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Abstract

Aims/Hypothesis: Islet autoantibodies can be detected prior to the onset of type 1 diabetes
and are important tools for etiologic studies, prevention trials, and disease screening. Current
risk stratification models rely on positivity status of islet autoantibodies alone, but additional
autoantibody characteristics may be important for understanding disease onset. This work
aimed to determine if a data-driven model incorporating characteristics of islet autoantibody
development, including timing, type, and titer, could stratify risk for type 1 diabetes onset.

Methods: Data on autoantibodies against GAD (GADA), tyrosine phosphatase islet antigen-2
(IA-2A) and insulin (IAA) were obtained for 1,415 children enrolled in The Environmental
Determinants of Diabetes in the Young study with at least one positive autoantibody measurement
from years 1 — 12 of life. Unsupervised machine learning algorithms were trained to identify
clusters of autoantibody development based on islet autoantibody timing, type, and titer. Risk for
type 1 diabetes across each identified cluster was evaluated using time-to-event analysis.

Results: We identified 2 — 4 clusters in each year cohort that differed by autoantibody timing,
titer, and type. During the first 3 years of life, risk for type 1 diabetes onset was driven by
membership in clusters with high titers of all three autoantibodies (1-year risk: 20.87-56.25%,
5-year risk: 67.73-69.19%). Type 1 diabetes risk transitioned to type-specific titers during ages 4
— 8, as clusters with high titers of IA-2A (1-year risk: 20.88-28.93%, 5-year risk: 62.73-78.78%)
showed faster progression to diabetes compared to high titers of GADA (1-year risk: 4.38-6.11%,
5-year risk: 25.06-31.44%). The importance of high GADA titers decreased during ages 9 — 12,
with clusters containing high titers of 1A-2A alone (1-year risk: 14.82-30.93%) or both GADA
and 1A-2A (1-year risk: 8.27-25.00%) demonstrating increased risk.

Conclusions/Interpretation: This unsupervised machine learning approach provides a novel
tool for stratifying risk for type 1 diabetes onset using multiple autoantibody characteristics. These
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findings suggest that age-dependent changes in IA-2A titers modulate risk for type 1 diabetes
onset across 12 years of life. Overall, this work supports incorporation of islet autoantibody
timing, type, and titer in risk stratification models for etiologic studies, prevention trials, and
disease screening.
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Type 1 diabetes mellitus; islet autoantibodies; clustering; unsupervised machine learning; disease
progression; risk stratification

INTRODUCTION:

Type 1 diabetes is a chronic autoimmune disease with increasing incidence worldwide
[1-3]. Individuals with type 1 diabetes experience significant disease burden [4-6],
making prevention a priority. Current strategies for type 1 diabetes prevention focus

on modifying the pre-symptomatic disease course in individuals with significant disease
risk. Pre-symptomatic type 1 diabetes is characterized by progressive immune-mediated
destruction of insulin-producing pancreatic islet cells [7]. Autoantibodies against islet
cells, including glutamic acid decarboxylase (GADA), tyrosine phosphatase islet antigen-2
(IA-2A), and insulin (IAA), are important biomarkers for type 1 diabetes that can be
detected during this period [8, 9].

Current risk stratification models for type 1 diabetes rely on positivity status of islet
autoantibodies in genetically susceptible individuals [7]; however, not all individuals that
develop islet autoantibody positivity go on to develop type 1 diabetes and the time to disease
onset varies considerably. Islet autoantibody characteristics, including age at appearance
[10-14], the type and combinations [8, 12, 15, 16], and the titer of islet autoantibodies

[17, 18], have been individually shown to stratify risk for type 1 diabetes. While these
studies provide insight into islet autoantibody development, few studies have considered the
longitudinal effects of these characteristics in unison due to insufficient analytical methods.

Unsupervised machine learning are data-driven methods that are well-equipped to
characterize these complex interactions [19, 20]. Unsupervised learning algorithms aim

to identify patterns in data without making any apriori assumptions on disease status.
Previous studies leveraging unsupervised machine learning identified clusters on the basis
of timing and type [21, 22] or timing and titer of islet autoantibodies [23, 24]. However, no
studies have evaluated the combined effects of timing, type, and titer of islet autoantibody
development on type 1 diabetes risk. Unsupervised machine learning methods may provide
novel insights into the relationship between multiple autoantibody characteristics and may
improve risk stratification models for disease onset.

