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Abstract: We present Full-BAPose, a novel bottom-up approach for full body pose estimation that
achieves state-of-the-art results without relying on external people detectors. The Full-BAPose
method addresses the broader task of full body pose estimation including hands, feet, and facial
landmarks. Our deep learning architecture is end-to-end trainable based on an encoder-decoder
configuration with HRNet backbone and multi-scale representations using a disentangled water-
fall atrous spatial pooling module. The disentangled waterfall module leverages the efficiency of
progressive filtering, while maintaining multi-scale fields-of-view comparable to spatial pyramid
configurations. Additionally, it combines multi-scale features obtained from the waterfall flow with
the person-detection capability of the disentangled adaptive regression and incorporates adaptive
convolutions to infer keypoints more precisely in crowded scenes. Full-BAPose achieves state-of-the
art performance on the challenging CrowdPose and COCO-WholeBody datasets, with AP of 72.2%
and 68.4%, respectively, based on 133 keypoints. Our results demonstrate that Full-BAPose is efficient
and robust when operating under a variety conditions, including multiple people, changes in scale,
and occlusions.

Keywords: human pose estimation; whole-body pose estimation; deep learning; multi-scale
representations; waterfall module; atrous spatial pooling; adaptive convolutions; disentangled
keypoint regression

1. Introduction

Full body pose estimation is a challenging task in computer vision that finds applica-
tions in action recognition, human–computer interaction, and sign language recognition.
Human pose estimation methods have received considerable attention for 2D pose esti-
mation, including multistage architectures, such as stacked hourglass (HG) networks [1]
and Convolutional Pose Machines (CPMs) [2], and encoder-decoder architectures, such as
UniPose [3] and High-Resolution Network (HRNet) [4]. Multi-person pose estimation is
particularly challenging due to joint occlusions and the large number of degrees of freedom
in the human body. State-of-the-art (SOTA) methods for multi-person pose estimation can
be top-down or bottom-up. Top-down approaches use detectors to localize instances of
persons in the image and then perform single-person pose estimation for each instance.
While top-down approaches generally achieve higher accuracy, they require external detec-
tors that make the process slower and more costly. Bottom up methods either detect all
keypoints and group them for each individual [5] or directly regress the keypoints to each
person in the image [6]. Thus, bottom-up approaches require a single processing stage and
are more efficient.

Full-BAPose is a full-body version of BAPose [7]. It is a bottom-up framework named
after “Basso verso l’Alto” (bottom-up in Italian). The Full-BAPose method deals with the
broader task of pose estimation for the whole body and is based on 133 keypoints for the
body, hands, feet, and facial landmarks. Examples of Full-BAPose pose estimation are
shown in Figure 1, illustrating the method’s effectiveness under various conditions. The
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Full-BAPose network is single-stage and end-to-end trainable, building upon the successful
approaches by UniPose for single-person 2D pose [3], UniPose+ for single-person 2D and
3D pose [8], and OmniPose for multi-person top-down pose [9]. Full-BAPose achieves SOTA
results without requiring post-processing, intermediate supervision, multiple iterations, or
anchor poses. The main contributions of Full-BAPose are:

• A single-pass, end-to-end trainable, multi-scale approach for a bottom-up multi-person
full-body pose estimation framework that achieves SOTA results;

• Our bottom-up approach operates without requiring a separate detector because it
combines multi-scale waterfall features with disentangled adaptive convolutions and
includes a decoder to determine the joints of individuals in crowded scenes.

Figure 1. Full-body pose estimation examples with our Full-BAPose method showing a single person
and multiple people at various scales and occlusions. The bottom-up approach determines the
bounding boxes (in green) and the person pose estimation.

