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Abstract: The localization of sensor nodes is an important problem in wireless sensor networks. The
DV-Hop algorithm is a typical range-free algorithm, but the localization accuracy is not high. To
further improve the localization accuracy, this paper designs a DV-Hop algorithm based on multi-
objective salp swarm optimization. Firstly, hop counts in the DV-Hop algorithm are subdivided,
and the average hop distance is corrected based on the minimum mean-square error criterion and
weighting. Secondly, the traditional single-objective optimization model is transformed into a multi-
objective optimization model. Then, in the third stage of DV-Hop, the improved multi-objective
salp swarm algorithm is used to estimate the node coordinates. Finally, the proposed algorithm is
compared with three improved DV-Hop algorithms in two topologies. Compared with DV-Hop,
The localization errors of the proposed algorithm are reduced by 50.79% and 56.79% in the two
topology environments with different communication radii. The localization errors of different node
numbers are decreased by 38.27% and 56.79%. The maximum reductions in localization errors are
38.44% and 56.79% for different anchor node numbers. Based on different regions, the maximum
reductions in localization errors are 56.75% and 56.79%. The simulation results show that the accuracy
of the proposed algorithm is better than that of DV-Hop, GWO-DV-Hop, SSA-DV-Hop, and ISSA-DV-
Hop algorithms.

Keywords: wireless sensor network; node localization; DV-Hop; multi-objective salp swarm algorithm

1. Introduction

A wireless sensor network (WSN) is a wireless multi-hop communication network
system composed of low-cost, low-power, and self-reconfigurable sensor nodes [1]. A WSN
is a sensing network based on the self-organization structure. It is formed in a certain
monitoring area with multiple sensor nodes through wireless communication technology,
which has less computing, storage, and transmission capacity. Wireless sensor network
technology has many advantages, such as low cost, scalability, reliability, and flexibility [2].
It is widely used in smart homes, target tracking, military security, underwater detection,
and many other technical fields [3,4]. In these scenarios, the data collected and transmitted
by sensors are often meaningless if they do not contain location information. Therefore,
the problem of wireless sensor node location has become one of the important research
topics in wireless sensor networks [5]. The detection of location becomes difficult due to
the fluctuation of signals and noise in the environment. Many difficulties have been faced
in location analysis [6].

In wireless sensor networks, sensor nodes are usually deployed randomly. GPS is the
most accurate and perfect localization technology to solve this problem. The exact position
coordinates of all nodes can be obtained directly. However, there are significant limitations
to equipping each sensor node with GPS [7]. Firstly, the cost and power consumption of
installing GPS modules on all sensors increases dramatically in large networks. Then, it
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is susceptible to interference in an environment with many obstacles, and the localization
accuracy is not satisfactory. Finally, the energy consumption of sensor nodes is also a
main challenge with more GPS modules [8,9]. One solution is to use several sensor nodes
equipped with localization modules, combined with known information in the network, to
calculate the location of unknown nodes, which is node localization technology [10–13].
Nodes equipped with localization modules are called beacon nodes. Other nodes whose
location information is unknown are called unknown nodes.

Node localization can be divided into range-based and range-free according to dif-
ferent methods [14]. The range-based algorithm requires distance or angle information
of nodes. Its localization accuracy is high, but it has high requirements for nodes and is
susceptible to environmental interference [15,16]. This method requires additional ranging
equipment, which inevitably increases the overall cost. Range-based algorithms are mainly
based on angle of arrival (AOA), time of arrival (TOA), time difference of arrival (TDOA),
and receive signal strength (RSSI) [17–20]. The range-free algorithm requires connectivity
information between the unknown node and the beacon node. It has the features of low
cost, low energy consumption, and simple implementation [21]. The localization accu-
racy of range-free algorithms is usually lower than that of range-based algorithms due to
the lack of ranging [22]. There are mainly centroid algorithms, Approximate PIT (APIT),
DV-Hop [23–25], etc.

The multi-objective salp swarm algorithm (MSSA) is a heuristic algorithm, and its
model can search for both fixed and moving food sources. The MSSA can well approximate
the Pareto frontier with high coverage and convergence. The DV-Hop localization algorithm
was proposed by Dragos et al. [26]. It is a non-range distributed location algorithm, because
its simple principle is widely used. However, the DV-Hop localization accuracy and stability
are poor. Cui et al. believe that the DV-Hop algorithm cannot meet the requirements of
high sensor localization accuracy in some scenarios [27]. Messous et al. believe that the
accuracy of existing solutions is still unsatisfactory [28].

To solve this problem, this paper designs a DV-Hop algorithm based on an improved
multi-objective salp swarm algorithm. Firstly, the four communication radii are used to
refine the hop count. Secondly, the average hop distance introduces a weighting factor on
the basis of the minimum mean-square error to reduce the error. Finally, the improved
multi-objective salp swarm algorithm is used to optimize the third stage of DV-Hop. The
rest of the paper is structured as follows. In Section 2, we introduce the DV-Hop algorithm
and describe the principles of the single-objective and multi-objective salp swarm algorithm
algorithms. Our proposed improved localization scheme is given in Section 3. Section 4 is a
performance analysis comparing the proposed algorithm with the three algorithms. Finally,
the paper is summarized in Section 5.

