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Abstract
The clinical treatment of DNA-repair defective tumours has been revolutionised by the use of poly(ADP) ribose 
polymerase (PARP) inhibitors. However, the efficacy of these compounds is hampered by resistance, which is 
attributed to numerous mechanisms including rewiring of the DNA damage response to favour pathways that 
repair PARP inhibitor-mediated damage. Here, we comment on recent findings by our group identifying the lysine 
methyltransferase SETD1A as a novel factor that conveys PARPi resistance. We discuss the implications, with a 
particular focus on epigenetic modifications and H3K4 methylation. We also deliberate on the mechanisms 
responsible, the consequences for the refinement of PARP inhibitor use in the clinic, and future possibilities to 
circumvent drug resistance in DNA-repair deficient cancers.
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CANCER THERAPY AND DOUBLE STRAND BREAK REPAIR
Many cancer patients will receive radiotherapy as part of their treatment[1] which relies on ionising radiation 
(IR) to induce highly toxic lesions in the form of chromosomal DNA double-strand breaks (DSBs). DSBs 
represent the most lethal type of DNA damage induced by genotoxic therapy, but their programmed repair 
have important physiological roles in normal metabolism and immune system development. Repair of DSBs 
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is also essential to maintain genome stability and therefore represents a vital anti-tumour barrier[2].

There are two main pathways used by cells to ensure the efficient repair of DSBs, non-homologous end 
joining (NHEJ) and homologous recombination (HR). The choice between these two repair pathways is 
tightly regulated by numerous mechanisms including the cell cycle, post-translational modifications of 
DNA repair proteins, and interactions between DNA repair proteins and chromatin[3]. NHEJ is the principal 
DSB repair pathway and is responsible for repairing 85% of all DSBs induced by IR[4]. Although NHEJ is 
active in all phases of the cell cycle, it predominates in G1, and involves direct ligation of the two broken 
DNA ends. In contrast, HR requires a homologous sister chromatid as a repair template and is therefore 
restricted to the S and G2 cell cycle phases. HR also requires DNA end resection, which is carried out by a 
number of cellular nucleases including MRE11, CtIP, EXO1 and DNA2[5,6]. The actions of these proteins 
results in formation of a 3’ ssDNA tail, which is then coated with the single-stranded DNA binding protein 
RPA (Replication Protein A) which acts as a substrate for RAD51-mediated homology search and strand 
invasion. In addition to these two classical DSB repair pathways, alternative mutagenic DSB repair 
mechanisms have been identified. These include microhomology-mediated end joining (MMEJ; also known 
as alternative end-joining) and single strand annealing (SSA)[7]. As with HR, these alternative pathways rely 
on extensive end resection. However, lack of a repair template results in significant loss of genetic 
information in these pathways, therefore MMEJ and SSA are considered error-prone and highly mutagenic.

BRCA1 AND 53BP1: BALANCING DSB REPAIR
The choice between HR and NHEJ is controlled by multiple factors, of which 53BP1 and BRCA1 are two of 
the most important. The antagonistic relationship between 53BP1 and BRCA1 controls DNA-end resection 
and thus dictates repair pathway choice. 53BP1 is one of the first proteins recruited to DSBs, which is 
mediated by the interaction between 53BP1 and two histone modifications: H4K20me2 and H2AK15Ub. 
Localisation of 53BP1 at DSBs protects DNA from resection via a series of downstream effectors including 
PTIP[8], RIF1[9-12], REV7[13,14], and the Shieldin -CST- polα complex[15-18]. This pathway inhibits the localisation 
and activity of BRCA1 and the endonuclease CtIP to DSBs, promoting NHEJ, and maintains DSBs via fill-in 
of ssDNA.

