearance 

[10–14], the type and combinations [8, 12, 15, 16], and the titer of islet autoantibodies 

[17, 18], have been individually shown to stratify risk for type 1 diabetes. While these 

studies provide insight into islet autoantibody development, few studies have considered the 

longitudinal effects of these characteristics in unison due to insufficient analytical methods.

Unsupervised machine learning are data-driven methods that are well-equipped to 

characterize these complex interactions [19, 20]. Unsupervised learning algorithms aim 

to identify patterns in data without making any apriori assumptions on disease status. 

Previous studies leveraging unsupervised machine learning identified clusters on the basis 

of timing and type [21, 22] or timing and titer of islet autoantibodies [23, 24]. However, no 

studies have evaluated the combined effects of timing, type, and titer of islet autoantibody 

development on type 1 diabetes risk. Unsupervised machine learning methods may provide 

novel insights into the relationship between multiple autoantibody characteristics and may 

improve risk stratification models for disease onset.

Precise stratification of type 1 diabetes risk is needed to identify at-risk individuals, 

ultimately improving etiologic studies, disease screening, and enrollment in prevention 

studies. Therefore, this work aimed to determine if a data-driven model incorporating islet 

autoantibody timing, type, and titer could stratify risk for type 1 diabetes in children with 

high-risk HLA genotypes in The Environmental Determinants of Diabetes in the Young 

(TEDDY) study.
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METHODS:

An overview of the methods is summarized in Fig 1. This research was approved by 

the University of Utah Institutional Review Board. All analyzes were performed in the 

HIPAA-compliant protected environment at the Center for High Performance Computing at 

the University of Utah. Additional details on the participants and data collection, inclusion/

exclusion criteria, preprocessing, cohort extraction, identification of optimal models, and 

analysis of identified clusters are described in the electronic supplementary material [ESM] 

Methods.

Software

Unsupervised clustering was performed in R (v4.0.2) [25] using kml3d (v2.4.2) [26]. All 

other analyses were performed with Python (v3.8.12; www.python.org): statistical analysis 

was performed using SciPy (v1.7.2) [27], time-to-event analysis was performed using 

lifelines (v0.26.4) [28], and the network diagram was generated using network (v2.8.0) 

[29].

Participants & Data Collection:

Data from the TEDDY study was obtained from the National Institute of Diabetes and 

Digestive and Kidney Disease Central Repository. The TEDDY study enrolled 8,677 

children with high-risk HLA genotypes for type 1 diabetes across 6 clinical centers in the 

United States and Europe [30]. Participants were followed every 3 months from 3 months 

of age until 4 years and every 3 or 6 months until 15 years, depending on autoantibody 

positivity status [30, 31]. Additional descriptions of the TEDDY study can be found 

elsewhere [30–34] (ESM Methods).

Inclusion/Exclusion Criteria:

Participants with at least one positive GADA, IA-2A, or IAA measurement as determined 

by the thresholds defined by the testing laboratory for the specific autoantibody and 

collection assay were included for analysis (ESM Methods). Participants with too few islet 

autoantibody measurements, as defined by having less than 4 autoantibody measurements 

in total, last study visit occurring before 12 months of age, first study visit occurring after 

3 months of age, or less than 50% of autoantibody measurements available, were excluded 

(n = 238) to limit the amount of data imputation required during analysis and remove 

participants with only occasional or episodic measurements. These criteria led to 1,415 

participants.

Preprocessing:

GADA, IA-2A, and IAA titers were extracted for included participants. Harmonization of 

measurements across the type of autoantibody, collection assay, and processing laboratories 

was performed and log-scaled z-score of GADA, IA-2A, and IAA titers were calculated 

as described in previous literature (ESM Methods) [11, 23]. To address the multiplicity of 

measurements at the same time point due to different assays, processing laboratories, and 

sample retesting [31, 33], a modified measurement selection procedure was adapted from 
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previous literature [11, 23] and is described (ESM Methods). Missing data were linearly 

imputed (ESM Methods).