Related Work

The DV-Hop algorithm has been improved by some scholars. It mainly locates nodes
based on network connectivity and topology. Node localization consists of two steps: one
is distance estimation, and the other is coordinate estimation. Some scholars adopt the
weighting strategy in the distance estimation stage. For example, Zhang et al. proposed
that the unknown node would normalize the hop distance of all the beacon nodes received
so as to obtain its own hop distance [29]. Hou et al. introduced differential knowledge in
the hop distance calculation, and the average hop distance of each node was calculated
based on its own difference error [30]. Wang et al. used the inverse distance weighting
method in the calculation of the average hop distance, and the beacon node that is far
away from the unknown node was assigned a small weight, thus reducing the error of the
average hop distance [31]. Chen et al. used the minimum mean-square error criterion to
calculate the distance error between beacon nodes, and at the same time used the minimum
mean-square error criterion to calculate the average hop distance of unknown nodes to
form a double-weighted average hop distance [32]. Gui et al. believed that the estimated
distance of the original DV-Hop is one of the important reasons affecting the error, so
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the checkout step was introduced in the DV-Hop algorithm to improve the localization
accuracy. Based on this, a three-beacon node estimation distance algorithm was proposed
to further improve the localization accuracy [33].

However, some scholars use intelligent algorithms to optimize DV-Hop, such as
Bo et al., who applied GA to solve the localization problem of wireless sensor networks
and proposed a population constraint strategy based on three beacon nodes to solve the
feasible domain of the population [34]. Singh et al. used the 2D hyperbolic method to
determine the unknown node location, and after that, PSO was used to correct the node
location [35]. Kaur et al. replaced the original computation with the GWO algorithm in the
calculation of average hop distance so that all beacon nodes could obtain the exact average
hop distance [36]. Chai et al. designed a parallel WOA algorithm and introduced the tribal
annexation communication strategy and the group psychological communication strategy
in the parallel algorithm to enhance the population diversity of WOA and avoid local
optimal solutions [37]. Li et al. proposed three parallel cat colony algorithms and applied
them to solve the localization problem of wireless sensor networks, which greatly reduced
the running memory and computationally optimized variables [38]. Sabahat et al. used the
average position of beetles in the BAS algorithm and also introduced inertia coefficients to
update the position. The application of the improved BAS to the localization problem of
wireless sensor networks greatly improved the accuracy and stability of localization [39].
With the application of intelligent algorithms in wireless sensor network localization,
some researchers use multi-objective optimization to solve the localization problem. For
example, Wang et al. proposed a multi-objective DV-Hop algorithm based on NSGA-
II, which changed the population constraint strategy based on three beacon nodes to
a population constraint strategy based on all beacon nodes. The localization accuracy
was improved [40]. Kanwar et al. combined six single-objective functions with three
multi-objective functions and considered the effect of noise on the communication radius.
The solution was performed using the multi-objective PSO algorithm and obtained good
localization accuracy [41]. Huang et al. proposed to combine Manhattan and Euclidean
to obtain new frequency hopping and hop distance, and used the NSGA-II algorithm for
iterative optimization to improve localization accuracy and localization adaptability [42].

2. Methods
2.1. DV-Hop

In this section, we specifically introduce the implementation process of the DV-Hop
algorithm. The traditional DV-Hop consists of three stages.

Phase 1: Connectivity detection and calculation of hop counts between each unknown
node and beacon node.

Connectivity detection is performed to ensure that the nodes can be communicated.
In the first stage, the initialization value of node hop count information is 0. Each beacon
node broadcasts packets into the network with a radius R around itself. The hop counts
increase by 1 for each packet forwarded. The node stores the minimum hops between itself
and the beacon node.

Phase 2: Estimating the distance between the unknown node and the beacon node.
The minimum hop count obtained in the first stage is estimated using Equation (1) to

estimate the average hop distance Hopsizei.

Hopsizei = ∑N
j 6=i

√
(xi − xj)

2 − (yi − yj)
2/∑N

j 6=i hij (1)

where (xi, yi) and (xj, yj) are the coordinates of beacon nodes i and j, hij is the minimum hop
count between i and j (i 6= j), and Hopsizei is the average hop distance from beacon node
i to beacon node j. The unknown node takes the Hopsize received first as its average hop
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distance, and estimates the distance di with each beacon node based on it. The calculation
formula is shown in Equation (2).

di = Hopsizei × hi (2)

where hi is the minimum hop count from unknown node to beacon i.
Phase 3: Calculation of unknown nodes coordinates.
Since the distance between an unknown node and each beacon node is estimated from

Equation (2), the relationship between the beacon node and the unknown node is shown in
Equation (3). 

(x1 − x)2 + (y1 − y)2 = d1
2

(x2 − x)2 + (y2 − y)2 = d2
2

...
(xn − x)2 + (yn − y)2 = dn

2

(3)

where (x, y) are the coordinates of the unknown nodes. Equation (3) can be transformed
into Equation (4) by matrix.

x1
2 − xn

2 + y1
2 − yn

2 − 2x(x1 − xn)− 2y(y1 − yn) = d1
2 − dn

2

x2
2 − xn

2 + y2
2 − yn

2 − 2x(x2 − xn)− 2y(y2 − yn) = d2
2 − dn

2

...
xn−1

2 − xn
2 + yn−1

2 − yn
2 − 2x(xn−1 − xn)− 2y(yn−1 − yn) = dn−1

2 − dn
2

(4)

Equation (4) can be written as AX = B, where A, X, and B are shown in Equations (5)–(7).