Precise stratification of type 1 diabetes risk is needed to identify at-risk individuals,
ultimately improving etiologic studies, disease screening, and enrollment in prevention
studies. Therefore, this work aimed to determine if a data-driven model incorporating islet
autoantibody timing, type, and titer could stratify risk for type 1 diabetes in children with
high-risk HLA genotypes in The Environmental Determinants of Diabetes in the Young
(TEDDY) study.
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METHODS:

Software

An overview of the methods is summarized in Fig 1. This research was approved by

the University of Utah Institutional Review Board. All analyzes were performed in the
HIPAA-compliant protected environment at the Center for High Performance Computing at
the University of Utah. Additional details on the participants and data collection, inclusion/
exclusion criteria, preprocessing, cohort extraction, identification of optimal models, and
analysis of identified clusters are described in the electronic supplementary material [ESM]
Methods.

Unsupervised clustering was performed in R (v4.0.2) [25] using kml3d (v2.4.2) [26]. All
other analyses were performed with Python (v3.8.12; www.python.org): statistical analysis
was performed using SciPy (v1.7.2) [27], time-to-event analysis was performed using
lifelines (v0.26.4) [28], and the network diagram was generated using network (v2.8.0)
[29].

Participants & Data Collection:

Data from the TEDDY study was obtained from the National Institute of Diabetes and
Digestive and Kidney Disease Central Repository. The TEDDY study enrolled 8,677
children with high-risk HLA genotypes for type 1 diabetes across 6 clinical centers in the
United States and Europe [30]. Participants were followed every 3 months from 3 months
of age until 4 years and every 3 or 6 months until 15 years, depending on autoantibody
positivity status [30, 31]. Additional descriptions of the TEDDY study can be found
elsewhere [30-34] (ESM Methods).

Inclusion/Exclusion Criteria:

Participants with at least one positive GADA, IA-2A, or IAA measurement as determined
by the thresholds defined by the testing laboratory for the specific autoantibody and
collection assay were included for analysis (ESM Methods). Participants with too few islet
autoantibody measurements, as defined by having less than 4 autoantibody measurements
in total, last study visit occurring before 12 months of age, first study visit occurring after
3 months of age, or less than 50% of autoantibody measurements available, were excluded
(n = 238) to limit the amount of data imputation required during analysis and remove
participants with only occasional or episodic measurements. These criteria led to 1,415
participants.

Preprocessing:

GADA, IA-2A, and I1AA titers were extracted for included participants. Harmonization of
measurements across the type of autoantibody, collection assay, and processing laboratories
was performed and log-scaled z-score of GADA, IA-2A, and IAA titers were calculated

as described in previous literature (ESM Methods) [11, 23]. To address the multiplicity of
measurements at the same time point due to different assays, processing laboratories, and
sample retesting [31, 33], a modified measurement selection procedure was adapted from
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previous literature [11, 23] and is described (ESM Methods). Missing data were linearly
imputed (ESM Methods).

Year Cohort Extraction:

To address varying autoantibody trajectory lengths due to loss-to-follow-up or reaching the
study endpoint, measurements for all participants were divided into 1-year cohorts from 3
months to 15 years of age as defined (ESM Methods). To assess adequacy of sample size
for unsupervised clustering, the feature-to-observation ratio was calculated and cohorts were
excluded if they did not meet the required sample size [35]. Sex, clinical center, high-risk
HLA genotype group, and islet autoantibody positivity status were extracted as covariates,
and the status and age at type 1 diabetes diagnosis were extracted as outcome measures
(ESM Methods). Differences in the distribution of covariates were assessed using a X2 test
with Yates Continuity correction [27] and evaluated at the 0.05 significance level.

Unsupervised Clustering & Evaluation:

For each year cohort, unsupervised machine learning was performed to identify clusters

of GADA, IA-2A, and IAA development. Non-parametric algorithms for clustering joint
trajectories (kml3d) [26] were developed with pre-specified clusters ranging from 2 —

10, Euclidean distance, and the k-means++ algorithm with the centroid method. These
parameters were tested across 100 different initializations to determine if clustering results
were consistent across different starting conditions set by k-means ++. The Calinski
Harabasz score was used to assess clustering performance and identify the optimal number
of clusters [36]. The optimal numbers of clusters for each year cohort were identified as
described in ESM Methods.

Analysis of Identified Clusters:

Cluster centers, defined as the arithmetic mean of all points within a cluster, and standard
deviations were calculated for each cluster. The log-scaled z-score of GADA, 1A-2A, and
IAA autoantibody cluster centers and standard deviations were plotted for each year cohort.

