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1  |  INTRODUC TION

The complement system, a central part of the innate immunity that 
serves as a first line of defense against foreign and altered host cells, 
is an extremely effective cell-killing and inflammation-provoking 
pathway. However, complement activation is a double-edged sword 

because uncontrolled stimulation can be highly detrimental to host 
tissues.1–3 In order to avoid self-damage, a plethora of inhibitory 
mechanisms are known to prevent overwhelming activation at all 
stages of the complement cascade. The alternative pathway (AP) of 
complement is particularly significant for survival against invading 
pathogens and can be triggered by several other conditions, such as 
trauma, surgery, or pregnancy. Inappropriate AP activation may be 
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Summary
Dysregulation and accelerated activation of the alternative pathway (AP) of comple-
ment is known to cause or accentuate several pathologic conditions in which kidney 
injury leads to the appearance of hematuria and proteinuria and ultimately to the 
development of chronic renal failure. Multiple genetic and acquired defects involving 
plasma- and membrane-associated proteins are probably necessary to impair the pro-
tection of host tissues and to confer a significant predisposition to AP-mediated kid-
ney diseases. This review aims to explore how our current understanding will make it 
possible to identify the mechanisms that underlie AP-mediated kidney diseases and to 
discuss the available clinical evidence that supports complement-directed therapies. 
Although the value of limiting uncontrolled complement activation has long been rec-
ognized, incorporating complement-targeted treatments into clinical use has proved 
challenging. Availability of anti-complement therapy has dramatically transformed the 
outcome of atypical hemolytic uremic syndrome, one of the most severe kidney dis-
eases. Innovative drugs that directly counteract AP dysregulation have also opened 
new perspectives for the management of other kidney diseases in which complement 
activation is involved. However, gained experience indicates that the choice of drug 
should be tailored to each patient's characteristics, including clinical, histologic, ge-
netic, and biochemical parameters. Successfully treating patients requires further 
research in the field and close collaboration between clinicians and researchers who 
have special expertise in the complement system.
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damaging to the kidney, where the deposition of activated comple-
ment fragments from plasma in glomeruli and/or activated comple-
ment fragments locally produced may contribute to tissue injury.4 
Unlike the classic and lectin pathways, AP—the oldest evolutionary 
pathway of the system—is constantly self-activated by the slow and 
spontaneous hydrolysis of C3, a process known as tick-over,5 and 
plays a vital role in amplifying complement activation. As a result, 
the AP is permanently active at a low level, enabling continuous 
monitoring of the body for disease-causing pathogens and host pro-
cesses.1,2,6 Complement factor B (CFB) is a key component of this 
process (Figure 1). The cleavage product Bb combines with C3b to 
form C3 convertase (C3bBb) to cleave C3, which forms a positive 
feedback loop to continuously activate the AP.7,8 The convertase 
complexes dissociate spontaneously in a few minutes, a process that 
is critical to prevent autologous tissue injury. Dysregulation of AP 
can occur as a result of acquired or genetically driven pathological 
events, both of which can lead to erroneous activation or insuffi-
cient control of pathway signaling. Complement and complement 
regulatory molecules may act in concert in a sophisticated inter-
acting protein network, and multiple defects involving plasma- and 
membrane-associated proteins are probably necessary to impair the 
protection of host tissues and to confer a significant predisposition 
to AP-mediated kidney diseases.

Interest in the complement system has been boosted in the 
past 20 years by the discovery that rare severe kidney diseases, 
including atypical hemolytic uremic syndrome (aHUS) and C3 glo-
merulopathy/immune complex-associated membranoproliferative 
glomerulonephritis (C3G/IC-MPGN) spectrum, are disorders of AP 
regulation.9,10 AP plays a primary pathogenetic role in both condi-
tions; however, inappropriate or prolonged AP activation resulting 
in renal damage has been observed in several kidney diseases. This 
review aims to explore how our current understanding of systems 
biology, genetic, and clinical diagnostics will make it possible to 
identify the complex mechanisms that underlie AP-mediated kidney 
diseases and to discuss the available clinical evidence that supports 
complement inhibition.