A = 2


(x1 − xn) (y1 − yn)
(x2 − xn)

. . .
(xn−1 − xn)

(y2 − yn)
. . .

(yn−1 − yn)

 (5)

X =

[
x
y

]
(6)

B =


x1

2 − xn
2 + y1

2 − yn
2 + dn

2 − d1
2

x2
2 − xn

2 + y2
2 − yn

2 + dn
2 − d2

2

...
xn−1

2 − xn
2 + yn−1

2 − yn
2 + dn

2 − dn−1
2

 (7)

Let F(X) = ||AX-B||2 and let F′(X) = 0. As shown in Equations (8) and (9),

∂ f (x)
∂x

=
∂

∂x
‖ AX− B ‖2= 2AT(AX− B) = 2(AT AX− AT B) (8)

AT AX = AT B (9)

The location of unknown nodes is estimated by Equation (10):

X = (ATA)−1ATB (10)

2.2. Multi-Objective Salp Swarm Algorithm
2.2.1. Single-Objective Salp Swarm Algorithm

In the salp swarm algorithm (SSA), F(x) is denoted as the objective function, and {ul}
is the optimal solution found by the algorithm that matches the objective function.

Minisize/Maxisize : F(x) = { f1(x)} (11)
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Subject to: gi(x) ≥ 0, hk(x) = 0 (12)

lbj ≤ xj ≤ ubj (13)

where i and k are the number of constraints on the inequality and equation, respectively; lbj
represents the lower bound on the jth variable; and ubj represents the upper bound on the
jth variable.

In SSA, the salp chain is composed of leaders and followers. The leader is at the front
of the salp chain, while other individuals are followers [43]. The random initialization
population formula is shown in Equation (14):

XN×d = rand (N, d) × (ub − lb) + lb (14)

where N is the population number and d is the dimension, ub is the upper bound, lb is the
lower bound, and rand (N, d) is a random array of N rows and d columns between [0, 1].

In SSA, the location of the food source is the target location of all salps. It is the global
optimal solution in the exploration process and affects the leader position update. The
leader position update formula is as follows:

xi
j =

{
Fj + c1((ubj − lbj)c2 + lbj), c3 ≥ 0.5

Fj − c1((ubj − lbj)c2 + lbj), c3 ≤ 0.5
(15)

where xi
j is the position of the ith leader in the jth dimension, Fj is the location of the food

source in the jth dimension; ubj is the upper bound in the jth dimension; lbj is the lower
limit in the jth dimension; and c1, c2, with c3 are random numbers.

In terms of Equation (15), it can be seen that the leader position update is mainly
influenced by the food source position. Parameter c1 is defined as follows.

c1 = 2× exp(−(4t/Tmax)
m) (16)

where t is the current number of iterations, the power factor m = 2, and Tmax is the maxi-
mum number of iterations. The parameter c1 decreases adaptively during the iterations. It
contributes to the exploration ability when the value is relatively large, and it helps with
specific development capabilities when the value is small. c1 can make the exploration and
exploitation ability of the SSA in a good state. Thus, c1 is the most important parameter
in the SSA.

To update the position of followers, the following formula is used.

xi
j = at2/2 + v0∆t (17)

where i ≥ 2, xi
j is the position of the ith follower in the jth dimension, ∆t is time, v0 is the

initial velocity, a = (vt − v0)/∆t, vt = (xi
j − xj

i−1)/∆t, and xj
i−1 is the position of the (i − 1)st

salp in the jth dimension. Since time is the difference between the number of iterations,
∆t = 1, and the initial velocity v0 = 0. Equation (18) can be expressed as:

xi
j = (xi

j + xi−1
j )/2 (18)

With Equations (15) and (18), the salp chains can be simulated.

2.2.2. Multi-Objective Salp Swarm Algorithm

A multi-objective optimization problem deals with multiple objectives simultaneously,
and all objectives are to be optimized. It can be expressed as:

Minisize/Maxisize : F(x) = { f1(x), f2(x), . . . , fn(x)} (19)
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Subject to : gi(x) ≥ 0, hk(x) = 0 (20)

lbj ≤ xj ≤ ubj (21)

where n is the number of objectives; i and k are the number of constraints on the inequality
and equation, respectively; lbj represents the lower bound on the jth variable; and ubj
represents the upper bound on the jth variable.

The multi-objective problem cannot be solved by the SSA. The main reason is that the
solution to the multi-objective problem is a group of solutions called the Pareto-optimal
set. The SSA can drive salps close to the food source and update it in the iterative process.
However, the multi-objective problem cannot be addressed by this algorithm. The main
reason is that the SSA only saves one solution as the optimal solution.

In the MSSA, a food repository is equipped to solve the problem. This repository
stores the best solutions obtained during the optimization process. The capacity of the
repository storing optimal solutions is limited. Each salp is compared with all repository
original solutions using the Pareto dominance operator in the optimization process. The
comparison rules are as follows.

(1) If a salp is superior in the repository, then that salp should be put into the repository,
and the original solution should be taken out. If a salp is superior to a group of
solutions in the repository, then that group of solutions should be removed from the
repository, and the salp should be added to the repository.