2. Related Work

Convolutional Neural Networks (CNNs) have enabled impressive advances for hu-
man pose estimation [5,8,10,11]. Convolutional pose machines [2] utilize a CNN with stages
that refine joint detection. Part Affinity Fields (PAFs) in OpenPose [5] capture relationships
between joints for improved human pose estimation. The stacked hourglass network [1]
cascades hourglass structures for pose estimation refinement. The multi-context approach
in [12] augments the backbone with residual units to increase the receptive Field-of-View
(FOV) but increases complexity due to postprocessing with Conditional Random Fields
(CRFs). Aiming to develop a unified framework for single-person pose estimation, Uni-
Pose [3] and UniPose+ [8] combine bounding box generation and joint detection in a
unified, one-pass network. This is made feasible by the Waterfall Atrous Spatial Pooling
(WASP) module [13], which allows a larger field-of-view and multi-scale representations to
determine context.

The multi-scale approach of HRNet includes both high and low resolutions to obtain a
larger FOV, while higher HRNet [14] combined the HRNet structure with multi-resolution
pyramids. The Multi-Stage Pose Network (MSPN) [15] combines the cross-stage feature
aggregation and coarse-to-fine supervision. The Distribution-Aware coordinate Representa-
tion of Keypoints (DARK) method [16] refines their decoder in order to reduce the inference
error at the decoder stage.

The work in [17] utilized graphs to extract contextual information for pose. Cascade
Feature Aggregation (CFA) [18] employed the cascade approach for semantic information
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in pose estimation. Generative Adversarial Networks (GANs) were used in [19] to learn
context for poses. More recently, methods such as TokenPose [20] are investigating trans-
former networks to determine global dependencies for pose estimation. Neural architecture
search was explored in ZoomNAS [21] to obtain separate networks for pose estimation on
the body, hands, and face.

A limitation of top-down approaches is the requirement of an independent module
for the detection of instances of humans in the frame. LightTrack [22], for instance, applies
YOLOv3 [23] to detect subjects prior to the detection of joints for pose estimation, while
LCR-Net [10] applies multiple branches for detection by using the Detectron [24] and the
arrangement of joints during classification.

2.1. Bottom-Up Approaches

Bottom-up approaches face the bigger challenge of detecting the joints of multiple
people without an external person detector used by top-down methods. Bottom-up meth-
ods try to associate detected keypoints with persons in the image. This problem was cast
in [25,26] as integer linear programming, but this type of optimization requires a significant
processing time. OpenPose [5] used part affinity fields in a breakthrough approach to
grouping keypoints for each person. This approach was extended by Pif-Paf [27] and
associative embedding [28]. PersonLab [29] adopted Hough voting and [30] Hierarchical
Graphical Clustering (HGG). The works in [31,32] consider dense regression of pose candi-
dates but face the limitation of lower localization accuracy that requires post-processing to
improve the results. In a related approach, Ref. [33] considered a mixture density network
before regression. Alternatively, the Disentangled Keypoint Regression (DEKR) [6] method
learns disentangled representations for each keypoint and utilizes adaptively activated
pixels so that each representation focuses on the corresponding keypoint area.

2.2. Multi-Scale Feature Representations

The pooling operations in CNNs present a challenge for pose estimation due to the
resolution reduction. To overcome this problem, Fully Convolutional Networks (FCNs) [34]
utilize upsampling to increase the resolution of the feature maps to the size of the input
image. DeepLab [35] adopted atrous convolutions in the multi-scale Atrous Spatial Pyramid
Pooling (ASPP) framework that maintains the size of the receptive fields. DeepLab applies
atrous convolutions in four parallel branches with different rates and combines them at the
original image resolution.

Presenting an improvement over ASPP, the WASP module [3,13] generates multi-
scale features in an efficient manner by creating a waterfall flow. Instead of immediately
parallelizing all branches of the input stream, the WASP module first processes through a
filter and then creates a new branch. The waterfall flow extends the cascade approach by
combining the streams from all its branches to create a multi-scale representation.