2  |  T WO PROTOT YPIC AL COMPLEMENT-
MEDIATED KIDNE Y DISE A SES

2.1  |  Atypical Hemolytic uremic syndrome

2.1.1  |  Clinical manifestation and diagnosis

Hemolytic uremic syndrome (HUS) is a rare disease character-
ized by microangiopathic hemolytic anemia, thrombocytopenia, 
and renal function impairment caused by platelet thrombi in the 
microcirculation of the kidney and other organs. The most com-
mon form in children is associated with infection by certain strains 
of Escherichia coli, which produce Shiga-like toxins (STEC-HUS). 
Atypical HUS (aHUS)—the term has historically been used to define 
any HUS not caused by STEC-HUS—accounts for about 10% of all 

cases and has a poor prognosis compared with the most common 
form of STEC-HUS in children.11 The estimated incidence of aHUS 
is one in 500,000 people per year in the United States.12 Ultra-rare 
recessive forms are associated with genetically determined cobala-
min C or diacylglycerol kinase 3 (DGKE) deficiency.13–15 In more 
recent classifications, improved by a greater understanding of 
pathogenetic mechanisms, the term "primary aHUS" is increasingly 
used when an underlying abnormality of the AP is strongly sus-
pected and other causes of secondary aHUS have been ruled out.16 
In affected patients, dysregulation and accelerated activation of 
the AP can occur either through inherited or de novo abnormalities 
in the complement genes or through acquired autoantibodies to 
complement proteins. The onset of primary aHUS ranges from the 
neonatal period to adulthood. In many patients with an underly-
ing complement “risk factor,” presentation in later life is consistent 
with the need for an environmental trigger.17,18 A wide variety of 
triggers have been identified, including common viral and bacterial 
infections, transplants, drugs, autoimmune conditions, and preg-
nancy,19 with a lifelong risk of recurrent episodes of aHUS in some 
patients. Environmental hits are likely to induce endothelial per-
turbation and complement activation, which in healthy individu-
als are self-limiting as a result of multiple, redundant, regulatory 
mechanisms.20 An individual with genetic abnormalities that affect 
complement regulation is otherwise particularly vulnerable to com-
plement attack. Once the complement cascade is activated beyond 
a critical threshold, C3b formation and deposition occur on the vas-
cular endothelium, which leads to further complement activation 
through the self-amplifying loop of the alternative pathway, cul-
minating in microangiopathic injury and thrombosis. Downstream 
clinical manifestations of aHUS can include impaired renal function 
up to end-stage renal failure (ESRF), extrarenal organ damage, or 
death.21 Extrarenal manifestations are reported in up to 20% of 
patients with aHUS. It is unclear whether these manifestations are 
a direct consequence of complement activation, thrombotic micro-
angiopathy (TMA), or other factors, such as severe hypertension 
and uremia.16 Before the introduction of complement inhibition 
therapy, up to 50% of aHUS cases progressed to ESRF or devel-
oped irreversible brain damage, and 25% died during the acute 
phase of the disease.11,22

