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Abstract–The Earth’s atmosphere is impacted daily by both meteoroids and artificial
objects. Calibrated observations of the emitted light at sufficiently high sampling rates can
enable or improve the estimation of impactor attributes such as size, cohesion, trajectory,
and composition, but are difficult to obtain owing to the unpredictability, brevity, and high
dynamic (brightness) range of impacts. Ground-based camera systems have successfully
monitored small regions of the atmosphere at video frame rates and with limited
radiometric capabilities, but most impacts occur over the 70% of the Earth’s surface
covered by water and are therefore missed by these networks. The Geostationary Lightning
Mapper (GLM) instruments aboard Geostationary Operational Environmental Satellites 16
and 17 provide near-hemispherical coverage at 500 frames per second. These data have been
shown to contain the signatures of many independently confirmed impacts, often from both
viewing angles simultaneously, and constitute an observational resource that is currently
unparalleled in the public domain. NASA’s Asteroid Threat Assessment Project has
implemented an automated impact detection pipeline that processes data from GLM daily.
Given a detected impact, the GLM data contain a wealth of information for use in
quantitative follow-up analyses. However, impact events differ from lightning in ways that
violate key assumptions built into GLM’s design. The result is that GLM’s onboard
processing introduces errors into pixel observations of impact events and the calibrated
energies near the periphery of the detector may be substantially overestimated. We present
methods for mitigating these and other issues to produce a data product more suitable for
impact analyses than the existing GLM lightning product.

INTRODUCTION

Increasing the number and quality of impact light
curves available for study stands to benefit fields
ranging from planetary defense to solar system
formation. Data from the Geostationary Lightning
Mapper (GLM) instruments aboard Geostationary
Operational Environmental Satellites (GOES) 16 and 17
have been shown to contain observations of many
impact events in a region covering nearly half of the
Earth’s surface (Jenniskens et al., 2018). Calibrated
observations at the sampling rate and dynamic range of
GLM have the potential to advance our understanding
of impactors and their interactions with the Earth’s

atmosphere. Other publicly available sources of
calibrated observations are primarily ground-based
camera networks, many of which are members of the
Global Fireball Observatory (GFO) (Devillepoix et al.,
2020), and include the European Fireball Network
(Flohrer et al., 2012), Desert Fireball Network (https://
dfn.gfo.rocks), NASA Meteorite Tracking and Recovery
Network (http://fireball.seti.org), NASA All Sky
Fireball Network (https://fireballs.ndc.nasa.gov), Sky
Sentinel (http://goskysentinel.com), Cameras for Allsky
Meteor Surveillance (CAMS) (Jenniskens et al., 2011),
Spanish Fireball Network (Trigo-Rodrı́guez et al.,
2006), and Fireball Recovery and Interplanetary
Observation Network (https://www.fripon.org). These
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networks provide limited coverage, frame rates, and
radiometric capabilities compared to GLM. Nodes in
the GFO cover less than 2% of the Earth’s surface and
share a design heritage with the Desert Fireball Network,
which is based on a consumer digital camera (Howie
et al., 2017). These cameras operate at frame rates no
higher than about 30 Hz and though some are now
equipped with add-on radiometers (Buchan et al., 2018),
most are not. For the fireballs they observe, these
networks may enable better trajectory estimates than
GLM (Peña-Asensio et al., 2021), but not better
radiometry. Because they observe impacts from beneath
local weather conditions and through highly direction-
dependent air columns, the measurements they produce
are necessarily far less uniform than those from GLM’s
orbit. Prior to GLM, the only sources of similar broad-
field, space-based observations were U.S. Government
Department of Defense satellites (USG satellites) with
prohibitive restrictions on access to data and instrument
specifications (Bouquet et al., 2014; Tagliaferri et al.,
1998). GLM’s combination of data quality, transparency,
and near-real-time availability (data product latency is
less than 20 s) are currently unparalleled, motivating this
work.

GLM Instrument and Data Products

Each of the GLM instruments images nearly a third
of the Earth’s surface every 2 ms at 8–14 km per pixel
spatial resolution. The 1372 × 1300 pixel charge-
coupled device (CCD) array incorporates a unique
variable-pitch layout intended to image approximately
equal surface areas with each pixel. The nominal 1.1 nm
pass band centered at 777.4 nm is designed to capture
characteristic lightning emissions and optimize both
detection and energy measurement in the face of
varying solar illumination (Goodman et al., 2013).

The high frame rate results in a data stream far
exceeding the nominal 7.7 Mbps downlink rate, which
precludes the return of all data collected by the
instrument. An onboard detection algorithm is therefore
executed by several real-time event processors (RTEPs) to
identify potential lightning as impulsive pixel events (the
basic unit of data from the instrument), which are
recorded and downlinked. A pixel event is defined as a
measurement exceeding ∼4 times the noise level above the
estimated background. Background estimates at each
pixel and frame are calculated as a running average of the
current pixel measurement and previous background
estimate. A 14-bit full-image snapshot of the background
estimates is recorded and downlinked every 2.5 min.

The downlinked data for a single event consist of
the 14-bit, background-subtracted event amplitude, the
five most significant bits (MSBs) of the background

estimate, and integers identifying the pixel and frame on
which the event occurred. GLM data products are
categorized as levels 0, 1, and 2, corresponding to raw
data from spacecraft, pixel-level processing, and group
and flash processing, respectively. Level-0 (L0) data are
downlinked and undergo ground processing to produce
the Level-2 (L2) data product intended for public
consumption. The L2 event data are filtered to remove
false positives (events unlikely to have been caused by
lightning), corrected for overshoot and crosstalk
artifacts, calibrated, and navigated to geodetic
coordinates. They are then organized into groups and
flashes, which are meaningful to lightning researchers.
GLM data files are delivered in the netCDF-4 file
format, with each L0 file containing data from a 5-min
time window and each L2 file spanning 20 s.