Time-to-event analysis [28, 37] was used to examine risk of progression to type 1 diabetes
for each cluster in each year. The period from last autoantibody measurement in each year
to age at type 1 diabetes diagnosis or age at last autoantibody measurement was used as
the event time. Kaplan-Meier survival estimates were generated for each cluster in each
year. A log-rank test was used to compare the overall difference in survival curves between
clusters each year and pairwise log-rank tests were used to compare progression of type

1 diabetes between each cluster each year. Results were evaluated at the 0.05 significance
level. Adjusted p-values were calculated for pairwise log-rank tests with more than one
comparison using a Benjamini-Hochberg correction for multiple comparisons. For each
cluster, the 1-year and 5-year risk for type 1 diabetes were calculated with a 95% CI when
applicable and the titer percentile for each autoantibody at each timepoint for each cluster
were calculated.

For each cluster, the distribution of participants by sex, HLA genotype group, clinical center,
and islet autoantibody positivity status was calculated. Differences in the distribution of
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covariates for each cluster in each year were assessed using a X2 test with Yates Continuity
correction and evaluated at the 0.05 significance level.

To determine whether cluster membership was stable or varied across each year, the number
and percentage of individuals that transitioned from a given cluster each year to a different
cluster in the subsequent year were calculated. Transitions of cluster membership across
Years 1 — 12 were visualized using a network diagram [29, 38] (ESM Methods).

Year Cohort Characteristics:

Overall, 1,415 participants were included for analysis. The feature-to-observation ratio for
assessing adequacy of sample size was calculated to be 280 (70* &, where kis the number
of variables, i.e., k= 4 visits per year). All year cohorts met the sample size inclusion
threshold except Years 13 (n = 136), 14 (n = 18), and 15 (n = 0). Therefore, Years 1

— 12 were included for further analysis. Year cohorts did not differ significantly by sex
(o= 1.000), clinical center (p= 0.996), high-risk HLA genotypes (o= 1.000), or islet
autoantibody positivity status (p=0.719) (ESM Table 2), indicating that covariates were
similarly distributed across all years.

Unsupervised Clustering:

kml3d identified 2 — 4 clusters of GADA, IA-2A, and IAA development across year cohorts.
Years 1, 4, 5, 6, 7, and 8 cohorts contained 3 clusters, Years 2 and 3 cohorts contained

2 clusters, and Years 9, 10, 11, and 12 cohorts contained 4 clusters with the highest and
most consistent Calinski Harabasz scores (ESM Table 3; ESM Fig. 1). These models were
selected for further analysis.

Analysis of Identified Clusters:

Years were categorized into four groups based on the similarity of visualized cluster centers.
The first year in each group was selected as a representative image (Fig 2-5). Cluster centers
(ESM Fig. 2), time-to-event analysis (ESM Fig. 3, ESM Table 4, Table 1), and covariates
(ESM Table 5) are discussed for each cluster in each year. Cluster transitions between select
years are described (Fig 6, ESM Table 6).

Three clusters were identified during the first year of life that stratified risk for type 1
diabetes (log-rank p=4.951E-42, Fig 2). The first cluster center showed a baseline pattern
with titers below the 50t percentile in all three autoantibodies (baseline; Fig 2a—c; Table
1). Survival analysis of participants in the baseline cluster revealed minimal progression to
type 1 diabetes (Fig 2d), with a 1-year risk of 1.80% and a 5-year risk of 10.07% (Table 1).
The second cluster center showed elevated GADA titers at 3 months with minimal elevations
in IA-2A and IAA that declined over time (all declining; Fig 2a—c). The survival curve of
participants in the all declining cluster was not distinguishable from the baseline cluster
(pairwise log-rank adjusted p= 0.059, ESM Table 4), indicating a low risk for diabetes
(1-year risk: 3.12%, 5-year: 3.12%, Table 1). Mothers of individuals in the all declining
cluster were GADA positive at 0 or 9 months (ESM Results). The third cluster center
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demonstrated an increase in titers of all islet autoantibodies (all increasing; Fig 2a—c), with
an incline to the 9™ percentile at 9 months noted in IAA (Table 1). Individuals in the

all increasing cluster rapidly progressed to type 1 diabetes (Fig 2d), with a 56.25% 1-year
and 68.75% 5-year risk (Table 1) and had a higher proportion of participants with the
DR3/4 genotype (71.66%, ESM Table 5). The distribution of individuals who developed islet
autoantibody positivity varied significantly across each cluster, with the all declining and
all inclining clusters having 94.12% and 100.00% of individuals with positivity (X2 test p
= 4.729E-10, ESM Table 5). These findings suggest that islet autoantibody development
among genetically susceptible individuals is characterized by increasing or decreasing
patterns in all three autoantibodies, with a subset of individuals demonstrating declining
patterns in islet autoantibody titers.