(2) If there is at least one original solution in the repository that is superior to that salp,
then that salp should be discarded and not added to the repository.

(3) If the salp is not superior to all repository residents, the salp is the optimal solution
and must be added to the repository.

(4) If the repository is full and salp is not superior to the repository’s original solution, a
distance d for calculating the neighboring solution numbers is introduced at this time.
As shown in Equation (22). The number of neighboring solutions is calculated, and
the roulette wheel selection strategy is used to select the solution with a high number
of neighboring solutions for deletion.

→
d = (

−→
max−

−→
min)/repository size (22)

where
−→
min and

−→
max are the minimum and maximum fitness values in the population,

respectively; and repository size is the number of current repositories.
In the food selection stage, there is more than one optimal solution in the multi-

objective search space. The appropriate approach is to select the least crowded region from
a set of optimal solutions. This can be achieved using the same sorting procedure used in
the repository maintenance operator and roulette wheel selection. The main difference is
the probability of selecting the optimal solution. The higher the rank of the solution in the
repository maintenance deletion, the more likely it is to be selected. In contrast, the lower
the rank for the optimal solution in the repository, the more likely it is to be selected as a
food source.

3. Our Proposed IMSSA-DV-Hop Scheme
3.1. Error Analysis

Node location is the problem of obtaining the absolute coordinates of nodes in wireless
sensor networks. In the DV-Hop algorithm, the distance between nodes is obtained by
multiplying hop counts by the average hop distance. During the hop count calculation, all
nodes within the node communication radius are recorded as 1. However, the distances
between nodes are different, which leads to a large error. The unknown node receives the
average hop distance of the nearest beacon node to it and takes that average hop distance as
its own, which leads to an increase in the localization error. These methods are inherently
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inaccurate and sensitive to bias when solving for unknown node coordinates by least
squares or maximum likelihood estimation.

Based on the above analysis, we have made a series of improvements to the DV-Hop
algorithm, and the improved multi-objective salp swarm DV-Hop algorithm (IMSSA-DV-
Hop) is proposed.

3.2. Subdivision Hop Count

Nodes within the node communication radius are noted as 1, but the distance between
nodes is not the same, which leads to a large error. Thus, the minimum hop count is
subdivided again. As shown in Equation (23).

Hopsizemin =


1/m, 0 < dis < R/m
2/m, R/m < dis < 2× R/m
...
k/m, (k− 1)× R/m < dis < k× R/m, k = 1, 2, · · · , m

(23)

Obviously, the division of the hop count becomes more accurate as m becomes large,
and the calculation error becomes smaller. However, the larger the value of m taken, the
higher the requirement for sensor nodes, and the cost rises. With this in mind, m = 4 is used
in this paper.

3.3. Beacon Node Average Hop Distance Correction

In the DV-Hop algorithm, the unknown node takes the average hop distance from the
nearest beacon node as its own average hop distance to calculate the distance. However,
the network structure is random, and the hop distance from the unknown node to each
beacon node is not the same, so the error is large.

First, the average hop distance of the beacon nodes is improved. In the DV-Hop
algorithm, the calculation of the average hop distance is based on the unbiased estimation
criterion. That is, it is obtained by Equation (24).

fi = (1/N − 1)∑
j 6=i

(dij − Hopsizei × hopi,j) (24)

where N is the number of beacon nodes, Hopsizei is the average hop distance of beacon
node i, and hopi,j is the minimum number of hops between beacon nodes i and j, and fi is
the cost function of the ith node.

The measurement error follows the Gaussian distribution. According to the parameter
estimation theory, it is more reasonable to use the mean-square error than the variance
only. Therefore, the mean-square error is used to calculate the average hop distance of the
beacon node. Equation (25) can be obtained by transforming Equation (24):

fi = ∑
j 6=i

(dij − Hopsizei × hopi,j)
2 (25)

According to the calculation rule of unbiased estimation, take the first-order derivative
of Equation (25) and set it as 0 to obtain the average hop distance conforming to the
minimum mean-square error, as shown in Equation (26):

Hopsizei = ∑
j 6=i

hopi,j × di,j/∑
j 6=i

hopi,j
2 (26)

Beacon nodes with different distances from the unknown nodes reflect the local network
state differently. The close beacon nodes can reflect the actual average hop distance of the nodes
more accurately. Therefore, a large weight is assigned to the close beacon nodes. It is required
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to consider the average hop distance of multiple beacon nodes to estimate the average hop
distance more accurately. The weight value formula is shown in Equation (27).

wi = 1/hopij/
N

∑
i=1

1/hopij (27)

where hopij is the hop count from the unknown node to the beacon node, and wi is the
weighted correction factor of the hop distance of the unknown node. The average hop
distance of the unknown node can be solved according to Equation (28).

Hopsizeu =
N

∑
i=1

wi × Hopsizei (28)

3.4. Multi-Objective Model

In the DV-Hop algorithm, the initial objective function is shown in Equation (29).

f itness1 = min

(
m

∑
i=1
|
√
(xi − x)2 + (yi − y)2 − di|) (29)

where di is the estimated distance between beacon node i and the unknown node, (xi, yi)
are the coordinates of beacon node I, and (x, y) are the coordinates of the unknown node.