ATAP Impact Detection

NASA’s Asteroid Threat Assessment Project
(ATAP) has designed and implemented a bolide
detection pipeline (Smith et al., 2021), which processes
GLM L2 data on a daily basis and automatically
identifies likely bolide signatures. Note that, although
the objective is to detect small asteroid impacts, the
algorithm cannot currently distinguish these from
reentries of artificial objects. The detection algorithm
operates on L2 group data and broadly consists of three
steps: clustering, feature extraction, and classification. A
hierarchical clustering method is applied to the latitude,
longitude, and time coordinates of GLM groups.
Features are then extracted from each cluster, and the
resulting feature vectors are classified using a random
forest (a machine learning method based on decision
trees) trained on data vetted by a human expert. Each
feature vector is assigned a measure of confidence that
it represents a bolide and the results are written to a file
along with a series of diagnostic figures. Detection
results are vetted by a human expert and likely bolides
are published on https://neo-bolide.ndc.nasa.gov. While
the pipeline’s detection performance is quite good, with
nearly 88% of detections confirmed by the human
expert (Smith et al., 2021), it does not necessarily
identify the complete subset of GLM pixel events
triggered by the impact. In fact, it is common for a
single impact to result in several detections, each
triggered by a different subset of the data.

A Derivative Data Product for Impact Analysis

While much can be learned from the detection
statistics alone, there is a wealth of valuable
information in the pixel data associated with a given
detection. These data contain high time-resolution

2230 R. L. Morris et al.

https://neo-bolide.ndc.nasa.gov


information about the energy released during the impact
and, to a lesser extent, the location of the impactor. A
near-term goal of the ATAP is to use these data to
produce calibrated light curves (radiant flux or energy
as a function of time) for each detected object. Fitting
existing models of bolide fragmentation, energy
deposition, and luminous efficiency to observed light
curves can help validate the models or illuminate their
shortcomings. More and better light curves will also
facilitate better inferences about object attributes
such as diameter, density, and aerodynamic strength
(Peña-Asensio et al., 2022; Tarano et al., 2019; Trigo-
Rodrı́guez & Llorca, 2006; Wheeler et al., 2017). Before
we can hope to produce accurate light curves, we must
first extract the relevant data points, correct systematic
errors, and recalibrate the data (the subject of this
paper). Ideally, for a given impact event, we would like
to know (1) the locations of all GLM pixel events (pixel
and frame ID numbers) triggered by the impact, (2) the
full 14-bit pixel value associated with each event along
with its observational uncertainty, (3) the fraction of the
total pixel value that is due to background illumination,
and (4) a calibration model that maps each pixel’s
background-subtracted value to radiant energy in the
nominal pass band. The remaining sections describe the
methods by which we estimate or bound these
quantities and manage sources of uncertainty, with the
goal of maximizing the utility of GLM data for impact
event research.

Our methods overcome a number of challenges
posed by the unique characteristics of GLM data
products. First, GLM’s onboard processing algorithms,
which were designed for lightning observation, tend to
be destructive when applied to impact events, either
partially or entirely discarding pixel observations.
Second, the calibration tables available for lightning
observations are poorly suited to impact observations,
especially near the periphery of the detector. Finally,
the L2 lightning data products do not contain all
the information necessary to accurately derive the
calibrated flux of an impact event. Information from
the raw L0 GLM data stream must be incorporated as
well. Unfortunately, the L2 and L0 data are not easily
reconciled. In the following sections, we describe in
detail our methods for addressing these issues. The
Data Extraction section addresses the problems of
extracting the subset of pixel observations associated
with an impact and combining the pertinent
information from raw and processed GLM data
products. The Data Correction and Augmentation and
Calibration sections describe, respectively, our efforts to
mitigate the destructive effects of onboard processing
and produce a calibration model appropriate for a
given impact event.

DATA EXTRACTION

For each detected impact, the ATAP detection
pipeline records the list of L2 pixel events that triggered
the detection and the names of the data files containing
them. We use these events as seed points and perform
cluster analysis to identify additional pixel events that
were likely triggered by the impact. Next, we identify
corresponding L0 event data and extract pixel location,
uncalibrated event amplitude, and 5-bit background
estimates for each event. Finally, we combine the L0 and
L2 event data. To do so, we must identify corresponding
events in the L0 and L2 data sets. L0 events are uniquely
identified by their integer pixel (CCD) coordinates and
time according to the system clock. L2 events are
identified by their navigated surface coordinates in
latitude, longitude, and time (accounting for light travel).
Unfortunately, because the L2 event processing does not
preserve the pixel coordinates or spacecraft times, we are
forced to infer the correspondence by registering L0 and
L2 point clouds. The flow of data through these steps is
shown in Fig. 1. The Event Clustering, Image Navigation,
and Registration sections discuss each step in more detail.
It is worth noting that merging the L0 and L2 data is only
necessary to get the benefits of the GLM ground
processing described previously in the GLM Instrument
and Data Products section. If one were to fully replicate
the navigation and false event filtering algorithms, it
would be possible to work with the L0 data alone.

Event Clustering

Given the set of L2 events delivered by the ATAP
bolide detector, we examine the local neighborhood
more closely and include additional events that may be
associated with the impact. We start by identifying a
plausible neighborhood in space and time and pruning
any events outside of it. Each remaining event is
characterized by its latitude, longitude, and time
coordinates p ¼ ϕ, θ, tð Þ and its energy w. We assume
for convenience that impact-triggered event coordinates
approximately follow a multivariate normal distribution
with a prominent major axis and comprise the
dominant cluster in the neighborhood. Under this
assumption, we iteratively compute the weighted mean
and covariance matrix of the data points and discard
the most outlying 1% until some minimum fraction
(currently 20%) of points remains.

On the ith iteration, let P denote the N-by-3
matrix of row vectors representing the remaining
centered points pn � ui, where n = 1, 2, . . . , N, and let
W ¼ diag w1,w2, . . . ,wNð Þ denote the diagonal matrix of
weights. The weighted mean vector and covariance
matrix for the ith iteration are given by
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ui ¼ 1

∑wn
∑wnpn, (1)

and

Ci ¼ 1

∑wn
∑PTWP, (2)

respectively. On each iteration, we compute the
Mahalanobis distance (the number of standard
deviations from the mean) (Mahalanobis, 1936) of each
remaining point from the distribution Ni ¼ N ui,Cið Þ.
The most distant 1% are discarded, and the procedure
is repeated until 20% of the original points remain. At
this point, we analyze the behavior of the distributions
Ni across iterations. In doing so we borrow the concept
of a median vector (Liu, 2013) to define the median
distribution in the set  ¼ N1,N2, . . . ,NIf g, where I is
the number of iterations, as the distribution that
minimizes the sum of Bhattacharya distances (measures
of similarity between pairs of distributions;
Bhattacharyya, 1943) to all others in the set:

N ¼ arg min
Nn∈

∑
N

i¼1

DBhat Nn,Nið Þ: (3)

Intuitively, N represents the most stable point
during the iterative process. Finally, we discard events
whose Mahalanobis distance is greater than k standard
deviations from N, where k is arbitrarily set to 10 in the
current implementation. We also include an optional
bias factor, B, in the range [0,1] that increases the
distance metric for distributions computed from fewer
points. The multiplicative bias applied to the ith
distance is given by b(i) = 1 − B+B(i − 1)∕(I − 1)
because many of the Ni may produce similar metrics
and, all else being equal, we prefer distributions
estimated from greater numbers of points. The right
panel of Fig. 2 shows the sums of distances from
Equation 3 derived from the point cloud of a recent
bolide in the left panel. The minimum value
corresponds to the optimal cluster.