During years 2 — 3, two clusters of islet autoantibody development were identified that
effectively stratified risk for type 1 diabetes (log-rank p=1.132E-113 & 1.912E-136 for
years 2 and 3, ESM Fig. 2b—c; ESM Fig. 3b—c). Similar to clusters identified in year 1,
clusters in years 2 — 3 showed baseline patterns with titers below the 50t percentile in

all autoantibodies or all increasing patterns (Table 1; Fig 3a—c). The all increasing clusters
demonstrated increased risk for progression to type 1 diabetes (1-year risk: 27.96 and
20.87%, 5-year risk: 69.19 and 67.73% in years 2 and 3, Table 1; Fig 3d) compared to

the baseline clusters (1-year risk: 1.21 and 0.52%, 5-year risk: 6.10 and 4.80% in years 2
and 3, Table 1; Fig 3d). Though most participants remained in the same cluster they were
previously assigned to, participants in the all declining cluster in year 1 transitioned to

the baseline cluster in year 2 (Fig 6; ESM Table 6). Most individuals in the all increasing
clusters were islet autoantibody positive, while individuals in the baseline cluster were split
(ESM Table 5). Together, these findings indicate that risk for type 1 diabetes is characterized
by all increasing patterns of islet autoantibody development during the first three years of
life, with few individuals returning to baseline thereafter.

During years 4 — 8, three clusters of islet autoantibody development were identified

that effectively stratified risk for type 1 diabetes (log-rank p = 4.804E-150, 3.518E-146,
1.899E-91, 5.892E-82, 2.716E-57 for years 4, 5, 6, 7, and 8, ESM Fig. 2d-h, ESM Fig.
3d-h). Similar to the first three years, baseline clusters (Fig 4a—c) with minimal progression
to type 1 diabetes (1-year risk: 1.03, 0.60, 0.63, 0.66, and 0.70% for years 4, 5, 6, 7,

and 8, 5-year risk: 4.50, 4.34, 5.41, and 5.05% for years 4, 5, 6, and 7, Table 1; Fig 4d)
were identified. Individuals previously assigned to all increasing clusters in year 3 primarily
transitioned to one of two novel clusters in years 4 — 8 (Fig 6, ESM Table 6): 49.57%
transitioned to a cluster with 1A-2A titers above the 90" percentile (IA-2A dominant; Table
1; Fig 4b) while 29.57% transitioned to a cluster with GADA titers above the 90t percentile
(GADA dominant; Table 1; Fig 4a). Though both IA-2A and GADA dominant clusters
demonstrated greater risk for diabetes compared to baseline clusters (Fig 4d), individuals
assigned to 1A-2A dominant clusters progressed to type 1 diabetes faster than individuals
assigned to the GADA dominant clusters (ESM Table 4). On average, the 1-year diabetes
risk for IA-2A dominant clusters was 4.8 times higher than for GADA dominant clusters
(IA-2A: 28.93, 25.49, 20.88, 24.42, and 24.08% vs. GADA: 5.93, 6.11, 4.86, 4.38, and
4.81% for IA-2A in years 4, 5, 6, 7, and 8, Table 1) and the 5-year risks were 2.4 times
higher than GADA dominant cluster (I1A-2A: 78.78, 74.06, 63.40, 62.73% vs. GADA:
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30.45, 28.49, 25.06, 31.44% for years 4, 5, 6, and 7, Table 1). Individuals assigned to

IA-2A dominant clusters in years 6 — 8 were more likely to be male and islet autoantibody
positive (ESM Table 5). Together, these findings suggest that during ages 4 — 8, diabetes risk
transitions to autoantibody and titer-specific clusters, with 1A-2A dominant clusters having
faster progression to type 1 diabetes.