As with most TMAs, laboratory findings in aHUS can include 
hemolytic anemia, fragmented red blood cells, thrombocytopenia, 
and elevated levels of lactate dehydrogenase (LDH). Once rou-
tine biochemical and hematological analysis has demonstrated a 
TMA, investigations should focus on determining the underlying 
etiology and excluding other diagnoses. The first requirement 
is to measure ADAMTS13 (a disintegrin and metalloproteinase 
with a thrombospondin type 1 motif, member 13) activity to di-
agnose or rule out thrombotic thrombocytopenic purpura (TTP). 
Investigating STEC-HUS should be routine in all patients with pre-
sumed aHUS, as approximately 5% of STEC-HUS cases involve no 
prodromal diarrhea, whereas 30% of complement-mediated aHUS 
cases feature concurrent diarrhea or gastroenteritis.23 Serum or 
plasma levels of complement proteins should be measured before 
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treatment in all patients with primary aHUS. However, it should 
be noted that levels of C3 and soluble C5b-9 [sC5b-9 or mem-
brane attack complex (MAC) or terminal complement complex, 
Figure 1] may be normal in a substantial fraction of patients with 
aHUS, even during the acute phase.24 This profile is due to the 
distinctive dysregulation pattern of AP in aHUS, which mainly af-
fects complement activation on cellular surfaces, rather than in 
the fluid phase. To reproduce this peculiar condition, an ex vivo 
assay was set up in which human microvascular endothelial cells 
(HMEC-1), either in a resting condition or preactivated with ade-
nosine 5'-diphosphate (ADP) to mimic an in vivo trigger, were in-
cubated with control serum or serum from aHUS patients. At the 
end of the incubation, C3b deposition and C5b-9 formation were 

quantified using immunofluorescence and confocal microscopy.25 
Acute aHUS serum, but not serum from patients who were in re-
mission, caused wider C3 and C5b-9 deposits than control serum 
on unstimulated cells. On ADP-activated cells, sera from 84% and 
100% of patients who were in remission also induced excessive 
C3 and C5b-9 deposits. In line with these results, the evaluation 
of C5b-9 deposition on HMEC-1 can be helpful in diagnosing aHUS 
(during the acute phase or in remission).24

Primary aHUS is associated with a high rate of recurrence and 
poor outcomes after kidney transplantation. Notably, depending 
on the determinants of AP dysregulation involved, the risk of recur-
rence varies greatly, highlighting the importance of undertaking eti-
ological investigations prior to kidney transplantation.26

F I G U R E  1  The complement cascade. Schematic overview of the complement cascade, illustrating the three activation pathways 
(classical, lectin, and alternative) with the C3 convertase complexes of the classical, lectin, and the alternative pathway and the common 
terminal pathway that leads to C5 cleavage and the formation of the anaphylatoxin C5a and of the membrane attack complex, composed of 
C5b, C6, C7, C8, and many copies of C9. The classical pathway is triggered by the binding of C1q to antibody-antigen complexes. The lectin 
pathway is similar to the classical pathway but is activated by the binding of mannose-binding lectin (MBL) to mannose residues, which 
activates mannose-binding lectin serine peptidase (MASP) proteins. In contrast, the alternative pathway is continuously activated in plasma 
by low-grade hydrolysis of C3 (C3H2O, tick-over). The latter binds factor B, to form a C3(H2O)B complex. Factor D cleaves factor B to form 
the alternative pathway initiation C3 convertase that cleaves C3 to C3b. The activation is then amplified by the covalent binding of a small 
amount of C3b to hydroxyl groups on cell surface carbohydrates and proteins of target cells, such as bacterial cells. This C3b binds factor 
B, to form the amplification loop C3 convertase C3bBb. C3b also binds to the C3 convertase, forming the C5 convertase enzyme C3b2Bb. 
The alternative pathway is highly regulated to prevent non-specific damage to host cells and limit the deposition of complement on the 
surface of pathogens. This fine regulation occurs through a number of membrane-anchored and fluid-phase regulators. Bold text denotes 
complement-regulatory molecules; red text denotes proteins with genetic defects that have been associated with aHUS and/or IC-MPGN/
C3G. Abbreviations and definitions: C1inh, C1 inhibitor (inactivates C1r and C1s, MASP-1 and MASP-2); FB, complement factor B; FD, 
complement factor D; FH, complement factor H (binds C3b, exerts cofactor activity for FI-mediated C3b cleavage, prevents the formation 
of the alternative pathway C3 convertase, and destabilizes (decay accelerating activity) the alternative pathway C3 and C5 convertases); 
FI, complement factor I (degrades C3b and C4b, aided by cofactors); C4BP, C4b-binding protein (binds to C4b and has decay accelerating 
activity for the classical pathway C3 convertase and cofactor activity for FI-mediated C4b cleavage); CD59, protectin (with vitronectin 
and clusterin, prevents C5b-9 formation); CR1, complement receptor 1 (has decay accelerating activity as well as cofactor activity for 
FI-mediated C3b and C4b cleavage); DAF, decay accelerating factor (has decay accelerating activity on C3/C5 convertases of the classical 
and alternative pathways); MCP, membrane cofactor protein (exerts cofactor activity for FI-mediated C3b cleavage); P, properdin (the only 
positive regulator in the complement system, it stabilizes the alternative pathway C3 convertase); THBD, thrombomodulin (increases FH 
cofactor activity, activates procarboxypeptidase B-mediated C3a and C5a inactivation).
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2.1.2  |  Genetic and acquired determinants of 
alternative pathway dysregulation