We also optionally identify the line segment in ϕ, θ,
t that best describes the path of the image centroid by
performing standard principal component analysis on

Extraction

Cluster L2 events

Retrieve data

Navigate L0 
events

Register L2 & L0 
point clouds

Detection Record

- event list

L2 eventsL0 events

L0 events
impact-triggered 

L2 events

14-bit 
background

images(s)

combined 
L2 + L0 data 

struct

navigation
tables

Fig. 1. Block diagram of the data extraction process. A detection record containing L2 file names and detected event IDs is
submitted to the extraction module, which retrieves the appropriate L2 and L0 files, applies clustering to identify L2 events likely
triggered by the impact, maps L0 events to approximate lat/lon coordinates, and registers the L2 and L0 point clouds. The
primary output is a structure containing information from both L0 and L2 files for each event associated with the impact.
Optional outputs include the 14-bit background image(s) obtained at 2-min intervals and the image’s trajectory. Note that here
the term “trajectory” refers not to the path of the impactor in space, but instead to the linear path of the impactor’s image on
the CCD.
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the weighted covariance matrix C to obtain the
principal axis. The endpoints are then determined by
projecting each centered point onto the axis and
identifying the extremes in either direction.

Image Navigation

The L2 processing maps, or navigates, the CCD
coordinates of each pixel event to geodetic coordinates
corresponding to the center of the pixel footprint at the
time of the event. We have implemented all aspects of the
image navigation procedure used in GLM ground
processing (van Bezooijen et al., 2016) except for
accounting for the Earth’s nutation. Annual nutation
effects are typically a few tens of arc seconds, which is
comparable to the field of view of a single GLM pixel
(~21 arcsec at the center of the focal plane). This virtually
guarantees the success of the registration algorithm
described in the Registration section. Since our goal is to
identify corresponding L0 and L2 events, we navigate the
L0 events to an ellipsoid approximating the tropopause
as in the L2 ground processing. Navigation of GLM
events can be boiled down to the following three steps:

1. Compute a unit vector vgf along the line of sight in
the GLM functional coordinate frame (defined in
van Bezooijen et al., 2016).

2. Rotate vgf into the International Terrestrial
Reference System to obtain the vector vit.

3. Calculate the geodetic latitude and longitude of the
point at which the line along vit intersects the
lightning ellipsoid.

Because the navigation procedure is involved and
relies on data from external sources, we chose to create
approximate lookup tables as a matter of convenience.
A year of data from the GOES 16 GLM were
navigated, and statistics on the navigated positions and
light propagation times were collected and stored in a
lookup table. The same was done for GOES 17 GLM
data in both yaw flip states. The lookup tables provide
an approximation sufficiently close for point cloud
registration, as described in the Registration section to
resolve any discrepancies.

Registration

To combine the pertinent L0 and L2 data, we
identify corresponding pixel events in the two data
products by way of point cloud registration. The
navigation of L2 events by the GLM ground processing
pipeline produces a latitude ϕ, longitude θ, and time
stamp t for each event pm ¼ ϕ, θ, th iT, where m = 1, 2,
. . ., M indexes the set of pixel events triggered by the
impact. The approximate navigation lookup tables
described in the previous section are used to map all L0

events to approximate coordinates q ¼ bϕ,bθ,btD ET

. In

Fig. 2. Clustering results for a large bolide over the Pacific on September 10, 2022. The left panel shows event locations in ϕ, θ, t
with discarded points in red and the cluster mean in solid black, while the right shows the sum of distances from each hypothetical
distribution to all the others as a function of the number of points used to estimate it. The most distant points are eliminated in
each iteration; the first iteration corresponds to about 2800 points and the last to just over 500. The precipitous drop in the sum of
distances indicated on the far right corresponds to elimination of the obvious outliers during the initial few iterations. (Color
figure can be viewed at wileyonlinelibrary.com.)
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most cases, the approximation is close enough (within a
few pixels or tens of arcsec) that we can isolate the
corresponding L0 events in a reasonably small set
(typically about twice the number of events as in the L2
set). We then apply an iterative closest point (ICP)
algorithm (Wilm, 2012) to register the L2 and L0
point clouds, an example of which is shown in Fig. 3.
The ICP algorithm returns an affine transformation
that can be applied locally to correct the approximate
L0 coordinates. A one-to-one mapping between each
L2 point and its closest (corrected) L0 point is
then established. In more detail, the procedure is as
follows:

1. Navigate L0 events using the appropriate lookup
table.

2. Prune L0 events outside the latitude, longitude, and
time boxes bounding the L2 data, allowing for user-
defined tolerances.

3. Stretch the data along the time and longitude
dimensions so that points representing pixel
observations lie on an approximately uniform grid
in three dimensions.

4. Apply the ICP algorithm to determine the affine
transformation that best registers L0 points with
L2.

5. For each L2 point, identify the closest registered
L0 point and remove the pair from circulation,
ensuring a one-to-one mapping between L0 and L2

events. The mean distance between correctly
registered point sets should be close to zero.

Frame times (s) are scaled in step 3 by a factor of
24 to yield roughly uniform point spacing in all three
dimensions, based on the average spatial distance
between pixel centers (roughly 0.1°). Doing this helps
with the version of ICP we are currently using because
it relies on a Euclidean distance metric.