3. Full-BAPose Architecture

The Full-BAPose bottom-up architecture, as illustrated in Figure 2, consists of a single-
pass, end-to-end trainable network with HRNet backbone and our Disentangled Waterfall
Atrous Spatial Pyramid (D-WASP) module with an integrated decoder for full-body multi-
person pose estimation. The input image is fed in the HRNet backbone and the extracted
feature maps from the HRNet levels are processed by the D-WASP module to obtain
enhanced multi-scale representations. The D-WASP module includes an integrated de-
coder to obtain the location of keypoints and contextual information for the localization
regression. The network generates K heatmaps, one for each joint, with the corresponding
confidence maps, as well as two offset maps for the identification of person instances and
the association of keypoints to each instance. The integrated D-WASP decoder generates
detections from all scales of the feature extraction for both visible and occluded joints while
maintaining the image resolution throughout the network.
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Figure 2. Full-BAPose architecture for whole-body multi-person pose estimation. The input color
image is fed through the HRNet backbone for initial feature extraction. The feature sizes are denoted
by the two spatial dimensions first and the channel dimension last, e.g., (128 × 128 × 32) denotes
feature size of 128 × 128 with 32 channels. The HRNet features are combined by the D-WASP
module and a decoder utilizing adaptive convolutions generates the detection bounding boxes and
the keypoints for the hand, head, feet, and entire body, i.e., 133 keypoints and 4 bounding boxes for
each person instance.

Our approach includes several innovations that contribute to increased accuracy. The
D-WASP module combines atrous convolutions and the waterfall architecture to improve
multi-scale representations with contextual information by the processing of feature maps
at multiple rates of dilation. Our architecture allows a larger FOV in the encoder and
integrates disentangled adaptive convolutions in the decoder, facilitating the detection
of multi-person instances and their keypoints in a single-pass. Further, our network
demonstrates the ability to deal with a large number of persons in the image due to feature
extraction at multiple scales. Finally, the modular nature of the architecture facilitates easy
implementation and training of the network.

Full-BAPose utilizes a bottom-up approach without relying on external detectors to
locate faces or people. The D-WASP module combines the multi-scale approach of the
waterfall atrous convolutions with disentangled adaptive convolutions to better estimate
the joints and effectively detect multiple person instances.

3.1. Disentangled Waterfall Module

The enhanced “Disentangled Waterfall Atrous Spatial Pyramid” module is shown in
Figure 3. The D-WASP module processes all four levels of feature maps from the backbone
through the waterfall branches with different dilation rates for multi-scale representations.
Low-level and high-level features are represented at the same resolution, achieving refined
joint estimation. Furthermore, the D-WASP module uses adaptive convolution blocks to
infer heatmaps for joint localization and offset maps for person instance regression.

The design of the D-WASP module relies on a combination of atrous and adaptive
convolutions. Atrous convolutions are utilized in the initial stages to expand the FOV by
performing a filtering cascade at increasing rates to gain efficiency. The waterfall modules
are designed to create a waterfall flow, initially processing the input and then creating a
new branch. D-WASP goes beyond the cascade approach of [36] by combining all streams
from all its branches and the average pooling layer from the original input. Additionally,
our module incorporates a larger number of scales compared to previous versions of
the waterfall module [3,9] by adopting all 480 feature maps from all levels of the HRNet
feature extractor. Adaptive convolutions are used for improved estimation of individual
keypoints and offset heatmaps during the regression process by providing context around
each detected joint and associated joints.
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Figure 3. The D-WASP disentangled waterfall module. The feature sizes are denoted by the two
spatial dimensions, followed by the channel dimension. The inputs are 32, 64, 128, and 256 feature
maps from all four levels of the HRNet backbone, as illustrated in Figure 2, and low-level features
from the initial layers of the framework. The module processes the backbone features at different
rates of dilation in a waterfall fashion and outputs both the keypoints and offset heatmaps for each
person instance.