However, because di is a constant obtained in the second stage of the algorithm, the
position calculated with di is not the actual position, but it is close to the estimated position.
Therefore, another objective function needs to be added to enhance the search constraint.
The estimated distance di in the original objective function is replaced with the theoretical
distance. This results in a new objective function, as shown in Equation (30).

f itness2 = min(
m

∑
i=1
|
√
(xi − x)2 + (yi − y)2 − dit|) (30)

where dit is the theoretical distance from the unknown node t to the beacon node i. As
shown in Equation (31).

dit = divas × hit (31)

where hit is the minimum hop count between the unknown node t and the beacon node i,
and disav is the theoretical value of the average per hop distance from the unknown node to
the beacon node. Variable disav as shown in Equation (32).

disav =
∫ R

0
2πr2dr

/∫ R

0
2πrdr = 2R/3 (32)

3.5. Improved Multi-Objective Salp Swarm Algorithm
3.5.1. Initialization

In this paper, a good point-set initialization strategy is used to optimize the multi-
objective salp swarm algorithm, which is based on the following principle [44]. GS is the
unit cube in s-dimensional Euclidean space; if r ∈ GS, then:

Pn(k) =
{({

r1
(n) · k} ,

{
r2

(n) · k}, · · ·
{

r3
(n) · k}

)
, 1 ≤ k ≤ n} (33)

Deviation Φ (n) satisfies Φ (n) = C (r, ε) n−1+ε, where C (r, ε) n−1+ε is a constant related
to r and ε only (ε is an arbitrary positive number). Then, Pn (k) is said to be a good point-set,
r is a good point, and {rs

(n)·k} represents the fractional part and n denotes the number of
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points, r = {2cos(2πk/p), 1 ≤ k ≤ n} (p is the smallest prime number satisfying(p − 3)/2 ≥
s). Map it to a search space as:

xi (j) = (ubj − lbj) · {rj
i · k} + lbj (34)

where ubj and lbj denote the upper and lower bounds of the jth dimension.

3.5.2. Fuzzy Selection

After obtaining the Pareto-optimal solution set, the best solution and the solution to
be deleted are selected in the repository by a fuzzy selection mechanism. ui is denoted as
the membership of the ith objective function of the solution. As shown in Equation (35).

µi =


1, Fi ≤ Fmin

i

(Fmax
i − Fi)/(Fmax

i − Fi
min), Fi

min ≤ Fi ≤ Fmax
i

0, Fi ≥ Fmax
i

(35)

uk = ∑
Nobj
i=1 µk

i

/
∑M

k=1 ∑
Nobj
i=1 µk

i (36)

where M is the number of non-dominated solutions, Nobj is the number of objective
functions, and µk

i is denoted as the membership of the ith objective function of the kth
solution. The solution is judged according to the size of uk.

3.5.3. Leader Position Updates Strategy

(1) Parameter adjustment

In the MSSA, c1 affects the search capability of the algorithm, and its Equation (37) is
as follows.

c1 = 2e−(4l/L)m
(37)

In the original algorithm, m = 2. However, we found that c1 in the [0.05, 0.95] provides
good results in initial phase exploration and in final phase development. Therefore, the
lower cmin and upper cmax of the control parameter c1 are in the [0.05, 0.95], and the adaptive
equation is shown in Equation (38).

c1 = cmax + (cmin − cmax)× log10(a + 10t/tmax) (38)

where c is the inertia weight parameter and a is a random number between [0, 1], and t and
tmax are the current and maximum number of iterations.

(2) Adaptive weight

The weight factor is added for food, and the influence of food source on the leader
gradually decreases with the increase of iterations. Local extremes are avoided in the early
stages of convergence. Convergence late approximates the optimal value and achieves high
solution accuracy. The weight factor of food addition is shown in Equation (39):

w = (wmax − wmin)× (l/L)2 (39)

where wmax is the maximum inertia weight, wmin is the minimum inertia weight, l is
the number of current iterations, and L is the total number of iterations. wmax = 0.9 and
wmin = 0.4 have the best performance. As the iterations proceed, the inertia weight decreases
linearly from 0.9 to 0.4.

(3) Levy flight strategy
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Lévy flight obeys the Lévy distribution, which is a movement between the short-
distance search followed by an occasional longer-distance walk [45]. The position update
equation for the Levy flight is shown in Equation (40).

L(s) ∼ |s|−1−β, 0 < β ≤ 2 (40)

where s is the random step size. Since the Lévy flight is very complex, the algorithm proposed
by Mantegna is used in this paper to calculate the random step size, as shown in Equation (41)

s = µ/|ν|1/β (41)

In the equation, µ and υ obey normal distribution.{
µ ∼ N

(
0, σµ

2)
v ∼ N

(
0, σv

2) (42)

σµ =
{

Γ(1 + β) sin(πβ/2)
/

Γ[ (1+β)
2 ]× β× 2(β−1)/2

} 1
β

σν = 1
(43)

The parameter β is 0 < β < 2, and generally β = 1.5.
In summary, the leader’s position update formula is shown in Equation (44):

xi
j =

{
w× Fj + c1((ubj − lbj)c2 + lbj)× s, c3 ≥ 0.5

w× Fj − c1((ubj − lbj)c2 + lbj)× s, c3 < 0.5
(44)

(4) Follower location update strategy

This section introduces the mayfly mating process formula in the mayfly algorithm
to improve the follower position update formula [46]. Based on this, a follower update
strategy with an adaptive mayfly search mechanism is proposed. The fitness values of
the two individuals are compared and the fitness value that meets the multi-objective
requirements of this paper is selected. The update position is biased to the side with good
fitness, so the follower position update formula is as follows.

xi
j =

 ηxi
j + (1− η)xi−1

j , f (xi
j) > f (xi−1

j )

ηxi−1
j + (1− η)xi

j, f (xi
j) ≤ f (xi−1

j )
(45)

where η is the dynamic adaptive factor, as shown in Equation (46).