A combined L2 + L0 data structure, which contains
only events present in both L2 and L0, is returned
along with the affine transformation. The
transformation can be used to correct the geodetic and
time coordinates of additional L0 events, if desired.

A few details about the affine transformation are worth
mentioning. The ICP algorithm returns a transformation
matrix AICP, which can be thought of as a product of
rotation, scaling, and skew matrices, along with a translation
vector TICP. Because these pertain to data that have been
scaled along the time and longitude axes, as described in
step 3 above, they cannot be directly applied to correct the

unscaled L0 data. Let S ¼ diag 1, cos ϕ
� ��1

, 24
� �

denote

the 3 × 3 diagonal matrix that performs the scaling of

vectors, where ϕ represents the mean longitude of the
impact. The rotation matrix A and translation T that apply

to unscaled data are then given by A ¼ S�1AICPS and

T ¼ S�1TICPS. The corrected coordinates q0 for a table-
based approximation q are given by

Fig. 3. Results of L0/L2 event registration on data from the 9/10/2020 bolide. The left panels show good qualitative agreement
between the light curves formed by summing matching events on each frame. The right panel illustrates the errors in our
approximate navigation and the corrective effect of the affine transformation on L0 spatial coordinates (time coordinates were
omitted for clarity). (Color figure can be viewed at wileyonlinelibrary.com.)
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q0 ¼ Aqþ T: (4)

DATA CORRECTION AND AUGMENTATION

The GLM instrument and its onboard event
processing algorithms are well suited for observing
lightning activity. But because impact events do not
resemble lighting, they violate key assumptions built into
the GLM system. As a result, impact observations will
contain systematic errors, an example of which is shown
in Fig. 4. In this example, we see how the adaptive
background algorithm attempts to follow the increasing
brightness trend of an impact. Because the lowest nine
bits of each background estimate are discarded to reduce
data volume, some of the impact signal is discarded along
with it. As the impact’s brightness begins to decrease, the
adaptive background will overtake it at some point and
subsequent observations will be discarded entirely. While
not a problem when measuring impulsive lightning
strikes, for impact events of increasing duration, it
introduces likewise increasing errors. Unfortunately,

larger impacts are usually the most interesting.
Fortunately, these errors can at least be bounded and in
many cases corrected entirely by leveraging our
knowledge of the onboard algorithms. For reasons that
will become clear in the 14-Bit Background
Reconstruction and Bounding section, such errors can
usually be more completely corrected in cases of larger
impacts. In this section, we describe the procedure by
which we reconstruct or bound the 14-bit pixel values.

GLM False Event Filters

In order to identify and reject likely false lightning
events and also to correct for overshoot and crosstalk
artifacts, a number of false event filters (FEFs) are
applied to L0 events in the ground processing when
producing the L2 data product. In our experience, the
vast majority of identified false lighting events are due
to systematic errors and not to impact-related flux that
we would want to preserve. For this reason, we do not
try to incorporate additional L0 event data that do not
have corresponding events in L2. There are, however,
two FEFs—the overshoot and crosstalk filters—that can

Fig. 4. An example of the effects of onboard background subtraction on a pixel from GOES-17 observations of a bolide on
February 22, 2022 (11:21 UTC at 33.4°S and 122.1°W). The adaptive onboard background estimate will creep upward in
response to a sustained signal, misclassifying more and more bolide signal as background. Because of the misclassification, the
returned L0 event intensities (bottom) do not accurately reflect the relative magnitudes of the radiant flux from the bolide. In
this example, it was possible to exactly reconstruct the 14-bit onboard values (top panel) for all of the returned pixel events.
(Color figure can be viewed at wileyonlinelibrary.com.)
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modify the L0 event intensity values without rejecting
the events (Edgington et al., 2019). As illustrated in
Fig. 5, we compute additive corrections for overshoot
and crosstalk and apply them to the results of the 14-
Bit Background Reconstruction and Bounding section.
Barring any unintended algorithmic discrepancies, these
corrections should be identical to those applied during
GLM ground processing.

14-Bit Background Reconstruction and Bounding

In most cases, a bolide observed by GLM will cause
rapidly rising background estimates in pixels where the
bolide flux is concentrated, allowing 14-bit background
values to be at least partly reconstructed. At a
minimum, we can identify upper and lower bounds on
the 14-bit values, and our knowledge of the system
often allows them to be narrowly constrained.

The event intensity ek = dk − bk is defined as
the difference between the measured value and the 14-
bit background estimate (Goodman et al., 2012).
The background level for frame k is estimated by the
weighted sum of the current measurement dk and the
previous background level b(k−1) (Benz et al., 2018),

bk ¼ Mdk þ 1 � Mð Þb k�1ð Þ, (5)

where the value of M for both GLM instruments is 1/
16. The change in background level between successive
frames is restricted, or clamped, such that it never lies
outside the range [δmin, δmax]. Values less than δmin are
set to δmin and values greater than δmax are set to δmax.
Since mid-2018, the clamp values for GOES 16 have
been �2. The values for the GOES 17 GLM were
+2∕−4 until October 15, 2019 when they were changed
to �4 (C. Tillier, private communication, December 11,
2019).

Given a string of successive events, we can infer the
14-bit background values for all events if at least one is
known. In the case where b(k−1) is known and there is
no clamping applied, the backward-looking change in
background level is given by

Δ� ¼ bk � b k�1ð Þ ¼ M

1 � Mð Þ ek: (6)

With clamping applied at a maximum change in
background of δmax and a minimum change of δmin, the
value of bk is

bk ¼
bk�1 þ δmax, if Δ� > δmax

bk�1 þ δmin, if Δ� < δmin

bk�1 þ Δ�, otherwise

8><
>: : (7)

                    Correction

Bound 14-bit onboard 
background

Add uncertainties
Prune saturated 

events

pixel time series

pixel high/low 
bounding 

time series

RTEP 
detection 
threshold 

tables

combined 
L2+L0 data 

struct

Convert to time series 
representation

high/low bounds

Pixel ID

Overshoot & crosstalk 
correction

corrections

Get pixel data

Fig. 5. Block diagram of the procedure to mitigate artifacts in the extracted impact data. Given a pixel ID, data from the
specified pixel are extracted from the combined L2 + L0 structure. The data are converted to time-series representation and
upper and lower bounds on the 14-bit onboard pixel values are computed. Additive overshoot and crosstalk corrections are
computed in parallel and applied to the bounding time series. Finally, uncertainties are derived from the real-time event
processor (RTEP) threshold tables, and saturating observations are optionally removed.
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Similarly, if b(k+1) is known, then the forward-
looking change is given by