3.1.1. Waterfall Features and Adaptive Convolutions

The D-WASP module operation starts with the concatenation g0 of all feature maps fi
from the HRNet feature extractor, where i = 0, 1, 2, 3 indicates the levels at different scales
and summation indicates concatenation:

g0 =
3

∑
i=0

( fi) (1)

The waterfall processing is described as follows:

fWater f all = W1 ~ (
4

∑
i=1

(Wdi
~ gi−1) + AP(g0)) (2)

fmaps = W1 ~ (W1 ~ (W1 ~ fLLF + fWater f all) (3)

where ~ represents convolution, g0 is the input feature map, gi is the feature map from
the ith atrous convolution, AP is the average pooling operation, fLLF are the low-level
feature maps, and W1 and Wdi

represent convolutions of kernel size 1 × 1 and 3 × 3 with
dilations of di = [1, 6, 12, 18], as shown in Figure 3. After concatenation, the feature maps
are combined with low-level features. The last 1 × 1 convolution reduces the number of
feature maps down to one quarter of the number in the combined input feature maps.

Finally, the D-WASP module output fD−WASP is obtained from the multi-scale adaptive
convolutional regression, where adaptive convolution is defined as:

y(c) =
9

∑
i=1

(wix(gc
i + c)) (4)

where c is the center pixel of the convolution, y(c) represents the output of the convolution
for input x, wi are the kernel weights for the center pixel and its neighbors, and gc

i is the
offset of the ith activated pixel. In the adaptive convolutions, the offsets gc

i are adopted in a
parametric manner as an extension of spatial transformer networks [37].

3.1.2. Disentangled Adaptive Regression

The regression stage for multi-person pose estimation is a bottleneck in performance
for bottom-up methods. To address this limitation, additional processing may utilize
pose candidates, post-processing matching, proximity matching, or statistical methods.
However, these may be computationally expensive or limited in effectiveness.

D-WASP leverages the idea of regression by focus by learning disentangled represen-
tations for each of the K joints and using multiple scales to infer each representation for
all keypoints from multiple adaptively activated pixels. This configuration offers more
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robust contextual information of the keypoint region and results in a more accurate spatial
representation. In addition, the integration of the multi-scale feature maps in the disentan-
gled adaptive regression utilizes multiple resolutions at the regression stage, allowing the
network to better infer the locations of people and their joints.

4. Datasets

We evaluated BAPose on two datasets for 2D multi-person pose estimation: Common
Objects in Context (COCO) [38] and CrowdPose [39]. The large and most commonly
adopted COCO dataset [38] consists of over 200K images with more than 250K instances of
labelled people keypoints. The keypoint labels consist of 17 keypoints including all major
joints in the torso and limbs, as well as facial landmarks, including nose, eyes, and ears.
The dataset is challenging due to the large number of images in a diverse set of scales and
occlusion for poses in the wild.

The CrowdPose dataset [39] is more challenging due to crowds and low separation
among individuals. The dataset contains 10K images for training, 2K images for validation,
and 20K images for testing. In addition to joint annotations, it also contains body part
occlusions. We follow evaluation procedures from [6,14].

The COCO-WholeBody dataset consists of images from the large COCO dataset
labeled to contain facial landmarks, feet and hands keypoints, and the original body
keypoints, totaling 133 keypoints to be extracted by the network for multiple people in
each image. The dataset contains over 130K instances of facial landmarks, hands, and feet
for a total of over 800K hand keypoints and 1.4M facial landmarks.

We generated ideal Gaussian maps for the joints’ ground truth locations during
training, which is a more effective strategy for training loss assessment compared to single
points at joint locations. As a consequence, the BAPose output heatmap locations for each
joint. The value of σ = 3 was adopted, generating a well-defined Gaussian response for
both the ground truth and keypoint predictions, with a decent separation of keypoints and
avoidance of large overlapping of keypoints.

5. Experiments

BAPose experiments followed standard metrics set by each dataset and the same
procedures applied by [6,14].

5.1. Metrics

For the evaluation of BAPose, the evaluation is conducted based on the Object Key-
point Similarity metric (OKS).