In contrast, the tumour suppressor BRCA1 promotes end-resection in S and G2 and counteracts 53BP1. In 
part, this is mediated by post-replicative dilution of H4K20me2 on “parental” histones, promoting the 
recruitment of BRCA1 and its partner BARD1 to DSBs where it displaces 53BP1 from DNA ends[19,20]. 
BRCA1 also facilitates end-resection and therefore HR by promoting the actions of phosphorylated CtIP 
and MRE11[21]. In addition, BRCA1 has further roles in HR, promoting recruitment of the RAD51 
recombinase to ssDNA. BRCA1 also interacts via PALB2 with BRCA2, with this tripartite complex assisting 
RAD51 loading and recombination[22]. Finally, BRCA1 and BARD1 enhance the recombinase activity of 
RAD51, promoting successful HR repair.

HISTONE METHYLATION AND DNA REPAIR
Histone lysine methylation is a critical post-translational modification essential for numerous cellular 
processes. This modification is carried out on lysine residues within histone tails by a family of enzymes 
known as lysine methyltransferases (KMTs). In terms of DNA repair, several lysine methylation events are 
known to be required for the proper repair of DSBs[23]. For example, the localisation of 53BP1 to damaged 
chromatin requires binding of its tandem Tudor domains to di-methylated lysine 20 of histone 4 
(H4K20me2)[24-26]. Furthermore, the binding of BARD1 to di-methylated H3K9 (H3K9me2) is required to 
retain BRCA1 at DSB sites to promote repair by HR[27]. These examples illustrate the importance of histone 
methylation events in the regulation and recruitment of proteins critical for DSB repair.
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Methylation of lysine 4 of histone H3 (H3K4me) is most well-known as a marker for genomic regions 
undergoing active transcription. In yeast, H3K4me is carried out by a single methyltransferase, Set1, but in 
higher eukaryotes this modification is principally catalysed by the KMT2 family of enzymes[28]. Studies have 
shown that transcription is required for DSB repair and suggested that without active transcription DNA 
damage response (DDR) proteins are unable to efficiently localise to repair foci[29-31]. However, transcription 
can also be largely supressed at sites of DSBs despite the presence of H3K4me[32], suggesting that this histone 
modification could also have an important transcription-independent role in DNA repair.

Several studies have examined levels of H3K4me at DSBs, yielding conflicting results. Globally, there 
appears to be no change in the levels of H3K4me3 following DNA damage when examined by 
immunoblotting[33,34]. However, more sensitive methods have demonstrated differences in the prevalence of 
this modification at DSBs. Several studies suggest that H3K4 di-and tri-methylation levels decrease 
following UV laser micro irradiation or in GFP-based DSB repair reporter assays. This is attributed to 
increased activity of various lysine demethylases (KDMs) that act on H3K4, including KDM1A, KDM5A 
and KDM5B[35-37]. In contrast, other studies demonstrate an increase in H3K4me3 at DSBs, the removal of 
which by KDM5B is required to allow recruitment of DNA repair factors[38]. We recently used chromatin 
immunoprecipitation (ChIP) to measure levels of histone methylation surrounding newly-formed DSBs 
induced on a Lac-operator by mCherry-lacI-FokI. These studies revealed an increase in H3K4me3 following 
DSB induction[39]. Collectively these data all indicate an important role for H3K4me in DSB repair, however 
their conflicting findings suggest that results could be dependent upon type of DNA damage induced and 
the methods used to detect this modification. Interestingly, H3K4 methylation is also important for other 
types of DNA repair, as loss of H3K4me at replication forks during replication stress induces genome 
instability by allowing degradation of DNA[40].

H3K4 METHYLATION AND HR/NHEJ
Analysis of DSBs undergoing repair by NHEJ or HR (classified by the proteins bound to these breaks) first 
identified that HR-competent chromatin is enriched in H3K4me2[41]. In support of this, favouring HR-
mediated repair by treating cells with an inhibitor of DNA-PKcs increases levels of H3K4me at DSBs 
induced by the yeast rare-cutting endonuclease ISceI[42]. These studies on regions of “open” chromatin 
initially suggested that H3K4me may promote HR-mediated repair.