Year Cohort Extraction:

To address varying autoantibody trajectory lengths due to loss-to-follow-up or reaching the 

study endpoint, measurements for all participants were divided into 1-year cohorts from 3 

months to 15 years of age as defined (ESM Methods). To assess adequacy of sample size 

for unsupervised clustering, the feature-to-observation ratio was calculated and cohorts were 

excluded if they did not meet the required sample size [35]. Sex, clinical center, high-risk 

HLA genotype group, and islet autoantibody positivity status were extracted as covariates, 

and the status and age at type 1 diabetes diagnosis were extracted as outcome measures 

(ESM Methods). Differences in the distribution of covariates were assessed using a X2 test 

with Yates Continuity correction [27] and evaluated at the 0.05 significance level.

Unsupervised Clustering & Evaluation:

For each year cohort, unsupervised machine learning was performed to identify clusters 

of GADA, IA-2A, and IAA development. Non-parametric algorithms for clustering joint 

trajectories (kml3d) [26] were developed with pre-specified clusters ranging from 2 – 

10, Euclidean distance, and the k-means++ algorithm with the centroid method. These 

parameters were tested across 100 different initializations to determine if clustering results 

were consistent across different starting conditions set by k-means ++. The Calinski 

Harabasz score was used to assess clustering performance and identify the optimal number 

of clusters [36]. The optimal numbers of clusters for each year cohort were identified as 

described in ESM Methods.

Analysis of Identified Clusters:

Cluster centers, defined as the arithmetic mean of all points within a cluster, and standard 

deviations were calculated for each cluster. The log-scaled z-score of GADA, IA-2A, and 

IAA autoantibody cluster centers and standard deviations were plotted for each year cohort.

Time-to-event analysis [28, 37] was used to examine risk of progression to type 1 diabetes 

for each cluster in each year. The period from last autoantibody measurement in each year 

to age at type 1 diabetes diagnosis or age at last autoantibody measurement was used as 

the event time. Kaplan-Meier survival estimates were generated for each cluster in each 

year. A log-rank test was used to compare the overall difference in survival curves between 

clusters each year and pairwise log-rank tests were used to compare progression of type 

1 diabetes between each cluster each year. Results were evaluated at the 0.05 significance 

level. Adjusted p-values were calculated for pairwise log-rank tests with more than one 

comparison using a Benjamini-Hochberg correction for multiple comparisons. For each 

cluster, the 1-year and 5-year risk for type 1 diabetes were calculated with a 95% CI when 

applicable and the titer percentile for each autoantibody at each timepoint for each cluster 

were calculated.

For each cluster, the distribution of participants by sex, HLA genotype group, clinical center, 

and islet autoantibody positivity status was calculated. Differences in the distribution of 
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covariates for each cluster in each year were assessed using a X2 test with Yates Continuity 

correction and evaluated at the 0.05 significance level.

To determine whether cluster membership was stable or varied across each year, the number 

and percentage of individuals that transitioned from a given cluster each year to a different 

cluster in the subsequent year were calculated. Transitions of cluster membership across 

Years 1 – 12 were visualized using a network diagram [29, 38] (ESM Methods).

RESULTS:

Year Cohort Characteristics:

Overall, 1,415 participants were included for analysis. The feature-to-observation ratio for 

assessing adequacy of sample size was calculated to be 280 (70*k, where k is the number 

of variables, i.e., k = 4 visits per year). All year cohorts met the sample size inclusion 

threshold except Years 13 (n = 136), 14 (n = 18), and 15 (n = 0). Therefore, Years 1 

– 12 were included for further analysis. Year cohorts did not differ significantly by sex 

(p = 1.000), clinical center (p = 0.996), high-risk HLA genotypes (p = 1.000), or islet 

autoantibody positivity status (p = 0.719) (ESM Table 2), indicating that covariates were 

similarly distributed across all years.

Unsupervised Clustering:

kml3d identified 2 – 4 clusters of GADA, IA-2A, and IAA development across year cohorts. 

Years 1, 4, 5, 6, 7, and 8 cohorts contained 3 clusters, Years 2 and 3 cohorts contained 

2 clusters, and Years 9, 10, 11, and 12 cohorts contained 4 clusters with the highest and 

most consistent Calinski Harabasz scores (ESM Table 3; ESM Fig. 1). These models were 

selected for further analysis.