OKS =
(∑i e−d2

i /2s2k2
i )δ(vi > 0)

∑i δ(vi > 0)
(5)

where di is the Euclidian distance between the estimated keypoint and its ground truth, vi
indicates if the keypoint is visible, s is the scale of the corresponding target, and ki is the
falloff control constant. Since the OKS measurement is adopted by both datasets and is
similar to the intersection over the union (IOU), we report our OKS results as the Average
Precision (AP) for the IOUs for all instances between 0.5 and 0.95 (AP), at 0.5 (AP50) and
0.75 (AP75), as well as instances of medium (APM) and large size (APL) for the COCO
dataset. For the CrowdPose dataset, we report easy (APE), medium (APM), and hard size
(APH) instances, as well as the overall Average Recall (AR), including for medium (ARM)
and large (ARL) instances.

5.2. Parameter Selection

We use a set of dilation rates of r = {1, 6, 12, 18} for the D-WASP module, similar to [9],
and train the network for 140 epochs. The learning rate is initialized at 10−3 and is reduced
by an order of magnitude in two steps at 90 and 120 epochs. The training procedure
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includes random rotation [−30◦, 30◦], random scale [0.75, 1.5], and random translation
[−40, 40], mirroring procedures followed by [6]. All experiments were performed using
PyTorch on Ubuntu 16.04. The workstation has an Intel i5-2650 2.20 GHz CPU with 16 GB
of RAM and an NVIDIA Tesla V100 GPU.

6. Results

This section presents body pose results with BAPose [7] and full-body pose results
with Full-BAPose, as well as comparisons with SOTA methods.

6.1. Experimental Results on the CrowdPose Dataset

We performed training and testing of BAPose (for body pose based on 17 keypoints)
on the CrowdPose dataset, a difficult challenge due to the high occurrence of crowds
in the images. The results are shown in Table 1. Our BAPose-W32 method uses the
HRNet-W32 backbone [6]. Figure 4 illustrates successful detections of multi-person pose
for the CrowdPose test set. The examples demonstrate how effectively BAPose deals with
occlusions, the close proximity of individuals, as well as detections at different scales.

Figure 4. Pose estimation examples using BAPose with the CrowdPose dataset.

Table 1. BAPose results and comparison with SOTA methods for the CrowdPose dataset for testing.
TP and BU represent the top-down and bottom-up approaches, respectively. Best results are in bold.

Method Input Approach AP AP50 AP75 APE APM APH
Size

BAPose-W32 (ours) 512 BU 72.2% 89.6% 78.0% 79.9% 73.4% 61.3%
MIPNet [40] 512 TP 70.0% - - - - -

HRNet-W48 [6] 640 BU 67.3% 86.4% 72.2% 74.6% 68.1% 58.7%
JC SPPE [39] - TP 66.0% 84.2 71.5 75.5% 66.3% 57.4%

HigherHRNet-W48 [14] 640 BU 65.9% 86.4% 70.6% 73.3% 66.5% 57.9%
HRNet-W32 [6] 512 BU 65.7% 85.7% 70.4% 73.0% 66.4% 57.5%

Mask R-CNN [41] - BU 60.3% - - 69.4% 57.9% 45.8%

BAPose significantly improves upon SOTA methods for 512 × 512 input resolution,
achieving an AP of 72.2%. BAPose outperforms other bottom-up approaches by a wide
margin, even those that utilized higher input resolutions. BAPose increased the AP of pre-
vious bottom-up methods from 65.7% to 72.2% (relative increase of 9.9%) when compared
to previous SOTA at the same resolution, which is a 19.0% reduction in error (from 34.3%
to 27.8%). The capabilities of the multi-scale approach of BAPose are further illustrated
by observing more precise joint estimations with a threshold of 75% (AP75), drastically
reducing the error by 25.7% (from 29.6% to 22.0%) and increasing the previous SOTA AP
from 70.4% to 78.0% (relative increase of 10.8%) when compared to the previous SOTA
HRNet-W32 [6].