η = 0.8− 0.2× 1/(1 + e−t) (46)

t is the current number of iterations.

3.6. IMSSA-DV-Hop Algorithm Flow Chart

According to the proposed algorithm improvement strategy, the IMSSA-DV-Hop
algorithm is proposed, and the flow chart is shown in Figure 1.
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4. Experimental Results and Analysis
4.1. Experimental Environment and Evaluation Criteria

To verify the effectiveness of the IMSSA-DV-Hop algorithm, this algorithm is tested
and simulated on MATLAB 2016b on a computer configured with Intel (R) Core (TM)
i7-7700HQ CPU @ 2.80 GHz processor (Intel, Santa Clara, CA, USA), 16 GB RAM and
Windows 10 operating system. The proposed algorithm is firstly compared with the DV-
Hop algorithm in square random topology and C-shaped random topology. The range
error line diagram is shown in Figure 2.
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As can be seen from Figure 2a,b, the IMSSA-DV-Hop algorithm is significantly im-
proved compared with DV-Hop. Second, to verify the effectiveness of the proposed
algorithm, a large number of simulation experiments are conducted with different com-
munication radii, node numbers, beacon node numbers, and areas as constraints. The
proposed algorithm is compared with the original DV-Hop algorithm, SSA-DV-Hop al-
gorithm, GWO-DV-Hop algorithm, and ISSA-DV-Hop algorithm. To consider the cost of
practical application, specific experimental parameters are shown in Table 1.
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Table 1. Experimental parameter settings.

Parameter Value

Communication radius (R) 25 m
Nodes 100

Beacon nodes 20
Area 100 × 100 m

The normalized relative error equation is used as the index for comparison. The
relative error equation after normalization is shown in Equation (47):

error = ∑N
i=1

√
(x0 − x̂0)

2 − (y0 − ŷ0)
2
/

(N × R) (47)

where (x0, y0) and (x̂0, ŷ0) are the real and estimated coordinates of the unknown node,
and N indicates the number of unknown nodes.

The distribution of nodes in the square random topology and C-shaped random
topology is shown in Figure 3a,b.
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4.2. The Influence of Communication Radius on Localization Error

In this section, we research the influence of different communication radii on localiza-
tion error. The node numbers and the beacon node numbers remain the same. At the same
time, the communication radius is increased from 20 m to 40 m. The comparison results are
shown in Figure 4.

As can be seen from Figure 4a, in the square random topology, the errors of the
IMSSA-DV-Hop algorithm are close to those of the GWO-DV-Hop algorithm, when R is
small and slightly higher than that of the SSA-DV-Hop algorithm and the ISSA-DV-Hop
algorithm. However, with the increase in R, the localization errors decrease significantly.
In the C-shaped random topology network, as shown in Figure 4b, the IMSSA-DV-Hop
algorithm always has the minimum localization error regardless of the size of R.

The specific experimental data are shown in Tables 2 and 3. The bolded data in Table
are the optimal localization error values.
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Table 2. Localization error in different communication radius in square random topology.

Communication Radius 20 25 30 35 40

Square random
topology

DV-Hop 0.4793 0.3504 0.3097 0.2958 0.2849
GWO-DV-Hop 0.3921 0.2397 0.2116 0.2105 0.2051
SSA-DV-Hop 0.3673 0.2587 0.2304 0.2417 0.2162
ISSA-DV-Hop 0.3651 0.2360 0.2109 0.2048 0.2024

IMSSA-DV-Hop 0.3869 0.2163 0.1773 0.1550 0.1402

Table 3. Localization error in different communication radius in C-shaped random topology.

Communication Radius 20 25 30 35 40

C-shaped
random
topology

DV-Hop 1.5847 1.1970 0.9225 0.7766 0.6467
GWO-DV-Hop 0.8149 0.5525 0.4484 0.4340 0.3692
SSA-DV-Hop 0.8335 0.5957 0.4966 0.4423 0.3981
ISSA-DV-Hop 0.7438 0.5283 0.4402 0.3963 0.3589

IMSSA-DV-Hop 0.7181 0.5172 0.4311 0.3832 0.3322

It can be seen from Table 2 that in square random topology, compared with the DV-
Hop algorithm, the IMSSA-DV-Hop algorithm reduces the localization errors by 19.28%,
38.27%, 42.75%, 47.60%, and 50.79%. It can be seen from Table 3 that in the C-shaped
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random topology, the errors are reduced by 54.69%, 56.79%, 53.27%, 50.66%, and 48.63%.
The comparison of localization errors improvement is shown in Figure 5. Compared with
the GWO-DV-Hop algorithm, the localization errors of the IMSSA-DV-Hop algorithm in
the two topologies are increased by 31.64% and 11.88%.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 22 
 

 

Table 3. Localization error in different communication radius in C-shaped random topology. 