Δþ ¼ bk � b kþ1ð Þ ¼
�M

1 � Mð Þ ek, (8)

and bk by

bk ¼
bkþ1 � δmin, if Δþ >�δmin

bkþ1 � δmax, if Δþ <�δmax

bkþ1 þ Δþ, otherwise

8><
>: : (9)

To reconstruct the 14-bit background signal as well
as possible, we do the following for each pixel:

Step 1. Identify known 14-bit background values by
locating changes in the most significant five bits between
successive frames. If the step is upward, use the post-step
value. If it is downward, use the pre-step value.
To clarify, this step is based on reasoning that whenever
the lowest bit in the 5-bit background changes its
value, we know at that instant that the 14-bit binary
value onboard was either changing from xxxx0111111111
to xxxx1000000000 or from xxxx1111111111 to
xxxx0000000000 (“x” is used here to denote a placeholder
value that may be either “0” or “1”).

Step 2. Use Equations 6–9 to calculate neighboring
background values wherever possible. If all events are
contiguous and there is at least one change in the 5-bit

background value, we can exactly reconstruct the 14-bit
background (shown in green in Fig. 6).

Step 3. For frames on which 14-bit background
values cannot be reconstructed exactly, determine upper
and lower bounding curves assuming no information
beyond any reconstructed 14-bit values from other
frames and the clamping limit. This situation arises
when (a) there is no change in the top five bits for the
entire time series, or (b) there is a change in the top five
bits between event frames with one or more non-event
frames between them. In such a case, we cannot say
with certainty in which frame the change occurred. In
case (a), the upper and lower bounds are simply the
constant values of uk ¼ 29 � bMSB

k and
lk ¼ 29 � bMSB

k þ 1
� �

, where bMSB
k denotes the five MSBs

of the background value on frame k. In case (b), we use
the clamping limit to extrapolate upper and lower
bounds from the nearest known 14-bit value
(represented by blue dotted lines in Fig. 6).

Step 4. Use the additional information provided by
the event intensities to further constrain the bounding
curves from Step 3. Note that the change in background
level between successive frames depends only on the
known 14-bit event intensity (not to be confused with
the complete 14-bit pixel value). Given a chain of
adjacent events for which the 14-bit background levels
could not be exactly reconstructed, we can nevertheless
reconstruct the relative 14-bit values. Only a constant
offset is unknown for each such chain of events. For

Fig. 6. Illustration of steps in the 14-bit background reconstruction and bounding process. The 14-bit values are known on
frames in which the 5-bit background values change (STEP 1). Adjacent 14-bit values can be exactly inferred (STEP 2).
Nonadjacent values can be bounded (STEPS 3 and 4). (Color figure can be viewed at wileyonlinelibrary.com.)
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each chain, we determine the minimum and maximum
possible offset within the already-established bounds.
The result for each pixel is a pair of bounding curves,
as illustrated by the pink shaded region in Fig. 6. In the
best case, the curves are identical and the discarded
lower nine bits are recovered.

In general, the result of Steps 1–4 applied to a given
pixel will be a pair of time series defining the upper (uk)
and lower (lk) bounds on the 14-bit background values
for that pixel.

Observational Uncertainties

Uncertainties on the high- and low-bounding values
uk and lk are inferred from known detection thresholds
used by the onboard RTEPs to identify pixel events.
Each pixel is associated with an RTEP that processes
the data it produces. For each GLM instrument, a
56 × 32 element table specifies a threshold in raw
counts on each of the 56 RTEPs at 32 background
intensity levels corresponding to 14-bit values 0, 512,
1024, . . . , 15,872. When a pixel is read from the CCD,
its background estimate is updated as described by
Equation 5. The five MSBs of the current background
estimate and an identifying integer for the RTEP are
then used to index the table entry containing the
appropriate detection threshold. An event is recorded
and downlinked if the pixel value exceeds its
background estimate by more than the threshold. To
construct these tables, billions of data points were
collected on orbit and used to analyze the noise
characteristics of the system and tune the detection
thresholds. The noise was observed to be Gaussian and
repeatable across all illumination conditions (Edgington
& Tillier, 2016). At each 5-bit background level on each
RTEP, an optimal threshold to noise ratio (TNR) was
selected to ensure the return of as much data as possible
within the limits of the downlink channel capacity. A
TNR represents the number of standard deviations
above the mean noise level at which a pixel event is
triggered. The TNR for GOES-16 GLM is currently set
to 4.4 near zero radiance, decreasing to 4.0 over bright
clouds. For GOES-17 GLM, the TNR ranges from 4.2
down to 3.9 (C. Tillier, private communication, June 13,
2019). Currently, we have only approximate TNR
values with which we construct a 56 × 32 table of pixel
noise standard deviations,

σ i, jð Þ ¼ τ i, jð Þ
TNR i, jð Þ , (10)

where τ(i, j) denotes the detection threshold at RTEP i
and intensity j and TNR(i, j) the corresponding TNR.

Note that the characterization of pixel noise
described above was based on observations of
predominantly background illumination. In using the
threshold tables to derive observational uncertainties for
impact data, we are assuming this characterization is
still adequate. We can justify the assumption in part by
observing that light curves of impact events more
closely resemble rapidly changing background than the
impulses produced by lightning. Spectrally, radiation
from an impact within GLM’s pass band is a mixture of
background-like continuum radiation and line emissions
like those produced by lightning (Fig. 7). Larger
impacts will tend to produce higher proportions of
continuum radiation (Jenniskens et al., 2018).

Given a 14-bit value P from a pixel processed by
RTEP i, we interpolate the table σ(i, j) along row i to
obtain the observational uncertainty. Because the
threshold values are based on empirical measurements,
σ accounts for all noise sources affecting the data at
the time the thresholds were computed (Edgington &
Tillier, 2016). In practice, we usually have only upper
and lower bounds on P, for which we calculate
uncertainties independently with Equation 10. While
these values represent the uncertainties of the bounds,
the bounds themselves also represent uncertainty in the
data and can be treated accordingly by any subsequent
analyses.