During years 9 — 12, four clusters of islet autoantibody development were identified that
effectively stratified risk for type 1 diabetes (log-rank p = 8.614E-33, 5.347E-31, 8.673E-13,
and 4.024E-14 for years 9, 10, 11, and 12, ESM Fig. 2i-l, ESM Fig. 3i-1). Similar to
previous years, baseline clusters (Fig 5a—c) with minimal progression to type 1 diabetes (1-
year risk: 1.05, 1.39, 1.25, 0.00% in years 9, 10, 11, and 12, Table 1; Fig 5d) were identified.
GADA dominant clusters and IA-2A dominant clusters were also identified in years 9 — 12
(Fig 5a—c). The importance of GADA dominance in diabetes risk diminished (1-year risk:
6.09, 3.74, 4.18, 3.85% in years 9, 10, 11, and 12, Table 1; Fig 5d) compared to 1A-2A
dominance, which remained equally important (1-year risk: 23.71, 21.65, 14.82, 30.93% for
IA-2A inyears 9, 10, 11, and 12, Table 1; Fig 5d). Though most individuals assigned to
GADA or IA-2A dominant clusters in years 4 — 8 remained in the same clusters in years

9 - 12 (Fig 6, ESM Table 6), a subset of individuals transitioned to novel clusters that
demonstrated elevated titers above the 90™ percentile in both GADA and IA-2A (GADA
and IA-2A dominant; Table 1; Fig 5a—c). Notably, the survival curves of GADA & IA-2A
dominant clusters were not significantly different from 1A-2A dominant clusters (pairwise
log-rank adjusted p=0.613, 0.947, 0.538, and 0.865 for years 9, 10, 11, and 12, ESM Table
4; Fig 5d). Both 1A-2A dominant and GADA & IA-2A dominant clusters demonstrated
faster progression to type 1 diabetes compared to baseline and GADA dominant clusters
(1-year diabetes risk: 8.27, 13.5, 25.00, 23.61% for years 9, 10, 11, and 12, Table 1). All
participants in IA-2A dominant clusters and 1A-2A & GADA dominant clusters were islet
autoantibody positive (ESM Table 5). Together, these findings indicate that IA-2A clusters
play more important roles in type 1 diabetes risk stratification at older ages.

DISCUSSION:

Type 1 diabetes risk varies substantially according to islet autoantibody characteristics.

A more precise stratification of type 1 diabetes risk is needed to better identify at-risk
individuals for etiologic studies, disease screening, and enrollment in prevention trials. In the
present study, we leveraged data-driven methods to identify clusters of GADA, IA-2A, and
IAA islet autoantibody development that stratified the risk for type 1 diabetes in children
with genetic susceptibility enrolled in the TEDDY study.

During the first 3 years of life, risk for type 1 diabetes was characterized by clusters

with increasing titers of all three autoantibodies (Fig 2-3). Though increased diabetes

risk associated with multiple islet autoantibody positivity in early life is well-established
[10, 29], these findings are the first to provide insight into the joint development of
GADA, IA-2A, and IAA over time. Notably, our findings suggest that increases in all
three autoantibodies above the 70t percentile can be detected as early as 12 months of age
and continue to increase until 3 years (Table 1). By providing a more precise estimate of
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early type 1 diabetes risk and characterizing increases in multiple autoantibody titers, these
findings may aid in planning type 1 diabetes prevention trials.

We also identified a subgroup of participants with a decline in GADA titers from the 99t
percentile to the 50™ percentile during the first year of life that likely resulted from elevated
maternal autoantibodies [40] (ESM Results). Participants in this cluster demonstrated a
decreased 5-year risk for type 1 diabetes compared to the baseline cluster (Table 1). This
finding supports previous observations that maternal GADA may serve a protective role
against type 1 diabetes onset [41] and further studies are needed to assess the role of

GADA in slowing disease progression. Overall, cluster 2 reflects a heterogenous group in
which autoantibodies generated from mothers with type 1 diabetes were likely transmitted to
participants. These mothers are additionally likely to transmit insulin antibodies that may be
generated as a consequence of maternal insulin therapy [42]. The findings from this analysis
support a reduced risk for type 1 diabetes in infants born to mothers with type 1 diabetes.