Analysis of Identified Clusters:

Years were categorized into four groups based on the similarity of visualized cluster centers. 

The first year in each group was selected as a representative image (Fig 2–5). Cluster centers 

(ESM Fig. 2), time-to-event analysis (ESM Fig. 3, ESM Table 4, Table 1), and covariates 

(ESM Table 5) are discussed for each cluster in each year. Cluster transitions between select 

years are described (Fig 6, ESM Table 6).

Three clusters were identified during the first year of life that stratified risk for type 1 

diabetes (log-rank p = 4.951E-42, Fig 2). The first cluster center showed a baseline pattern 

with titers below the 50th percentile in all three autoantibodies (baseline; Fig 2a–c; Table 

1). Survival analysis of participants in the baseline cluster revealed minimal progression to 

type 1 diabetes (Fig 2d), with a 1-year risk of 1.80% and a 5-year risk of 10.07% (Table 1). 

The second cluster center showed elevated GADA titers at 3 months with minimal elevations 

in IA-2A and IAA that declined over time (all declining; Fig 2a–c). The survival curve of 

participants in the all declining cluster was not distinguishable from the baseline cluster 

(pairwise log-rank adjusted p = 0.059, ESM Table 4), indicating a low risk for diabetes 

(1-year risk: 3.12%, 5-year: 3.12%, Table 1). Mothers of individuals in the all declining 

cluster were GADA positive at 0 or 9 months (ESM Results). The third cluster center 
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demonstrated an increase in titers of all islet autoantibodies (all increasing; Fig 2a–c), with 

an incline to the 99th percentile at 9 months noted in IAA (Table 1). Individuals in the 

all increasing cluster rapidly progressed to type 1 diabetes (Fig 2d), with a 56.25% 1-year 

and 68.75% 5-year risk (Table 1) and had a higher proportion of participants with the 

DR3/4 genotype (71.66%, ESM Table 5). The distribution of individuals who developed islet 

autoantibody positivity varied significantly across each cluster, with the all declining and 

all inclining clusters having 94.12% and 100.00% of individuals with positivity (X2 test p 
= 4.729E-10, ESM Table 5). These findings suggest that islet autoantibody development 

among genetically susceptible individuals is characterized by increasing or decreasing 

patterns in all three autoantibodies, with a subset of individuals demonstrating declining 

patterns in islet autoantibody titers.

During years 2 – 3, two clusters of islet autoantibody development were identified that 

effectively stratified risk for type 1 diabetes (log-rank p = 1.132E-113 & 1.912E-136 for 

years 2 and 3, ESM Fig. 2b–c; ESM Fig. 3b–c). Similar to clusters identified in year 1, 

clusters in years 2 – 3 showed baseline patterns with titers below the 50th percentile in 

all autoantibodies or all increasing patterns (Table 1; Fig 3a–c). The all increasing clusters 

demonstrated increased risk for progression to type 1 diabetes (1-year risk: 27.96 and 

20.87%, 5-year risk: 69.19 and 67.73% in years 2 and 3, Table 1; Fig 3d) compared to 

the baseline clusters (1-year risk: 1.21 and 0.52%, 5-year risk: 6.10 and 4.80% in years 2 

and 3, Table 1; Fig 3d). Though most participants remained in the same cluster they were 

previously assigned to, participants in the all declining cluster in year 1 transitioned to 

the baseline cluster in year 2 (Fig 6; ESM Table 6). Most individuals in the all increasing 

clusters were islet autoantibody positive, while individuals in the baseline cluster were split 

(ESM Table 5). Together, these findings indicate that risk for type 1 diabetes is characterized 

by all increasing patterns of islet autoantibody development during the first three years of 

life, with few individuals returning to baseline thereafter.

During years 4 – 8, three clusters of islet autoantibody development were identified 

that effectively stratified risk for type 1 diabetes (log-rank p = 4.804E-150, 3.518E-146, 

1.899E-91, 5.892E-82, 2.716E-57 for years 4, 5, 6, 7, and 8, ESM Fig. 2d–h, ESM Fig. 