776.8 777.0 777.2 777.4 777.6 777.8
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

R
ad

ia
nc

e
(a

rb
.

un
it)

D = 0.5m, h = 60km
D = 2.0m, h = 50km

Fig. 7. Modeled spectra within the GLM pass band for two
hypothetical impactors having different diameters (D) and
altitudes (h), each traveling 20 km s−1 upon entry at a 150°
view angle (the angle between direction of travel and direction
to observer). In general, the greater the impactor’s diameter
and the lower its altitude when emitting most strongly, the
greater the proportion of continuum emission. The total
emissions produced by an impact within the GLM pass band
can be thought of loosely as a sum of continuum (i.e.,
blackbody-like) and line emissions.
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CALIBRATION

Pixel event energies in the GLM L2 data product
represent the time-integrated radiant flux within the
nominal pass band before entering the optics. That is,
radiant energy in the solid angle subtended by the
pixel without any transmission losses from the optical
system. Conversion of the background-subtracted event
intensities (counts) to energy in Joules is part of the L2
ground processing and is accomplished by referencing a
lookup table of gain values determined during pre-flight
calibration, as described in the GLM Pre-Flight
Calibration section. Given a pixel event, its location on
the CCD and its 5-bit background value are used to
index the appropriate gain factor (J/count), which is
multiplied by the intensity to convert it to calibrated
energy. Note that a fundamental assumption behind
calibrated GLM lightning data is that all lightning
emissions are O I line emissions (Jenniskens et al.,
2018).

GLM Pre-Flight Calibration

Prior to launch, gain tables characterizing the
response of each instrument to both static and transient
illumination—simulating background and lightning,
respectively—were constructed (Edgington et al., 2019;
Koshak et al., 2000). The analog-to-digital converter
(ADC) offsets for each pixel subarray were set to ensure
that pixel values were positive at all times in the

absence of any illumination. Laboratory temperatures
were lower than those expected on-orbit, adding
confidence that pixel values would never drop below
zero in flight. The static illuminant (a Labsphere XTH-
2000C integrating sphere) created a flat radiance field
with 98% uniformity. Flat field images were collected at
33 evenly spaced intervals over the full dynamic range
of the instrument, with dark images collected at each
step. A monitoring photodiode was used to record the
absolute radiance at each step. Figure 8 shows the
results of this procedure within the central 5 × 5 pixel
region of each instrument. A gain value for each
successive pair of measurements was computed for a
total of 32 distinct gain values at each pixel, yielding a
1372 × 1300 × 32 table of values. The table captures
nonlinearities in each pixel’s response, which are most
pronounced near the extremities of the dynamic range.

Calibration of the transient response followed the
same program with the addition of a pulsing broadband
LED into the field of view. Once again, the static flat
field was stepped through the entire range of radiances
and the integrated energy from the constant-amplitude
LED pulses was varied by stepping the pulse width
through two orders of magnitude. The lightning gain
table was then produced from the transient response
values with additional modeling to account for spectral
differences between lightning emissions and the LED.

GLM background and lightning gain tables were
delivered in different units as a matter of convenience
for their intended uses. For our purposes, we convert

Fig. 8. Mean dark-subtracted responses to steady-state blackbody-like illumination in the central 5 × 5 pixel region of GOES 16
GLM (left) and GOES 17 GLM (right). These data were acquired during pre-flight calibration.
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the background gain values from radiance units to
energy in Joules. From here onward, it is understood
that all gain values are expressed in units of J/count.

Approximating an Impact-Specific Gain Table

We assume the instantaneous spectrum of an
impact’s radiant energy within the GLM pass band can
be closely approximated by a weighted sum of radiation
of two spectral types: blackbody-like continuum
emissions and atomic oxygen line emissions. We
introduce the concept of a continuum ratio, denoted by
α, to express the proportions of each spectral type in a
given instance. This is simply the ratio of the continuum
energy to the total energy within the pass band. The
value of α depends mainly on the object’s speed,
altitude, and ablation behavior (Popova et al., 1998),
and also on the view angle between the object’s velocity
vector and the direction of observation. In some cases,
the observed impact emissions will be almost entirely of
the continuum variety, and this has been widely
assumed in analyses of data from USG satellites
(Tagliaferri et al., 1998). Here, we address the general
case of calibrating data from impacts emitting arbitrary
mixtures of continuum and line radiation.

We also assume the background and lightning gain
tables obtained during pre-flight calibration provide
adequate models of each pixel’s response to continuum
and line emissions, respectively. Note that the

differences between background and lightning gain
are entirely due to differences in spectral content and
not to the transient or static nature of the illumination
(C. Tillier, private communication, June 30, 2022). Also
note that, taken together, Figs. 8 and 9 imply the
response of the GOES 16 GLM to both continuum and
line emissions is highly linear. The same is true for the
GOES 17 GLM.

The gain tables model variations in pixel response
as a function of both illumination intensity and spatial
location, with spatial variations depending strongly on
spectral content. Within the 1.1 nm wide nominal GLM
pass band centered on 777.4 nm, the distribution of
spectral energy from continuum emissions can be
considered uniform to good approximation. However,
the spectrum of O I emissions has three strong line
features within the pass band. The system’s pass band is
sufficiently shifted near the edge of the field of view that
it significantly attenuates power from the oxygen triplet,
as illustrated by Fig. 10. The gain associated with line
emissions will therefore increase near the detector
periphery in order to compensate for the increased
transmission losses (Fig. 9, right panel), whereas gain
values for the continuum component will not.

For each pixel and frame at which a pixel event was
recorded, our goal is to determine the radiant energy
from the impact within the nominal pass band. The
total energy is the sum of the energies from the two
spectral components Econt = αGcont(x, y, z)Pimpact and

Fig. 9. Ratios of GOES 16 GLM background and lightning gain values. Left: mean ratio of background gain to lightning gain
in the central 5 × 5 pixel region versus background radiance. Right: mean ratios of background gain to lightning gain within
concentric rings around the principal point, each 500 μm wide. Each curve represents mean ratios at one of the 32 background
radiance levels. (Color figure can be viewed at wileyonlinelibrary.com.)
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Eline = (1 − α)Gline(x, y, z)Pimpact, where Pimpact denotes
the portion of the raw pixel value P (counts) that is due
to impact radiation and Gcont and Gline denote the gain
tables for continuum and line emissions, respectively,
in units of J/count. Integers x and y denote the pixel
coordinates and z an integer in the range [0,31]
determined by the five MSBs of P, or P=512b c. The
effective gain for an impact-triggered pixel event is
given by

Gimpact x, y, z, αð Þ ¼ αGcont x, y, zð Þ þ 1 � αð ÞGline x, y, zð Þ:
(11)

Note that, in general, the continuum ratio will
depend on a number of time-dependent factors, including
impactor velocity and altitude.