Type 1 diabetes risk transitioned to type-specific titers during ages 4 — 8, as clusters

with titers of A-2A above the 98t percentile demonstrated faster progression to diabetes
compared to clusters with titers of GADA above the 98t percentile (Fig 4). These findings
suggest that while titers of GADA and IA-2A may both provide insights into the lifetime
risk of type 1 diabetes, higher titers of IA-2A may indicate an earlier onset of type

1 diabetes. Type 1 diabetes is a highly heterogeneous disease, and recent studies have
proposed autoantibody-driven subgroups of presymptomatic disease [43-45]. Our findings
may reflect a novel age-related endotype driven by IA-2A dominance with faster progression
to diabetes. The importance of GADA decreased during ages 9 — 12, with clusters containing
IA-2A or both GADA and 1A-2A demonstrating increased risk for type 1 diabetes (Fig 5).
Together, these findings suggest that 1A-2A plays a more important role in type 1 diabetes
risk stratification later in life. Previous studies have also found that higher titers of IA-2A
but not GADA increased the risk for type 1 diabetes [11, 46], and our findings add temporal
context by highlighting the utility of GADA in years 4 — 8, but diminished effects after that.

This analysis detected single baseline clusters in each year cohort (Fig 2-5). We also

found that individuals who did not meet the criteria for confirmed persistently positive islet
autoantibody status but had at least one positive islet autoantibody were most prevalent in
the baseline clusters (ESM Table 5). These findings suggest that subclinical variations in
islet autoantibody titers are minimal and do not confer significant risk for future onset of
type 1 diabetes.

Though HLA genotype groups significantly differed between clusters in most year cohorts,
no individual genotype accounted for cluster membership (ESM Table 4). This suggests
that factors beyond genotype influence autoantibody and type 1 diabetes development.
Environmental exposures are implicated in the etiology of type 1 diabetes [47-49] and the
clusters identified in this work may provide a useful framework to investigate etiologic
factors in type 1 diabetes. We also noted a significant association between 1A-2A dominant
clusters in years 6 — 10 and male sex (ESM Table 5). Further research is needed to
corroborate these findings in other diverse datasets and explore why males are more likely
to demonstrate dominance of 1A-2A in years 6 — 10 of life, especially given our finding
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of increased type 1 diabetes risk in this group (Table 1). Future studies should explore
underlying etiopathologic mechanisms associated with the data-driven clusters identified in
this work.

Strategies to improve the prediction of risk for development of type 1 diabetes are needed

to improve enrollment in prevention and etiologic studies [50]. Overall, this work offers
evidence for including the timing, type, and titer of islet autoantibody measurements in risk
stratification for type 1 diabetes. This is the first work to include all three autoantibody
characteristics in a risk stratification model. These findings may also provide insights

into optimal times and types of autoantibodies to guide screening programs during pre-
symptomatic stages of type 1 diabetes. In addition, the importance of 1A-2A in risk
stratification after 4 years of age was established, which may guide strategies for recruitment
and enrollment in prevention studies.

Strengths of these findings include a robust longitudinal cohort and a novel data-driven
clustering method. The TEDDY study is the largest prospective birth cohort study

that monitors longitudinal changes in islet autoantibodies [30], allowing unprecedented
opportunities for big-data analytics to elucidate the pre-symptomatic features of type 1
diabetes. Though several studies have evaluated select autoantibody characteristics in type
1 diabetes risk [21-24], this is the first data-driven study that considers the combinatory
role of the timing, type, and titer of islet autoantibodies in one model. The unsupervised
machine learning algorithm utilized in this analysis facilitates the evaluation of joint
trajectories across multiple variables [26]. We presented a year-based model of multiple
islet autoantibody development that captured changes in the timing, type, and titer of
autoantibody development that correlated with type 1 diabetes risk. The clusters identified
in this study can serve as a computational framework for investigating other factors in
pre-symptomatic type 1 diabetes development.

There are some limitations to this study. Only children with genetic susceptibility to type

1 diabetes were enrolled in the TEDDY study [30], limiting the generalizability of these
findings. Autoantibody titers were measured using different assays across two different
laboratory sites and the visit schedule changed after 4 years of age based on autoantibody
status. Though analytical measures were taken to address these limitations (ESM Methods),
residual measurement bias may remain and our findings may be skewed towards individuals
who developed eventual islet autoantibody positivity. Future studies should evaluate these
findings in more consistently collected datasets.

In this study, we included participants with at least one autoantibody positivity to limit bias
towards baseline clusters and obtain a sufficient sample size for analysis. We also excluded
individuals with few autoantibody measurements, but some individuals with episodic or
occasional measurements may remain. Though we were able to identify distinct clusters, the
number of participants assigned to baseline clusters was much larger than in non-baseline
clusters. We also divided participants into 1-year cohorts to account for loss to follow-up or
reaching the study endpoint. Future studies in larger cohorts should seek to evaluate clusters
among participants with persistently positive islet autoantibodies using alternate temporal
intervals.
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The unsupervised clustering method used in this analysis was limited to temporal islet
autoantibody measurements. Future studies should seek to use more complex machine
learning methods to evaluate other characteristics, including other novel islet autoantigens
[51], other genetic risk markers, environmental exposures, dietary intake, and socioeconomic
factors.