3d–h). Similar to the first three years, baseline clusters (Fig 4a–c) with minimal progression 

to type 1 diabetes (1-year risk: 1.03, 0.60, 0.63, 0.66, and 0.70% for years 4, 5, 6, 7, 

and 8, 5-year risk: 4.50, 4.34, 5.41, and 5.05% for years 4, 5, 6, and 7, Table 1; Fig 4d) 

were identified. Individuals previously assigned to all increasing clusters in year 3 primarily 

transitioned to one of two novel clusters in years 4 – 8 (Fig 6, ESM Table 6): 49.57% 

transitioned to a cluster with IA-2A titers above the 90th percentile (IA-2A dominant; Table 

1; Fig 4b) while 29.57% transitioned to a cluster with GADA titers above the 90th percentile 

(GADA dominant; Table 1; Fig 4a). Though both IA-2A and GADA dominant clusters 

demonstrated greater risk for diabetes compared to baseline clusters (Fig 4d), individuals 

assigned to IA-2A dominant clusters progressed to type 1 diabetes faster than individuals 

assigned to the GADA dominant clusters (ESM Table 4). On average, the 1-year diabetes 

risk for IA-2A dominant clusters was 4.8 times higher than for GADA dominant clusters 

(IA-2A: 28.93, 25.49, 20.88, 24.42, and 24.08% vs. GADA: 5.93, 6.11, 4.86, 4.38, and 

4.81% for IA-2A in years 4, 5, 6, 7, and 8, Table 1) and the 5-year risks were 2.4 times 

higher than GADA dominant cluster (IA-2A: 78.78, 74.06, 63.40, 62.73% vs. GADA: 
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30.45, 28.49, 25.06, 31.44% for years 4, 5, 6, and 7, Table 1). Individuals assigned to 

IA-2A dominant clusters in years 6 – 8 were more likely to be male and islet autoantibody 

positive (ESM Table 5). Together, these findings suggest that during ages 4 – 8, diabetes risk 

transitions to autoantibody and titer-specific clusters, with IA-2A dominant clusters having 

faster progression to type 1 diabetes.

During years 9 – 12, four clusters of islet autoantibody development were identified that 

effectively stratified risk for type 1 diabetes (log-rank p = 8.614E-33, 5.347E-31, 8.673E-13, 

and 4.024E-14 for years 9, 10, 11, and 12, ESM Fig. 2i–l, ESM Fig. 3i–l). Similar to 

previous years, baseline clusters (Fig 5a–c) with minimal progression to type 1 diabetes (1-

year risk: 1.05, 1.39, 1.25, 0.00% in years 9, 10, 11, and 12, Table 1; Fig 5d) were identified. 

GADA dominant clusters and IA-2A dominant clusters were also identified in years 9 – 12 

(Fig 5a–c). The importance of GADA dominance in diabetes risk diminished (1-year risk: 

6.09, 3.74, 4.18, 3.85% in years 9, 10, 11, and 12, Table 1; Fig 5d) compared to IA-2A 

dominance, which remained equally important (1-year risk: 23.71, 21.65, 14.82, 30.93% for 

IA-2A in years 9, 10, 11, and 12, Table 1; Fig 5d). Though most individuals assigned to 

GADA or IA-2A dominant clusters in years 4 – 8 remained in the same clusters in years 

9 – 12 (Fig 6, ESM Table 6), a subset of individuals transitioned to novel clusters that 

demonstrated elevated titers above the 90th percentile in both GADA and IA-2A (GADA 

and IA-2A dominant; Table 1; Fig 5a–c). Notably, the survival curves of GADA & IA-2A 

dominant clusters were not significantly different from IA-2A dominant clusters (pairwise 

log-rank adjusted p = 0.613, 0.947, 0.538, and 0.865 for years 9, 10, 11, and 12, ESM Table 

4; Fig 5d). Both IA-2A dominant and GADA & IA-2A dominant clusters demonstrated 

faster progression to type 1 diabetes compared to baseline and GADA dominant clusters 

(1-year diabetes risk: 8.27, 13.5, 25.00, 23.61% for years 9, 10, 11, and 12, Table 1). All 

participants in IA-2A dominant clusters and IA-2A & GADA dominant clusters were islet 

autoantibody positive (ESM Table 5). Together, these findings indicate that IA-2A clusters 

play more important roles in type 1 diabetes risk stratification at older ages.