Calibration with Known Parameters

If both the 14-bit value P and 14-bit background
level Pbg (not to be confused with the onboard
background estimate b introduced in the 14-Bit
Background Reconstruction and Bounding section)
at pixel x, y are known, and if the continuum ratio α is
also known, then the impact-related portion of the
radiant energy in the pixel’s field of view (FOV) is given
by

Fig. 10. Conceptual illustration of the system’s pass band, its
dependence on incidence angle (θ), and its interaction with the
777.4 O I oxygen triplet. Solar blocking and rejection filters
work in combination with a narrow-band interference filter to
admit power from the triplet. The effective pass band (dotted
lines) shifts toward lower wavelengths with increasing
incidence angle, which begins to significantly attenuate power
at θ > 7° (Jenniskens et al., 2018). (Color figure can be viewed
at wileyonlinelibrary.com.)

Eimpact ¼ Gimpact x, y, P=512b cð Þ P � Pbg

� �
, (12)

and the associated uncertainty by

ΔEimpact ¼ Gimpact x, y, P=512b cð Þσ, (13)

where σ denotes the observational uncertainty, as
calculated in the Observational Uncertainties section.
Rather than indexing Gimpact with P=512b c, one could
also interpolate the table values at P for a more precise,
though not necessarily more accurate, result.

In most cases, the 2-min background images in the
L0 data provide a basis for high-quality estimates of
the true background levels at each pixel. We describe
this approach in further detail in the Results and
Discussion section. The question of how these estimates
might be improved is left as future work.

Calibration with Uncertain Parameters

In practice, the 14-bit pixel value P is often not
precisely known but can always be bounded.
Continuum ratios are also rarely known with much
certainty, though by definition, they must lie within the
interval [0,1] and it may be possible in a given case to
say with some confidence that they lie within a tighter
interval. If we relax the assumption that P and α are
known, we can treat them instead as bounded random
variables having unknown distributions. In this case, we
apply Equations 12 and 13 to the extreme values of
each parameter. This results in four values
corresponding to (Pmax, αmax), (Pmax, αmin), (Pmin, αmax),
and (Pmin, αmin). Of these, we take the minimum and
maximum values, along with their uncertainties, to be
the calibrated upper and lower bounds. A more
advanced treatment, which we leave as future work,
might model Pk and αk (with k denoting frame
number), as Markov random processes.

Because we assume in our analyses that the 14-bit
background is known, the total uncertainty in our
model will comprise three components, as illustrated
in Fig. 11. The outer edges of region (b) define the
bounds on the calibrated values ignoring the intrinsic
uncertainties. The innermost shaded region (a)
represents the calibrated upper and lower bounds of P
under an arbitrary value of α (we chose 0.5) and is
provided to help visualize the effects of this
component on the total uncertainty. Region (c)
represents the contribution of intrinsic pixel noise to
the total uncertainty and indicates the 3σ confidence
interval on the calibrated values. In the legend, ΔE
denotes the propagated value of σ according to
Equation 13.
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RESULTS AND DISCUSSION

The calibration procedure described in the
Calibration section relies on the availability of high-
quality estimates of the background level Pbg at each
pixel. While background levels can be estimated any
number of ways, a simple and reasonable approach is to
interpolate the 2-min, 14-bit background images in the
L0 data files. This approach should deliver accurate
estimates provided that (1) the background level in the
region of interest is slow-varying and (2) the time
interval in which the impact occurs does not overlap
any of the background images used. Because
background levels have been observed to change rapidly
in response to solar glint, and because there may be
other phenomena that can cause similar effects, the first
assumption may not always be valid. A potential
solution is to build a daily map of background variation
as a function of time and flag regions that are highly
variable on short time scales. The second assumption
can be checked during processing and background
images that overlap the impact can be omitted.

It might seem reasonable to assume that the correct
background value should closely match the onboard
GLM estimate on the first recorded event at each pixel.
For large and fast-moving impactors at steep angles of
entry, this is probably not a bad assumption, but in
many cases, there will be a slow–steady rise in brightness
before GLM begins recording events. In such cases, we
would expect our background estimate to be a bit lower
than the onboard estimate for the first recorded event.
Our energy estimates will tend to be a bit higher as a
result, which is what we see in most cases.

As noted in the Approximating an Impact-Specific
Gain Table section, the proportions of observed
continuum and O I line emissions from a given impact
depend on the impactor’s velocity, altitude, ablation
behavior, and the observer’s view angle. Modeling the
relationship between the continuum ratio α and such
impact parameters is the subject of ongoing work. For
now, we make no assumptions about the value of α,
except that it lies on the interval [0,1].

The right-hand plot of Fig. 9 implies that the
sensitivity of the calibrated output to the continuum
ratio increases dramatically near the edges of the field
of view. We can most easily see this effect in the
calibrated results by examining calibrated impact
observations both near the center of the FOV (Fig. 12)
and on the periphery (Fig. 13). Note that in the upper
right-hand plots of each figure, there are points labeled
MSB transition. These are points at which there was a
change in the returned 5-bit background value. At
these points, the binary 14-bit value can be exactly
reconstructed by simply appending nine zeros to the 5-
bit value. We can then infer chains of adjacent values
exactly by applying Equations 9 and 7.