Recently, we have significantly revised thFeither BRCA1 or BRCA2 are associated with susceptibility to 
multipleese findings by identifying an important role for H3K4 methylation in facilitating RIF1-dependent 
NHEJ[39]. We showed that loss of SETD1A, a member of the KMT2 family of methyltransferases, or its 
cofactor BOD1L, significantly impairs RIF1 localisation to DSBs and their subsequent repair by NHEJ. Loss 
of SETD1A/BOD1L function induced uncontrolled DNA end resection, impaired end-joining of 
dysfunctional telomeres, and reduced immunoglobulin class switching, all of which are characteristic of 
53BP1-RIF1 deficiency[10]. This is dependent upon lysine methylation by SETD1A, as these phenotypes were 
also apparent in cells deficient in SETD1A activity, in H3K4 methylation or overexpressing the H3K4 
demethylase KDM5A. Furthermore, RIF1 and H3K4me3 overlap at a genome wide level, which seems 
independent of external factors including origin firing or transcription start sites. Therefore, H3K4 
methylation seems to directly stimulate DSB repair by NHEJ. Interestingly, our data suggests that the 
mechanism by which H3K4me controls DSB repair is direct, as in vitro binding assays showed that RIF1 
binds directly to methylated H3K4, an interaction mediated by the HEAT repeats present in the N-terminal 
of RIF1[39]. This is particularly intriguing given that similar experiments demonstrate that BRCA1 binds with 
a higher affinity to unmethylated H3 peptides compared to H3K4me3 peptides[36], suggesting that H3K4me 
at DSBs might directly influence DSB pathway choice by regulating both BRCA1 and RIF1. Despite these 
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advances, it is unclear exactly how H3K4me determines if a DSB undergoes repair by HR or NHEJ, and 
much work remains to identify the specific mechanism(s).

TARGETING HR DEFICIENCY WITH POLY (ADP-RIBOSE) POLYMERASE INHIBITORS
Inherited mutations in either BRCA1 or BRCA2 are associated with susceptibility to multiple cancer types 
including a higher risk for breast and ovarian cancer. Since BRCA1 and BRCA2 regulate multiple stages of 
HR, cells with compromised BRCA1/BRCA2 activity are deficient in HR activity[43]. Targeting DSB repair 
deficiency represents an important paradigm in cancer therapy, exemplified by the use of poly (ADP-ribose) 
polymerase inhibitors (PARPi) to treat HR-deficient tumours[44]. PARPi work by trapping PARP enzymes 
on DNA, preventing the repair of single strand breaks (SSBs) via a PARP-reliant pathway known as base 
excision repair. As a consequence, unrepaired SSBs are converted into DSBs when encountered by 
replication forks. Since the resulting DSBs require repair via HR, in cells lacking sufficient levels of BRCA 
activity these DSBs cannot be repaired, resulting in NHEJ-dependent toxic chromosome fusions which 
drive cell death[44,45]. To date, four PARP inhibitors have received clinical approval in multiple BRCA1- and 
BRCA2-deficient settings: olaparib, rucaparib, talazoparib and niraparib.

Although treatment with PARPi induces a significant increase in patient survival, many patients develop 
resistance, and their prognosis is poor. Indeed, 40% of metastatic breast cancer patients harbouring 
germline BRCA1/2 mutations failed to respond to olaparib[46]. This resistance seems to arise from 4 main 
biological mechanisms[47]: restoration or reactivation of BRCA1 or BRCA2 activity (e.g., by reversion 
mutations or promoter demethylation); loss of PARP1 or PARG expression; upregulation of PARPi efflux; 
and rewiring of the DDR, including restoration of HR and replication fork protection. In particular, loss of 
members of the 53BP1-dependent NHEJ pathway (e.g., RIF1, REV7, 53BP1, Shieldin) renders BRCA1-
deficient cells resistant to PARPi[9,13,17,21]. This is thought to be mediated via the absence of the Shieldin 
complex on DNA ends, leaving them unprotected and subject to resection by nucleases to initiate repair by 
HR[48]. Therefore, the balance between HR and NHEJ is key in determining the response to these targeted 
inhibitors. Interestingly, this mechanism of resistance has not been observed in BRCA2-deficient cells to 
date, which is likely due to differing roles between BRCA1 and BRCA2 in promoting HR[49].