Atypical HUS is a genetically heterogeneous condition. In 40%–60% 
of patients with aHUS, genetic abnormalities that affect the com-
plement regulatory proteins and the components of the alternative 
pathway C3 convertase have been identified through targeted se-
quencing and duplication/deletion detection.11,27–31 The diagnosis 
of primary aHUS is established in a proband with aHUS by identify-
ing a likely pathogenic variant(s) (LPVs) in one or more of the genes 
known to be associated with genetic aHUS. Less than 20% of cases 
are considered familial.32 All other patients have no family history 
of the disease (sporadic aHUS), and most inherited the complement 
abnormality from an unaffected parent. Indeed, the majority of com-
plement LPVs confer susceptibility to the development of aHUS and 
are heterozygous in aHUS patients.33

Complement factor H (CFH) is a serum glycoprotein that reg-
ulates the function of the AP in the fluid phase and on cellular 
surfaces (Figure 1). It binds to C3b, accelerates the decay of the al-
ternative pathway convertase C3bBb, and also acts as a cofactor for 
complement factor I, another C3b inhibitor, in the proteolytic inac-
tivation of C3b, generating iC3b.34,35 Abnormalities in CFH gene are 
the most commonly observed in patients with aHUS and have been 
documented in 20%-30% of cases. Both homozygous and heterozy-
gous CFH gene LPVs predispose to the development of aHUS.28,35–41 
Structural and functional characterization support the hypothesis 
that patients with aHUS and a CFH defect have a specific dysfunc-
tion in the protection of cellular surfaces from AP activation.42,43 In 
patients with CFH mutations and normal levels of plasma CFH, the 
authors postulated that the mutation disrupted the function of the 
protein.

Complement factor I (CFI) is a plasma glycoprotein composed of 
two polypeptide chains linked by disulfide bonds. Both the light and 
heavy chains of factor I are encoded by the CFI gene.44 The light 
chain contains the serine protease domain, which is responsible for 
cleaving and inactivating C4b and C3b.45 Heterozygous mutations in 
the CFI gene, leading to factor I deficiency or dysfunction, have been 
identified in patients with aHUS.17,46

Membrane cofactor protein (MCP or CD46 antigen), a trans-
membrane glycoprotein that is highly expressed in all tissues on 
endothelial cells and on all circulating cells, with the exception 
of erythrocytes, regulates both the alternative and classical com-
plement pathways, acting as a cofactor for factor I to degrade 
C3b and C4b and to prevent C3 activation on cell surfaces.47,48 
In patients with aHUS, heterozygous, homozygous, compound 
heterozygote LPVs, and heterozygous deletion in the MCP gene 
have been described.17,49,50 These mutations resulted in either 
reduced protein expression or impaired C3b binding capability. 
The penetrance of aHUS among subjects with MCP mutations is 
incomplete, and 25% of patients had combined mutations in other 
complement genes.31