Additionally, BAPose outperforms networks that utilize top-down approaches by
a significant margin, increasing from 70.0% to 72.2%. In contrast to top-down methods,
BAPose does not rely on ground truth for person detection and has to infer the location
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of all individuals in a modular, single-pass process. For the CrowdPose dataset, BAPose’s
performance is superior to networks utilizing higher-resolution inputs of 640 × 640 [6,14]
while processing the less computationally expensive 512 × 512 resolution.

We observe that the BAPose framework was able to achieve this significant increase
in AP for the CrowdPose dataset while utilizing a backbone that is smaller (HRNet-W32)
compared to the previous SOTA deploying a larger backbone (HRNet-W48 [6]), reducing
the number of parameters by 54.9% and GFLOPs by 67.9%.

6.2. Experimental Results on the COCO Dataset

We next performed training and testing of BAPose on the COCO dataset, which
is challenging due to the large number of diverse images with multiple people in close
proximity and images lacking a person instance. We first compared BAPose with SOTA
methods for the COCO validation and test-dev datasets. The validation results in Table 2
show that BAPose achieves significant improvement over the previous SOTA for both input
resolutions. Our BAPose-W32 and BAPose-W48 methods use HRNet-W32 and HRNet-W48
backbones respectively [6]. The BAPose results at the former resolution are obtained with a
significantly lower computational cost compared to methods with a higher resolution, as
shown in Table 3, while achieving comparable results to a higher resolution.

Table 2. BAPose results and comparison with SOTA methods for the COCO dataset for validation.
Best results are in bold.

Method Input AP AP50 AP75 APM APL ARSize

Single-Scale Testing

BAPose-W48 (ours) 640 71.6% 88.6% 78.3% 67.3% 78.7% 76.5%
HRNet-W48 [6] 640 71.0% 88.3% 77.4% 66.7% 78.5% 76.0%

HigherHRNet-W48 [14] 640 69.9% 87.2% 76.1% - - -

BAPose-W32 (ours) 512 69.1% 87.0% 75.6% 63.1% 78.6% 73.7%
HRNet-W32 [6] 512 68.0% 86.7% 74.5% 62.1% 77.7% 73.0%

HigherHRNet-W32 [14] 512 67.1% 86.2% 73.0% - - -
HGG [30] 512 60.4% 83.0% 66.2% - - 64.8%

Multi-Scale Testing

BAPose-W48 (ours) 640 72.7% 88.6% 79.1% 69.3% 78.4% 77.9%
HRNet-W48 [6] 640 72.3% 88.3% 78.6% 68.6% 78.6% 77.7%

HigherHRNet-W48 [14] 640 72.1% 88.4% 78.2% - - -

BAPose-W32 (ours) 512 71.9% 88.3% 77.8% 67.2% 79.1% 76.6%
HRNet-W32 [6] 512 70.7% 87.7% 77.1% 66.2% 77.8% 75.9%

HigherHRNet-W32 [14] 512 69.9% 87.1% 76.0% - - -
HGG [30] 512 68.3% 86.7% 75.8% - - 72.0%

Table 3. GFLOPs and number of parameters comparison.

Method Input GFLOPs Params
Size (M)

HRNet-W32 [6] 512 45.4 29.6
BAPose-W32 (ours) 512 56.8 30.3

HRNet-W48 [6] 640 141.5 65.7
HigherHRNet-W48 [14] 640 154.3 63.8

BAPose-W48 (ours) 640 183.2 67.4

The incorporation of the D-WASP module achieves an increased overall accuracy of
69.1% when using single-scale testing, significantly increasing the AP accuracy at 512 × 512
resolution by 1.6%. For multi-scale testing, BAPose achieves 71.9%, improving upon
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previous SOTA of 70.7%, which is an increase in accuracy of 1.7%. This performance
increase represents an error reduction of 3.4% (from 32.0% to 30.9%) for single scale and
4.1% error reduction for multi-scale (from 29.3% to 28.1%).

BAPose improves the accuracy of the previous SOTA in all keypoint estimation metrics
and IOU for the COCO dataset. Most of the performance improvements of BAPose are
attributed to performing better on harder detections and more refined predictions at AP75.
The results on the COCO validation dataset, in Table 2, show the greater capability of
BAPose to detect more complex and harder poses while still using a smaller resolution in
the input image.