SETD1A AND H3K4ME IN PARP INHIBITOR RESISTANCE
Our recent findings impact substantially on these mechanisms of drug resistance. We demonstrated that, 
like loss of RIF1[10], loss of SETD1A also induces PARPi resistance in BRCA1-deficient cells[39]. Our data also 
demonstrate that this resistance can be linked to a partial restoration of HR in these cells, as we observed 
cells deficient in both BRCA1 and SETD1A were able to recruit RAD51 to chromatin following treatment 
with PARPi, and that functional HR was at least partially restored in cells lacking both BRCA1 and 
SETD1A. Therefore, loss of SETD1A allows reactivation of HR in BRCA1-deficient cells [Figure 1]. 
Strikingly, many of these phenotypes (increased end-resection, defective RIF1 recruitment, PARPi 
resistance) were also observed in cells expressing SETD1A but in which H3K4 methylation had been 
perturbed by either mutation or over-expression of a lysine demethylase[39], suggesting that PARPi resistance 
in BRCA1-defective cells is driven by epigenetic modifications, at least in part. Indeed, given that RIF1 
interacts with H3K4me3 in vitro, this suggests that SETD1A-mediated histone methylation is responsible 
for promoting NHEJ and therefore sensitivity to PARPi [Figure 1].

Interestingly, SETD1A, H3K4me and RIF1 dysfunction is linked with a second mechanism known to 
control PARPi resistance, the protection of nascent DNA[40,50]. Newly replicated DNA is protected from 
degradation by several factors, including BRCA1, BRCA2, RIF1, 53BP1, SETD1A, BOD1L and H3K4me[51], 
all of which also have roles in DSB repair. At stalled replication forks, these factors act to suppress the 
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Figure 1. Effects of BOD1L/SETD1A loss on PARP inhibitor sensitivity in BRCA1-deficient cells. (A) H3K4me mediated by the 
BOD1L/SETD1A complex promotes RIF1 localisation at DNA double-strand breaks (DSBs) and stimulates NHEJ. In BRCA1-deficient 
cells, DNA-end resection and RAD51 loading are inhibited and lesions cannot be repaired by homologous recombination (HR), resulting 
in sensitivity to PARP inhibition and cell death. (B) Depletion of the BOD1L/SETD1A complex results in loss of H3K4me and decreased 
RIF1 localisation to DSBs. This allows DNA end-resection and RAD51 loading, partially restoring HR. This mediates resistance to PARP 
inhibition and allows cells to survive. Me: Methylation; PARP: poly(ADP) ribose polymerase; NHEJ: non-homologous end joining; KDMs: 
lysine demethylases.

actions of nucleases including DNA2, EXO1 and MRE11. In their absence, excessive nucleolytic degradation 
leads to genomic instability and drives sensitivity to PARPi. Therefore, loss of fork degradation (or 
restoration of protection) leads to PARPi resistance[52,53]. However, this only seems to be applicable in certain 
genetic backgrounds: whilst loss of BRCA1/2 and thus loss of fork protection sensitises cells to PARPi, cells 
deficient of SETD1A, RIF1 or 53BP1 are also deficient in this pathway, but are not sensitive to PARPi. 
Furthermore, co-depletion of SETD1A and BRCA1, or RIF1 and BRCA1, does not restore fork 
protection[39], suggesting a complex interplay between roles for these proteins at DSBs vs. replication forks. 
Nevertheless, our findings that PARPi sensitivity can be driven by epigenetic changes are in broad 
agreement with other studies demonstrating that such modifications can also regulate the response to 
PARPi[53,54]. Clearly, much more work remains to be done to comprehend the different mechanisms of DDR 
rewiring and how these impact on PARPi resistance in various genetic backgrounds and tumour types.