DISCUSSION:

Type 1 diabetes risk varies substantially according to islet autoantibody characteristics. 

A more precise stratification of type 1 diabetes risk is needed to better identify at-risk 

individuals for etiologic studies, disease screening, and enrollment in prevention trials. In the 

present study, we leveraged data-driven methods to identify clusters of GADA, IA-2A, and 

IAA islet autoantibody development that stratified the risk for type 1 diabetes in children 

with genetic susceptibility enrolled in the TEDDY study.

During the first 3 years of life, risk for type 1 diabetes was characterized by clusters 

with increasing titers of all three autoantibodies (Fig 2–3). Though increased diabetes 

risk associated with multiple islet autoantibody positivity in early life is well-established 

[10, 29], these findings are the first to provide insight into the joint development of 

GADA, IA-2A, and IAA over time. Notably, our findings suggest that increases in all 

three autoantibodies above the 70th percentile can be detected as early as 12 months of age 

and continue to increase until 3 years (Table 1). By providing a more precise estimate of 
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early type 1 diabetes risk and characterizing increases in multiple autoantibody titers, these 

findings may aid in planning type 1 diabetes prevention trials.

We also identified a subgroup of participants with a decline in GADA titers from the 99th 

percentile to the 50th percentile during the first year of life that likely resulted from elevated 

maternal autoantibodies [40] (ESM Results). Participants in this cluster demonstrated a 

decreased 5-year risk for type 1 diabetes compared to the baseline cluster (Table 1). This 

finding supports previous observations that maternal GADA may serve a protective role 

against type 1 diabetes onset [41] and further studies are needed to assess the role of 

GADA in slowing disease progression. Overall, cluster 2 reflects a heterogenous group in 

which autoantibodies generated from mothers with type 1 diabetes were likely transmitted to 

participants. These mothers are additionally likely to transmit insulin antibodies that may be 

generated as a consequence of maternal insulin therapy [42]. The findings from this analysis 

support a reduced risk for type 1 diabetes in infants born to mothers with type 1 diabetes.

Type 1 diabetes risk transitioned to type-specific titers during ages 4 – 8, as clusters 

with titers of IA-2A above the 98th percentile demonstrated faster progression to diabetes 

compared to clusters with titers of GADA above the 98th percentile (Fig 4). These findings 

suggest that while titers of GADA and IA-2A may both provide insights into the lifetime 

risk of type 1 diabetes, higher titers of IA-2A may indicate an earlier onset of type 

1 diabetes. Type 1 diabetes is a highly heterogeneous disease, and recent studies have 

proposed autoantibody-driven subgroups of presymptomatic disease [43–45]. Our findings 

may reflect a novel age-related endotype driven by IA-2A dominance with faster progression 

to diabetes. The importance of GADA decreased during ages 9 – 12, with clusters containing 

IA-2A or both GADA and IA-2A demonstrating increased risk for type 1 diabetes (Fig 5). 

Together, these findings suggest that IA-2A plays a more important role in type 1 diabetes 

risk stratification later in life. Previous studies have also found that higher titers of IA-2A 

but not GADA increased the risk for type 1 diabetes [11, 46], and our findings add temporal 

context by highlighting the utility of GADA in years 4 – 8, but diminished effects after that.

This analysis detected single baseline clusters in each year cohort (Fig 2–5). We also 

found that individuals who did not meet the criteria for confirmed persistently positive islet 

autoantibody status but had at least one positive islet autoantibody were most prevalent in 

the baseline clusters (ESM Table 5). These findings suggest that subclinical variations in 

islet autoantibody titers are minimal and do not confer significant risk for future onset of 

type 1 diabetes.