In conclusion, this study leveraged data-driven techniques to assess the role of multiple islet
autoantibody characteristics in type 1 diabetes risk. These findings highlight the importance
of islet autoantibody timing, type, and titer in type 1 diabetes risk stratification. The
identification of age-dependent percentiles for each autoantibody and associated 1-year and
5-year risk for type 1 diabetes onset may help to improve screening and prediction strategies
for prevention studies. Future work should validate these findings in independent cohorts
with diverse populations across longer temporalities and further characterize phenotypic
features.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT:
What is already known about this subject?
. Islet autoantibodies can be detected prior to type 1 diabetes onset.

. Current risk stratification models rely on positivity status of islet
autoantibodies, but additional autoantibody characteristics may be important
for understanding disease onset.

. No studies have examined the joint role of islet autoantibody timing, type,
and titer in type 1 diabetes onset due to insufficient analytical methods, but
machine learning approaches may overcome these limitations.

What is the key question?

. Can a data-driven model incorporating islet autoantibody timing, type, and
titer stratify risk for type 1 diabetes?

What are the new findings?

. Overall, we identified 2 — 4 clusters in each year cohort that differed by
autoantibody timing, titer, and type.

. During the first 3 years of life, risk for type 1 diabetes was driven by
membership in clusters with high titers of all three autoantibodies.

. Type 1 diabetes risk transitioned to type-specific clusters during ages 4-8,
with high titers of 1A-2A showing faster progression to disease compared to
GADA that continued during ages 9-12.

How might this impact clinical practice in the foreseeable future?

. This data-driven approach provides a novel tool for stratifying type 1 diabetes
risk using multiple autoantibody characteristics and supports the role for
incorporation of islet autoantibody timing, type, and titer in risk stratification
models for etiologic studies, prevention trials, and disease screening.
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TEDDY participants
(n=8,677)

E—

Included participants

Exclusion criteria:
- Participants without any GADA, |A-2A, or IAA measurements (n = 33 excluded)
- Participants without at least one positive GADA, I1A-2A, or IAA measurements (n = 6,991 excluded)
- Participants with too few measurements (n = 238 excluded):
< 4 autoantibody measurements in total
- less than 50% of data present
last visit before 12 months

(n=1415) - first visit after 3 months
Deviati Standa;dlzat'lsn threshold Measurement selection Data cleaning
lewla ons away rgrr; © fresho Harmonized over TEDDY assay & Trajectory Imputation
relative to autoantibody type, assay reference over repository laboratory Linear Interpolation

type, and processing laboratory

!

Yearly breakdown & sample size screening

Year1 | Year2 | Year3 | Year4
3-12 15-24 27-36 39-48
months | months | months | months

Year5 | Year6 | Year7 | Year8 | Year9 | Year 10 | Year 11 | Year 12 | Year 13 | Year 14 | Year 15
51-60 63-72 75-84 87-96 | 99-108 | 111-120 | 123-132 | 135-144 | 147-156 | 159-168 | 171-180
months | months | months | months | months | months | months | months | months | months | months

!

Unsupervised clustering
Non-parametric algorithm for

Training parameters . e
Number of Clusters: 2 — 10 Best model identification / year

Model with the highest and most

clustering joint trajectories
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Initialization Algorithm: k-means ++ across the 100 initializations

Number of Initializations: 100

!

Cluster visualization
Log-scaled z-score of

| Covariate analysis / year
Risk assessment / year N .
Covariates: sex, HLA, clinical center,

Kaplan-Meier survival analysis islet autoantibody status
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cluster comparisons A L
P Evaluation: 0.05 significance level

|
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Transitions visualization
Network diagram of number of