Communication Radius 20 25 30 35 40 

C-shaped 
random 
topology 

DV-Hop 1.5847 1.1970 0.9225 0.7766 0.6467 
GWO-DV-Hop 0.8149 0.5525 0.4484 0.4340 0.3692 
SSA-DV-Hop 0.8335 0.5957 0.4966 0.4423 0.3981 
ISSA-DV-Hop 0.7438 0.5283 0.4402 0.3963 0.3589 

IMSSA-DV-Hop 0.7181 0.5172 0.4311 0.3832 0.3322 

It can be seen from Table 2 that in square random topology, compared with the DV-
Hop algorithm, the IMSSA-DV-Hop algorithm reduces the localization errors by 19.28%, 
38.27%, 42.75%, 47.60%, and 50.79%. It can be seen from Table 3 that in the C-shaped ran-
dom topology, the errors are reduced by 54.69%, 56.79%, 53.27%, 50.66%, and 48.63%. The 
comparison of localization errors improvement is shown in Figure 5. Compared with the 
GWO-DV-Hop algorithm, the localization errors of the IMSSA-DV-Hop algorithm in the 
two topologies are increased by 31.64% and 11.88%. 

 
Figure 5. Comparison of localization error improvement in different communication radius. 

4.3. The Influence of Node Numbers on Localization Error 
In this section, we investigate the effect of different node numbers on the localization 

error. The communication radii and the beacon node numbers remain the same, while the 
node numbers are increased from 50 to 100. The comparison results are shown in Figure 
6. 

 
(a) 

Figure 5. Comparison of localization error improvement in different communication radius.

4.3. The Influence of Node Numbers on Localization Error

In this section, we investigate the effect of different node numbers on the localization
error. The communication radii and the beacon node numbers remain the same, while the
node numbers are increased from 50 to 100. The comparison results are shown in Figure 6.

It can be seen from Figure 6a,b that in the two network topologies, the localization
error of the IMSSA-DV-Hop algorithm is slightly greater than that of the three comparison
algorithms when the node numbers are small. With the increase in the node numbers, the
location errors of the IMSSA-DV-Hop algorithm improve significantly. No matter how the
node numbers change, it is better than the DV-Hop algorithm.

The specific experimental data are shown in Tables 4 and 5. The bolded data in Table
are the optimal localization error values.

From Table 4, in the square random topology, compared with the DV-Hop algorithm,
the IMSSA-DV-Hop algorithm reduces the localization errors by 1.94%, 23.84%, 27.40%,
36.88%, 35.44%, and 38.27%. From Table 5, In the C-shaped random topology, it reduces
54.11%, 54.96%, 56.45%, 56.79%, 56.33%, and 56.57%. The comparison of localization error
improvement is shown in Figure 7.
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Table 4. Localization error in different number of nodes in square random topology.

Number of Nodes 50 60 70 80 90 100

Square random
Topology

DV-Hop 0.5986 0.4723 0.4124 0.3839 0.3608 0.3504
GWO-DV-Hop 0.5789 0.4141 0.3284 0.2824 0.2620 0.2397
SSA-DV-Hop 0.5644 0.3897 0.3268 0.2954 0.2798 0.2587
ISSA-DV-Hop 0.5479 0.3562 0.3014 0.2606 0.2511 0.2360

IMSSA-DV-Hop 0.5870 0.3597 0.2994 0.2423 0.2329 0.2163

Table 5. Localization error in different number of nodes in C-shaped random topology.

Number of Nodes 50 60 70 80 90 100

C-shaped
random

Topology

DV-Hop 1.3009 1.2689 1.2315 1.2156 1.2036 1.1970
GWO-DV-Hop 1.2668 0.9418 0.7309 0.6203 0.5806 0.5525
SSA-DV-Hop 1.0839 0.8523 0.7131 0.6338 0.6122 0.5957
ISSA-DV-Hop 1.0680 0.8284 0.6751 0.5868 0.5509 0.5283

IMSSA-DV-Hop 1.1330 0.7749 0.6289 0.5389 0.5288 0.5172
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4.4. The Influence of Beacon Node Numbers on Localization Error

In this section, we research the influence of different beacon node numbers on localization
error. The node numbers and communication radius remain the same, while the beacon node
numbers are increased from 5 to 30. The comparison results are shown in Figure 8.
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Figure 8. Localization error diagrams for different number of anchor nodes: (a) square random
topology; (b) C-shaped random topology.

From Figure 8a,b, it can be seen that the IMSSA-DV-Hop algorithm in two random
topologies can achieve lower localization error compared with the three algorithms com-
pared in the case of fewer beacon nodes. In the C-shaped random topology, the performance
of this algorithm is close to that of the ISSA-DV-Hop algorithm when the numbers of beacon
nodes are large.

The specific experimental data are shown in Tables 6 and 7. The bolded data in Table
are the optimal localization error values.