We also trained and tested BAPose-W48 at a 640 × 640 resolution, achieving 71.6%
accuracy for the COCO validation set with single-scale testing and 72.7% with multi-scale
testing, improving the previous SOTA by 0.8% and 0.6%, respectively. This improvement
represents an error reduction of 2.1% and 1.4% compared to HRNet-w48 [6]. However,
larger resolution models require much higher computational resources, as illustrated by
the GFLOPs and memory requirements in Table 3. Compared to BAPose-W32, HRNet-W48
requires a 249.1% increase in the number of GFLOPs, and HigherHRNet-W48 requires a
271.7% increase in the number of GFLOPs, demonstrating that BAPose-W32 results in a
better trade-off between accuracy and computational cost.

Figure 5 presents examples of pose estimation results for the COCO dataset. BAPose
effectively locates symmetric body joints and avoids confusion due to occlusion between
individuals. This is illustrated in harder-to-detect joints, such as ankles and wrists. Overall,
the BAPose results demonstrate robustness for pose estimation in challenging conditions,
such as images that include multiple individuals with a high overlapping ratio combined
with shadows or darker images or partial poses present in the image.

Figure 5. Pose estimation results using BAPose with the COCO dataset.

For the larger COCO test-dev dataset shown in Table 4, BAPose achieves again new
SOTA performance over methods using input resolutions of 512 × 512. Our method
obtained an overall precision of 68.0% when using single-scale testing and 70.4% when
using multi-scale testing, which are relative improvements over SOTA of 1.0% for single
(from 67.3% to 68.0%) and 1.1% (from 69.6.% to 70.4%) for multi scale testing. BAPose
reduced the error at the 512 × 512 resolution by 2.1% (from 32.7% to 32.0%) for single-scale
and 2.6% (from 30.4% to 29.6%) for multi-scale testing. When training and testing at the
640 × 640 resolution, BAPose-W48 achieved accuracies of 70.3% for single-scale testing and
71.2% when using single-scale multi-scale testing, an improvement of 0.4% for single-scale
testing and 0.3% for multi-scale testing compared to the previous SOTA, reducing the
error by 1.0% and 0.7%, respectively. These results further demonstrate BAPose’s most
significant improvements are in smaller and harder targets consistent with the findings
from the validation dataset.
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Table 4. BAPose results and comparison with SOTA methods for the COCO dataset for test-dev. Best
results are in bold.

Method Input AP AP50 AP75 APM APL ARSize

Single-Scale Testing

BAPose-W48 (ours) 640 70.3% 89.6% 77.5% 65.9% 77.1% 75.4%
HRNet-W48 [6] 640 70.0% 89.4% 77.3% 65.7% 76.9% 75.4%

HigherHRNet-W48 [14] 640 68.4% 88.2% 75.1% 64.4 74.2 -

BAPose-W32 (ours) 512 68.0% 88.0% 74.8% 62.4% 76.6% 72.9%
HRNet-W32 [6] 512 67.3% 87.9% 74.1% 61.5% 76.1% 72.4%

SPM [31] - 66.9% 88.5% 72.9% 62.6% 73.1% -
CenterNet-HG [42] 512 63.0% 86.8% 69.6% 58.9% 70.4% -

OpenPose [5] - 61.8% 84.9% 67.5% 57.1% 68.2% 66.5%

Multi-Scale Testing

BAPose-W48 (ours) 640 71.2% 89.4% 78.1% 67.4% 76.8% 76.8%
HRNet-W48 [6] 640 71.0% 89.2% 78.0% 67.1% 76.9% 76.7%

HigherHRNet-W48 [14] 640 70.5% 89.3% 77.2% 66.6% 75.8% -
Point-set Anchors [43] 640 68.7% 89.9% 76.3% 64.8% 75.3% 74.8%

BAPose-W32 (ours) 512 70.4% 89.3% 77.4% 66.0% 76.9% 75.6%
HRNet-W32 [6] 512 69.6% 89.0% 76.6% 65.2% 76.5% 75.1%

HGG [30] 512 67.6% 85.1% 73.7% 62.7% 74.6% 71.3%

6.3. Experimental Results on the COCO-WholeBody Dataset

We trained and tested Full-BAPose on the COCO-WholeBody dataset [44] for the
larger task of estimating a full set of keypoints including all body pose keypoints, all joints
of feet and hands, and facial landmarks.