THERAPEUTIC IMPLICATIONS AND FUTURE PERSPECTIVES
Identifying resistance: In terms of clinical implication, predicting which patients may develop resistance to 
PARPi is an important area of investigation. Previous work has shown that significant changes in the 
expression and activity of methyltransferase and demethylase enzymes occurs during cancer development, 
suggesting that disruption to their function is important in disease pathogenesis[55]. Furthermore, analysis of 
publicly available datasets suggests that SETD1A expression correlates with chemotherapeutic sensitivity 
and overall survival in multiple tumour types[56,57]. This provides further evidence that SETD1A expression 
might be a useful prognostic indicator to be considered when choosing a patient’s treatment regime 
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[Figure 1]. Furthermore, monitoring SETD1A expression during the onset of resistance, and linking BRCA1 
mutation status with SETD1A expression, would be invaluable in evaluating its utility as a potential 
biomarker. Taken together, profiling of SETD1A expression may well be a valuable prognostic tool to 
identify patients who are more likely to develop resistance to PARPi allowing them to be placed on 
alternative therapies including KDM inhibitors or in combination other genotoxins, in the hope that this 
would kill resistant cancer cells.

Therapeutic approaches: Investigating novel ways of manipulating DSB repair is crucial for the 
development of new and more effective treatments for patients treated with PARPi [Figure 2]. Several 
potential strategies could be envisaged to prevent HR reactivation upon PARPi-resistance, ultimately 
increasing the efficacy of these therapies. Firstly, increasing H3K4me could represent a direct approach to 
facilitate RIF1 recruitment to DSBs, promoting NHEJ and driving toxic chromosomal fusions and cell 
death. This could be achieved via manipulating SETD1A expression/activity, or the inhibition of KDM 
enzymes to prevent the removal of specific methylation marks. KDM1A/LSD1 is a prominent demethylase 
which counteracts the activities of SETD1A, and inhibitors to this protein have already been developed[58,59] 
and are currently being assessed for their use in cancer therapy. This raises the possibility that alleviating 
PARPi by manipulating the balance between H3K4 methylation and demethylation using these inhibitors 
could offer potential treatment benefit. Further pre-clinical work leading to their exploration in BRCA1-
deficient patients would be an exciting avenue of future research.

A second approach to prevent reactivation of HR would be to inhibit the cellular nucleases responsible for 
DNA resection [Figure 2]. Loss of the 53BP1 pathway and/or SETD1A in BRCA-deficient cells allows 
uncontrolled end-resection by nucleases such as MRE11, CtIP, EXO1 and DNA2[39]. Combining PARPi 
treatment with inhibitors of these nucleases could be a promising way of preventing HR reactivation. 
Indeed, there is already evidence from pre-clinical studies that MRE11 inhibitors sensitise cancer cells to 
other agents such as IR[60]. Furthermore, MRE11 activity determines the sensitivity of cells to PARPi 
treatment in colorectal cancer[61]. However, given the diverse roles of MRE11 it would be important to 
monitor effects of its inhibition to ensure functions aside from its role in DNA end-resection are not 
compromised. CtIP depletion has also been shown to sensitise breast[62] and ovarian[63] cancer cells to 
treatment with PARPi, however this appears independent of BRCA-deficiency. As above, this opens novel 
areas of exploration, and could provide benefit to treat tumours without the traditional “BRCA-deficient” 
definitions.