From Table 6, in square random topology, compared with the DV-Hop algorithm,
the localization errors of the IMSSA-DV-Hop algorithm are reduced by 38.23%, 37.94%,
37.98%, 38.27%, 37.88%, and 38.44%. From Table 7, In the C-shaped random topology, the
localization errors are reduced by 54.11%, 54.96%, 56.45%, 56.79%, 56.33%, and 56.57%.
The comparison of localization error improvement is shown in Figure 9. Compared with
ISSA-DV-Hop, the localization errors of IMSSA-DV-Hop in the two topologies are increased
by 27.31% and 13.59%.
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Table 6. Localization error in different number of anchor nodes in square random topology.

Number of Beacon Nodes 5 10 15 20 25 30

Square random
Topology

DV-Hop 0.5817 0.4035 0.3652 0.3504 0.3382 0.3322
GWO-DV-Hop 0.5269 0.3213 0.2721 0.2397 0.2258 0.2136
SSA-DV-Hop 0.6200 0.3559 0.2889 0.2587 0.2397 0.2301
ISSA-DV-Hop 0.4943 0.3021 0.2652 0.2360 0.2220 0.2162

IMSSA-DV-Hop 0.3593 0.2504 0.2265 0.2163 0.2101 0.2045

Table 7. Localization error in different number of anchor nodes in C-shaped random topology.

Number of Beacon Nodes 5 10 15 20 25 30

C-shaped
random

Topology

DV-Hop 1.4806 1.2556 1.2038 1.1970 1.1643 1.1610
GWO-DV-Hop 0.8321 0.6464 0.5507 0.5525 0.5433 0.5298
SSA-DV-Hop 0.8828 0.6969 0.6229 0.5957 0.5742 0.5611
ISSA-DV-Hop 0.7864 0.6142 0.5568 0.5283 0.5160 0.4888

IMSSA-DV-Hop 0.6795 0.5655 0.5242 0.5172 0.5085 0.5042
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From Table 6, in square random topology, compared with the DV-Hop algorithm, 
the localization errors of the IMSSA-DV-Hop algorithm are reduced by 38.23%, 37.94%, 
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4.5. The Influence of Area on Localization Error

In this section, we study the influence of different regional areas on localization error.
The area is increased from 50 × 50 m to 150 × 150 m. The comparison results are shown
in Figure 10.

It can be seen from Figure 10a,b that the IMSSA-DV-Hop algorithm is significantly
superior to the DV-Hop algorithm and three comparison algorithms in the two random
topologies when the area is small at the initial stage. However, in the square topology
structure, with the increase in the area, the localization errors of the proposed algorithm and
the three comparison algorithms increase significantly. However, in the two topologies, the
proposed algorithm is superior to the DV-Hop algorithm regardless of the size of the area.

The specific experimental data are shown in Tables 8 and 9. The bolded data in Table
are the optimal localization error values.
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Table 8. Localization error in different Area in square random topology.

Area 50 75 100 125 150

square
random

Topology

DV-Hop 0.2833 0.3026 0.3504 0.4813 0.8404
GWO-DV-Hop 0.2172 0.2139 0.2397 0.3717 1.2178
SSA-DV-Hop 0.2214 0.2227 0.2587 0.4085 0.9347
ISSA-DV-Hop 0.1854 0.1730 0.2360 0.3589 0.9519

IMSSA-DV-Hop 0.1225 0.1613 0.2163 0.3947 1.1674

Table 9. Localization error in different Area in C-shaped random topology.

Area 50 75 100 125 150

C-shaped
random

Topology

DV-Hop 0.5102 0.8216 1.1970 1.5913 1.9785
GWO-DV-Hop 0.3378 0.4127 0.5525 0.8108 1.4908
SSA-DV-Hop 0.3569 0.4494 0.5957 0.8523 1.4290
ISSA-DV-Hop 0.3353 0.4045 0.5283 0.7418 1.4082

IMSSA-DV-Hop 0.2660 0.3935 0.5172 0.7181 1.4520

As can be seen from Table 8, in the square random topology, the localization errors of
the IMSSA-DV-Hop algorithm are reduced by 56.75%, 46.70%, 38.27%, 22.88%, and 2.98%,
compared with the DV-Hop algorithm. As can be seen from Table 9, localization errors in
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C-shaped random topology are reduced by 47.86%, 52.11%, 56.79%, 54.87%, and 26.61%.
The comparison of localization error improvement is shown in Figure 11.
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5. Conclusions

In this paper, we propose an IMSSA-DV-Hop localization algorithm, which uses a
multi-objective model based on the DV-Hop single-objective model to reduce the local-
ization error. The first stage of traditional DV-Hop adopts subdivide hop count, average
hop distance based, and minimum mean-square error weighting to reduce the errors in the
first two stages of the DV-Hop algorithm and improve the localization accuracy. In IMSSA,
the initial population of a good point-set is used to facilitate getting rid of local optimal
solutions. Additionally, replacing the selection mechanism in the multi-objective salp
swarm algorithm with fuzzy selection well selects the desired non-dominated solutions
in the repository. In addition, the Levy flight strategy and the floating algorithm position
update formula are used in the leader and follower position update, respectively, which
improves the search efficiency of the algorithm and reduces the localization error. Experi-
ments are conducted under two network topologies, and the experimental results show
that the IMSSA-DV-Hop algorithm outperforms DV-Hop, GWO-DV-Hop, SSA-DV-Hop,
and ISSA-DV-Hop.
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