Number and percentage of
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cluster to another in any given year

patients transitioning from clusters
for each year

Figure 1: Methods workflow:
Workflow of methods used to include/exclude participants, preprocess data, develop 1-year

cohorts, perform unsupervised clustering, analyze identified clusters, and calculate cluster

transitions.
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Figure 2: Year 1 representative clusters:
In the first year of life, 3 clusters were identified. Clusters are colored according to

the autoantibody cluster center: baseline (blue), all declining (orange), and all increasing
(green). Log-scaled z-scores of cluster centers identified through kml3d respective to (a)
GADA, (b) 1A-2A, and (c) IAA. (d) Survival curves for each identified cluster.
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Figure 3: Years 2 — 3 representative clusters:
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1020 843 629 423 242 85 0
137 292 488 679 852 1003 1087
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26 23 10 8 4 1 0
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From ages 2 — 3, 2 clusters were identified and year 2 was selected as representative for this
age group. Clusters are colored according to the autoantibody cluster center: baseline (blue)

and all increasing (green). Log-scaled z-scores of cluster centers identified through kml3d

respective to (a) GADA, (b) IA-2A, and (c) IAA. (d) Survival curves for each identified

cluster.
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Figure 4: Years 4 — 8 representative clusters:

From ages 4 — 8, 3 clusters were identified and year 4 was selected as representative for this
age group. Clusters are colored according to the autoantibody cluster center: baseline (blue),
IA-2A dominant (red), and GADA dominant (purple). Log-scaled z-scores of cluster centers
identified through kml3d respective to (a) GADA, (b) IA-2A, and (c) IAA. (d) Survival

curves for each identified cluster.

Diabetologia. Author manuscript; available in PMC 2024 March 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Mistry et al. Page 19

a 201 b 20- C 204
. . =
2 2 £
:»1.8— ;\1.8— ;1.8—
° e ——————a T B
o o — o
2 =2 — 2
1ol T 6] S 16
L L L
3 3 3
T © ©
© 147 © 14 © 14
<} 9] g
o o) 9
P P P
N {2+ N 1.2+ N 1.2+
o o ——— - — ]
o o S)
&l e =l
1.0 T T 1 1.0 T T 1 1.0 T T 1
99 102 105 108 99 102 105 108 99 102 105 108
Age (months) Age (months) Age (months)
Cluster 23: baseline Cluster 24: GADA dominant Cluster 25: IA-2A dominant Cluster 26: GADA & IA-2A dominant
(n=782) — (n=81) " (n=52) T (n=41)

logrank p=8.614e-33, test statistic = 152.251

1.0
0.9
0.8
0.7 A
0.6
0.5
0.4
0.3
0.2
0.1
0.0

T1DM-free survival

T T T
96 108 120 132 144 156 168
Time from cluster assignment (months)

Cluster 23: Cluster 24: Cluster 25: Cluster 26:
baseline GADA dominant |A-2A dominant GADA & |A-2A dominant
Cluster 23
Atrisk 703 529 357 204 69 0
Censored 78 246 412 562 695 764
Events 1 7 13 16 18 18
Cluster 24
Atrisk 71 49 36 22 10 0
Censored 9 28 39 52 63 73
Events 1 4 6 74 8 8
Cluster 25
Atrisk 48 29 19 13 3 0
Censored 1 12 19 24 32 34
Events 3 1" 14 15 17 18
Cluster 26
Atrisk 40 29 19 7 4 0
Censored 1 9 16 23 25 29
Events 0 3 6 11 12 12

Figure 5: Years 9 — 12 representative clusters:
From ages 9 — 12, 4 clusters were identified and year 9 was selected as representative for this

age group. Clusters are colored according to the autoantibody cluster center: baseline (blue),
IA-2A dominant (red), GADA dominant (purple), and 1A-2A and GADA dominant (brown).
Log-scaled z-scores of cluster centers identified through kml3d respective to (a) GADA, (b)
IA-2A, and (c) IAA. (d) Survival curves for each identified cluster.

Diabetologia. Author manuscript; available in PMC 2024 March 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Mistry et al. Page 20

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12

[ @ Bascine @ Alldecining @ Allincreasing @ 1A2Adominant @ GADdominant @ GAD & IA2A dominant

Figure 6: Transitions in cluster membership across years 1 — 12:
Network diagram of transitions in cluster membership across Years 1 — 12. The nodes

represent cluster membership in each year and are colored according to the autoantibody
cluster center: baseline (blue), all declining (orange), all increasing (green), IA-2A dominant
(red), GADA dominant (purple), or IA-2A and GADA dominant (brown). The numbers in
the nodes represent cluster number. The size of the node correlates to the scaled number

of individuals assigned to that cluster. The black arrows represent the scaled number of
participants that transitioned from a given cluster to a different cluster in the subsequent
year.
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