Thirdly, deficiencies in pro-NHEJ components drive PARPi resistance in BRCA1-deficient cells, but also 
induces collateral vulnerabilities to other DNA-damaging agents including IR and cisplatin[17]. Exploring 
how loss of SETD1A/H3K4me affects the response to other genotoxic agents may help to identify other 
therapies that could be used to bypass PARPi resistance [Figure 2]. Notably, loss of SETD1A or its cofactor 
BOD1L sensitise cells to inter-strand crosslink (ICL)-inducing agents similar to cisplatin[40]. Furthermore, 
combinations of PARPi with pharmacological inhibitors to histone deacetylases, apical DNA repair kinases 
ATM and ATR, PI3K and mTOR, and immune checkpoint proteins have all been studied extensively[64], and 
may provide worthwhile avenues of investigation in cells lacking SETD1A, BOD1L or H3K4me. Finally, 
exploring the link between SETD1A and H3K4me with MMEJ may offer an alternative therapeutic 
vulnerability[65].

Beyond BRCA: There is growing evidence that the efficacy of PARPi as an anti-cancer therapy extends 
beyond BRCA1/BRCA2-deficiency to a range of other factors involved in HR. For example, loss of other 
key HR pathway proteins such as RAD51 and PALB2, as well as the apical DNA repair kinase ATM, gives 
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Figure 2. Future strategies to restore PARP inhibitor efficacy in BRCA1-deficient cells upon loss of SETD1A function. Sensitivity to PARP
inhibition following loss of the BOD1L/SETD1A complex or H3K4me perturbation could potentially be restored via 3 mechanisms
including: (1) inhibition of the lysine demethylases (KMD5 and LSD1) responsible for removing H3K4me; (2) inhibiting nucleases such
as MRE11 to prevent DNA-end resection which facilitates HR; and (3) exploiting collateral vulnerabilities using chemotherapeutics, 
e.g., cisplatin. Me: Methylation; PARP: poly(ADP) ribose polymerase; HR: homologous recombination; NHEJ: non-homologous end 
joining; DSB: double-strand break; KDMs: lysine demethylases.

rise to synthetic lethality with PARP inhibition[66]. However, the mechanisms of resistance applicable to 
these contexts have not been widely explored. Previous studies have indicated that DDR rewiring is unable 
to restore HR in BRCA2-deficient cells. For example, depletion of 53BP1 cannot rescue HR in BRCA2-
deficient mouse embryonic fibroblasts[49]. To date, known PARPi resistance mechanisms in BRCA2-
deficient cells include loss of the PARG glycosylase[67] and restoration of functional BRCA2 activity via the 
acquisition of secondary reversion mutations[68]. This suggests that the resistance mechanisms acting in 
BRCA2-deficient cells differ significantly to those in other HR-deficient contexts. A key area for future 
investigation is therefore to establish whether PARPi resistance induced by loss of SETD1A provides a 
general mechanism of resistance that can be applied to wider HR-deficient contexts including RAD51, ATM 
and possibly BRCA2 deficiency. Combined with the above developments, this will increase the efficacy of 
DDR inhibitors in the clinic and help develop novel biomarkers and treatment strategies to overcome 
resistance.

CONCLUSION
The induction of DSBs by chemo- and radio-therapy has been used for many years in order to successfully 
treat a range of different cancers. However, the one major disadvantage of this approach is its lack of 
specificity. More recent developments involving the use of targeted inhibitors of DSB repair pathways such 
as PARPi have enabled more selective targeting of cancer cells, exploiting their intrinsic vulnerabilities such 
as HR deficiencies in BRCA-mutated cancers. However, these approaches are hampered by resistance. Our 
recent findings[39] have added to this field by identifying the potential clinical usefulness of regulating RIF1-
dependent NHEJ through manipulation of SETD1A-dependent H3K4me. This is of particular relevance in 
BRCA1-deficient patients who develop PARPi resistance in the clinic, as maintaining H3K4 
methylation/SETD1A activity and therefore the recruitment of RIF1 to DSBs could be a key strategy to 
prevent treatment resistance in these patients. Despite these advances, there is still much work to be done in 
the fields of SETD1A, NHEJ and histone methylation to enable the development of more tailored 
treatments to eradicate human cancers.
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