Figure 14 shows the calibrated results of our
procedure on data from an April 13, 2021 impact near
Grand Bahama and compares them to the reported
energies delivered by GLM L2 ground processing.
Events were recorded on two GLM pixels. The pixel
recording higher amplitudes also recorded a single
contiguous chain of events, allowing for perfect
reconstruction of 14-bit values. The reconstructed pixel
shows between 19% and 23% more observed energy
than was reported in the L2 data product. The lower

Fig. 11. Components of the total uncertainty in the calibrated values. a) Propagated bounds of the 14-bit pixel value, assuming
α = 0.5. Because the leftmost segment of the time series can be reconstructed exactly, there is no uncertainty in the 14-bit value.
b) Widening of bounds due to uncertainty in α. c) The three standard deviation contour of the Gaussian pixel noise. The
extremes of the pink region represent the bounds on energy values in the absence of pixel noise, while the outer extremes of the
blue region represent the 99.7% confidence interval including pixel noise. (Color figure can be viewed at wileyonlinelibrary.com.)
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amplitude pixel recorded two contiguous chains of
events, neither of which contained a change in the ninth
bit of the onboard background estimate. This means the

14-bit background was not exactly known at any point
on this pixel and could only be bounded. Therefore,
assuming our re-estimated background is correct, over

Fig. 13. Results from an impact imaged near the periphery of the GOES 16 GLM detector. The impact occurred at 33.4°S,
122.1°W on July 20, 2020 at 11:21 UTC. The pixel shown recorded the most energy of four pixels active during the impact. In
this region, the calibrated result is highly sensitive to the value of α and uncertainty in its value dominates the total uncertainty
in calibrated values. The upper edge of the pink region corresponds to α = 0 and the lower edge to α = 1.0. Unless the true
value is near zero, the energy reported in the GLM L2 product has been overestimated at the beginning of the time series and
underestimated toward the end. (Color figure can be viewed at wileyonlinelibrary.com.)

Fig. 12. Results for a bolide impact imaged by the central region GOES 16 GLM detector. The impact occurred over Ecuador
at 3.65°S, 80.59°W on July 20, 2020 at 10:30 UTC. The pixel shown recorded the most energy of eight pixels active during the
impact. In this region and at these energies, the calibrated result is largely insensitive to the value of α. Uncertainty in the
calibrated pixel time series (lower right) is dominated by the intrinsic pixel noise (blue). (Color figure can be viewed at
wileyonlinelibrary.com.)
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28% more radiant energy from the impact (total on
both pixels) was observed than was reported in the L2
data product. Our background estimate was taken
directly from the calibrated background image acquired
within 2 min of the impact, under the assumption that
the local background illumination was stable before and
after.

The Grand Bahama bolide was the subject of in-
depth analysis by a team at the Florida Institute of
Technology (Hughes et al., 2022). They derived their
light curve primarily from GLM L2 data. Camera 20A
from NASA’s All Sky Fireball Network captured
supplementary data points not represented in the GLM
data, but the additional luminous energy was deemed
negligible. A blackbody model was then anchored to the
GLM energies to extend the energy estimates to the full
visual range. It would be interesting to explore how
corrections to the calibrated GLM energies indicated by
our results might affect the results of their analyses.

Their analysis of data from the NASA 20A camera also
shows that the bolide was visible nearly 3 s before
GLM began recording events, so the onboard
background estimates would have been rising in
response to it well before the first recorded pixel events.
This illustrates the mechanism, described earlier, by
which GLM event energies may be underestimated even
at the time of the first recorded event.

Figure 15 shows the calibrated result for another
pixel from the July 20, 2020 bolide over Ecuador
introduced in Fig. 12. This pixel is the third most
energetic of eight pixels that were active (i.e., recording
events) during the impact. Exact reconstruction of 14-
bit values was possible for the chain of pixel events on
the left, but not for the chain on the right. While the
GLM L2 data product shows a decreasing trend in
energies from about 0.44 s onward, our result indicates
a second peak in the recorded energy. If we examine the
bounds of our calibrated results for all eight pixels

Fig. 14. Comparison of calibrated and background-subtracted pixel time series from a bolide detected at 26.95°N, 79.11°W on
April 13, 2021 at 2:16 UTC. At least 28% more radiant energy from the impact was observed than was reported in the L2 data
product. (Color figure can be viewed at wileyonlinelibrary.com.)
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comprising the observations of this impact, we find that
the total energy observed was between 54% and 78%
greater than the energy reported in the L2 data product.
Again, the accuracy of this result depends on the
accuracy of our background estimate.

Aside from the differences in reported energy, the
restoration of misclassified background flux potentially
changes one’s interpretation of qualitative features in
the data. In both Figs. 14 and 15, what looks like
periods of nearly constant brightness in the L2 data
more closely resemble flares in our results.

CONCLUSIONS

The problem of using GLM data to accurately
estimate light curves for impact events naturally breaks
down into two steps: (1) correcting errors in the
energies derived from the downlinked pixel observations
of the impact and (2) effectively or explicitly filling in
missing observations to produce a light curve for the
impact event as a whole. This paper has addressed the
first step, while the second is the subject of ongoing
work.

We have described methods for clustering impact-
related GLM pixel events, aligning pixel-level data in
the L0 and L2 data products, reconstructing or
bounding the 14-bit onboard pixel values, and
calibrating the results. Sources of uncertainty were
identified along with our approaches to managing them.
These sources included intrinsic noise, information loss
due to onboard processing, and uncertainty in the
spectral content of the radiant energy from an impact
event. A key assumption we have made is that these
three sources dominate the total uncertainty in the
results.

We leave it to future work to account for additional
sources, such as uncertainty in background estimates or

in the results of the overshoot correction, should they
prove to be significant. We are currently looking more
closely at whether the overshoot algorithm discussed
in the GLM False Event Filters section is appropriate
for impact data, and can disable it if necessary.
Work on modeling the relationship between impact
parameters and spectral content is ongoing. We also
leave to future work the application of Markov
processes models to the 14-bit pixel values, continuum
ratios, and potentially other uncertain quantities (e.g.,
background) expected to vary smoothly with time.

Under our stated assumptions, we have shown how
to bound the radiant energy measured by a given pixel
with high confidence. By comparison with our results,
we have given examples of under- and over-reporting of
observed radiant energies for bolides in the GLM
lightning data product. Under-reporting is primarily the
result of GLM’s onboard processing algorithms
misclassifying impact energy as background. In addition
to introducing quantitative errors in the reported
energies, this behavior has also been shown (Figs. 14
and 15) to obfuscate broad peaks in the pixel time
series, possibly changing the qualitative interpretation of
the data in terms of flares, fragmentations, etc. Over-
reporting occurs mainly near the edges of the detector
as a result of the GLM ground processing applying
lightning-specific corrections to impact observations. We
have shown how to correct this effect if the proportions
of continuum and line emissions from the impact event
are approximately known.
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