The comparison of both the Full-BAPose and OmniPose framework to state-of-the-
art methods for the validation dataset is shown in Table 5. The results demonstrate that
both architectures present a significant increase compared to the previous state-of-the-art,
especially the Full-BAPose framework, achieving an accuracy increase of 13.1% in the
overall accuracy compared to the previous state-of-the-art. In addition, it is important
to notice that the large increase observed by Full-BAPose utilizes a shared and unique
backbone to detect all 133 keypoints in contrast to previous work that deploy different
backbones for different tasks (face, body, hands, feet) on the COCO-WholeBody dataset.

Table 5. Full-BAPose results and comparison with SOTA methods for the COCO-WholeBody dataset
for validation. Best results are in bold.

Method Backbone Approach Single Whole Body Body Foot Face Hand
Task AP AP AP AP AP

Full-BAPose HRNet-W48 Top-Down N 68.4% 74.4% 76.4% 86.8% 64.6%
OmniPose [9] HRNet-W48 Top-Down N 65.8% 73.8% 66.6% 86.8% 60.2%

Zauss et al. [45] ShuffleNetV2k168 Bottom-Up N 60.4% 69.6% 63.4% 85.0% 52.9%
ZoomNet [44] 2 × HRNet (W32 + W18) Top-Down Y 54.1% 74.3% 79.8% 62.3% 40.1%

HRNet [4] HRNet-W32 Top-Down N 43.2% 65.9% 31.4% 52.3% 30.0%
HPRNet [46] HG Bottom-Up N 34.8% 59.4% 53.0% 75.4% 50.4%
OpenPose [5] - Bottom-Up N 33.8% 56.3% 53.2% 48.2% 19.8%

AE [28] HG Bottom-Up N 27.4% 40.5% 7.7% 47.7% 34.1%

Figure 6 presents sample pose estimation for the COCO-WholeBody dataset, exempli-
fying the high accuracy of Full-BAPose for the complete human pose estimation task.
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Figure 6. Pose estimation results using Full-BAPose with the COCO-WholeBody dataset.

7. Conclusions

We presented the Full-BAPose framework for bottom-up multi-person, full-body pose
estimation. The Full-BAPose method addressed the broader task of full-body pose estima-
tion including hands, feet, and facial landmarks. The Full-BAPose network includes the
D-WASP module that combines multi-scale features obtained from the waterfall flow with
the person-detection capability of disentangled adaptive regression. The results demon-
strate SOTA performance on body pose for both the COCO and CrowdPose datasets in all
metrics, as well as superior capability of person detection and pose estimation in densely
populated images. Future work will extend our framework with vision transformers for
improved performance.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision
AR Average Recall
ASPP Atrous Spacial Pyramid Pooling
CFA Cascade Feature Aggregation
CNN Convolutional Neural Networks
COCO Common Objects in Context
CPM Convolutional Pose Machines
CRF Conditional Random Fields
DARK Distribution-Aware coordinate Representation of Keypoints
DEKR Disentangled Keypoint Regression
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FCN Fully Convolutional Networks
FOV Field-of-View
GAN Generative Adversarial Networks
HG Hourglass
HGG Hierarchical Graphical Clustering
HRNet High-Resolution Network
IOU Intersection Over the Union
MSPN Multi-Stage Pose Network
OKS Object Keypoint Similarity
PAF Part Affinity Fields
SOTA State-of-the-art
WASP Waterfall Atrous Spatial Pooling
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