Though HLA genotype groups significantly differed between clusters in most year cohorts, 

no individual genotype accounted for cluster membership (ESM Table 4). This suggests 

that factors beyond genotype influence autoantibody and type 1 diabetes development. 

Environmental exposures are implicated in the etiology of type 1 diabetes [47–49] and the 

clusters identified in this work may provide a useful framework to investigate etiologic 

factors in type 1 diabetes. We also noted a significant association between IA-2A dominant 

clusters in years 6 – 10 and male sex (ESM Table 5). Further research is needed to 

corroborate these findings in other diverse datasets and explore why males are more likely 

to demonstrate dominance of IA-2A in years 6 – 10 of life, especially given our finding 
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of increased type 1 diabetes risk in this group (Table 1). Future studies should explore 

underlying etiopathologic mechanisms associated with the data-driven clusters identified in 

this work.

Strategies to improve the prediction of risk for development of type 1 diabetes are needed 

to improve enrollment in prevention and etiologic studies [50]. Overall, this work offers 

evidence for including the timing, type, and titer of islet autoantibody measurements in risk 

stratification for type 1 diabetes. This is the first work to include all three autoantibody 

characteristics in a risk stratification model. These findings may also provide insights 

into optimal times and types of autoantibodies to guide screening programs during pre-

symptomatic stages of type 1 diabetes. In addition, the importance of IA-2A in risk 

stratification after 4 years of age was established, which may guide strategies for recruitment 

and enrollment in prevention studies.

Strengths of these findings include a robust longitudinal cohort and a novel data-driven 

clustering method. The TEDDY study is the largest prospective birth cohort study 

that monitors longitudinal changes in islet autoantibodies [30], allowing unprecedented 

opportunities for big-data analytics to elucidate the pre-symptomatic features of type 1 

diabetes. Though several studies have evaluated select autoantibody characteristics in type 

1 diabetes risk [21–24], this is the first data-driven study that considers the combinatory 

role of the timing, type, and titer of islet autoantibodies in one model. The unsupervised 

machine learning algorithm utilized in this analysis facilitates the evaluation of joint 

trajectories across multiple variables [26]. We presented a year-based model of multiple 

islet autoantibody development that captured changes in the timing, type, and titer of 

autoantibody development that correlated with type 1 diabetes risk. The clusters identified 

in this study can serve as a computational framework for investigating other factors in 

pre-symptomatic type 1 diabetes development.

There are some limitations to this study. Only children with genetic susceptibility to type 

1 diabetes were enrolled in the TEDDY study [30], limiting the generalizability of these 

findings. Autoantibody titers were measured using different assays across two different 

laboratory sites and the visit schedule changed after 4 years of age based on autoantibody 

status. Though analytical measures were taken to address these limitations (ESM Methods), 

residual measurement bias may remain and our findings may be skewed towards individuals 

who developed eventual islet autoantibody positivity. Future studies should evaluate these 

findings in more consistently collected datasets.

In this study, we included participants with at least one autoantibody positivity to limit bias 

towards baseline clusters and obtain a sufficient sample size for analysis. We also excluded 

individuals with few autoantibody measurements, but some individuals with episodic or 

occasional measurements may remain. Though we were able to identify distinct clusters, the 

number of participants assigned to baseline clusters was much larger than in non-baseline 

clusters. We also divided participants into 1-year cohorts to account for loss to follow-up or 

reaching the study endpoint. Future studies in larger cohorts should seek to evaluate clusters 

among participants with persistently positive islet autoantibodies using alternate temporal 

intervals.
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The unsupervised clustering method used in this analysis was limited to temporal islet 

autoantibody measurements. Future studies should seek to use more complex machine 

learning methods to evaluate other characteristics, including other novel islet autoantigens 

[51], other genetic risk markers, environmental exposures, dietary intake, and socioeconomic 

factors.

In conclusion, this study leveraged data-driven techniques to assess the role of multiple islet 

autoantibody characteristics in type 1 diabetes risk. These findings highlight the importance 

of islet autoantibody timing, type, and titer in type 1 diabetes risk stratification. The 

identification of age-dependent percentiles for each autoantibody and associated 1-year and 

5-year risk for type 1 diabetes onset may help to improve screening and prediction strategies 

for prevention studies. Future work should validate these findings in independent cohorts 

with diverse populations across longer temporalities and further characterize phenotypic 

features.
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RESEARCH IN CONTEXT:

What is already known about this subject?

• Islet autoantibodies can be detected prior to type 1 diabetes onset.

• Current risk stratification models rely on positivity status of islet 

autoantibodies, but additional autoantibody characteristics may be important 

for understanding disease onset.

• No studies have examined the joint role of islet autoantibody timing, type, 

and titer in type 1 diabetes onset due to insufficient analytical methods, but 

machine learning approaches may overcome these limitations.

What is the key question?

• Can a data-driven model incorporating islet autoantibody timing, type, and 

titer stratify risk for type 1 diabetes?

What are the new findings?

• Overall, we identified 2 – 4 clusters in each year cohort that differed by 

autoantibody timing, titer, and type.

• During the first 3 years of life, risk for type 1 diabetes was driven by 

membership in clusters with high titers of all three autoantibodies.

• Type 1 diabetes risk transitioned to type-specific clusters during ages 4–8, 

with high titers of IA-2A showing faster progression to disease compared to 

GADA that continued during ages 9–12.

How might this impact clinical practice in the foreseeable future?

• This data-driven approach provides a novel tool for stratifying type 1 diabetes 

risk using multiple autoantibody characteristics and supports the role for 

incorporation of islet autoantibody timing, type, and titer in risk stratification 

models for etiologic studies, prevention trials, and disease screening.
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Figure 1: Methods workflow:
Workflow of methods used to include/exclude participants, preprocess data, develop 1-year 

cohorts, perform unsupervised clustering, analyze identified clusters, and calculate cluster 

transitions.
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Figure 2: Year 1 representative clusters:
In the first year of life, 3 clusters were identified. Clusters are colored according to 

the autoantibody cluster center: baseline (blue), all declining (orange), and all increasing 

(green). Log-scaled z-scores of cluster centers identified through kml3d respective to (a) 

GADA, (b) IA-2A, and (c) IAA. (d) Survival curves for each identified cluster.
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Figure 3: Years 2 – 3 representative clusters:
From ages 2 – 3, 2 clusters were identified and year 2 was selected as representative for this 

age group. Clusters are colored according to the autoantibody cluster center: baseline (blue) 

and all increasing (green). Log-scaled z-scores of cluster centers identified through kml3d 

respective to (a) GADA, (b) IA-2A, and (c) IAA. (d) Survival curves for each identified 

cluster.
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Figure 4: Years 4 – 8 representative clusters:
From ages 4 – 8, 3 clusters were identified and year 4 was selected as representative for this 

age group. Clusters are colored according to the autoantibody cluster center: baseline (blue), 

IA-2A dominant (red), and GADA dominant (purple). Log-scaled z-scores of cluster centers 

identified through kml3d respective to (a) GADA, (b) IA-2A, and (c) IAA. (d) Survival 

curves for each identified cluster.
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Figure 5: Years 9 – 12 representative clusters:
From ages 9 – 12, 4 clusters were identified and year 9 was selected as representative for this 

age group. Clusters are colored according to the autoantibody cluster center: baseline (blue), 

IA-2A dominant (red), GADA dominant (purple), and IA-2A and GADA dominant (brown). 

Log-scaled z-scores of cluster centers identified through kml3d respective to (a) GADA, (b) 

IA-2A, and (c) IAA. (d) Survival curves for each identified cluster.
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Figure 6: Transitions in cluster membership across years 1 – 12:
Network diagram of transitions in cluster membership across Years 1 – 12. The nodes 

represent cluster membership in each year and are colored according to the autoantibody 

cluster center: baseline (blue), all declining (orange), all increasing (green), IA-2A dominant 

(red), GADA dominant (purple), or IA-2A and GADA dominant (brown). The numbers in 

the nodes represent cluster number. The size of the node correlates to the scaled number 

of individuals assigned to that cluster. The black arrows represent the scaled number of 

participants that transitioned from a given cluster to a different cluster in the subsequent 

year.
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