Factor B is essential in defending against encapsulated bac-
teria, and thus, individuals with factor B deficiency are prone to 

infection with Neisseria meningitidis and Streptococcus pneumoniae.51 
Conversely, overactive factor B can lead to excessive complement 
activation via the alternative pathway, resulting in kidney damage. 
Gain-of-function variants in CFB are rare and in some cases associ-
ated with low C3 levels in patient sera,52–55 indicating complement 
activation in vivo. Mutations in the CFB gene have been shown to 
increase factor B binding affinity to C3b, thereby stabilizing the 
C3bBb convertase56 and enhancing resistance to factor H-mediated 
decay acceleration.55,57 Notably, not all CFB rare variants have been 
shown to induce complement activation and not all individuals who 
carry CFB rare variants associated with aHUS develop the disease, 
even if circulating C3 levels are low.53,56,58

C3 plays several important biologic roles in the classical, alter-
native, and lectin activation pathways (Figure 1).59 Of the nine LPVs 
identified in C3 in 11 probands with aHUS, five resulted in a gain-of-
function with resistance to degradation by MCP and CFI, and two re-
sulted in haploinsufficiency. Family history, when available, showed 
incomplete penetrance.60

Thrombomodulin (THBD) is an endothelial cell surface glycopro-
tein that forms a 1:1 complex with the coagulation factor thrombin, 
acting as an antithrombotic factor. Functional studies in vitro demon-
strated that THBD also bind to C3b and factor H and negatively reg-
ulates complement by accelerating factor I-mediated inactivation of 
C3b. Moreover, THBH promotes activation of the plasma procar-
boxypeptidase B, which in turn inactivates the anaphylatoxins C3a 
and C5a.61 Impairing protection against complement activation, het-
erozygous LPVs in the THBD gene may contribute to the develop-
ment of aHUS. Decreased serum C3 levels with C4 within normal 
limits are consistent with AP activation in reported cases.61

Factor H-related (FHR) proteins are emerging complement mod-
ulators and amplifiers that play different roles in the complement 
cascade. The human CFH–CFHR gene cluster is located on chro-
mosome 1q32 in the regulators of complement activation region. 
The five CFHR genes are positioned downstream of the CFH gene 
and are arranged in the order CFHR3, CFHR1, CFHR4, CFHR2, and 
CFHR5. The five FHR proteins share structural homology and func-
tions with each other and with factor H. This cluster represents an 
unstable, dynamic chromosomal region and a hotspot for structural 
rearrangements.62 In patients with aHUS, deletions/insertions of 
chromosomal segments that result in hybrid genes, homozygous de-
letions of the CFHR3-CFHR1 or CFHR1-CFHR4 gene segments and 
rare CFHR gene variants have been described.62–64 Homozygous 
deletion of CFHR3/CFHR1 is often associated with the formation of 
anti-factor H autoantibodies (FHAA), which have been identified as 
acquired drivers of complement dysregulation in aHUS.65 FHAA-
related aHUS is an unique subgroup of aHUS that can occur at any 
age, but is most prevalent in the pediatric population. These patients 
develop autoantibodies that bind to the C-terminus of factor H, thus 
impairing the interaction of factor H with the cell surface and, con-
sequently, its interaction with surface-bound C3b, causing dysregu-
lation and overactivity of the complement pathway. Further studies 
are needed to fully elucidate the complex genetic and environmental 
factors underlying FHAA-related aHUS and to establish whether the 
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combination of FHAA with LPVs in complement genes or other risk 
factors influences disease outcome and response to treatments.30,66

It is not only the LPVs of gene coding for complement proteins 
but also other genetic susceptibility factors, such as the risk hap-
lotypes (polymorphisms) that may increase the risk of TMA and as 
such contribute to the development of aHUS.67–69 Single-nucleotide 
polymorphisms (SNPs) such as common susceptibility variants in 
the CFH and MCP genes are strongly associated with aHUS.39,70,71 
Frémeaux-Bacchi and colleagues71 examined SNPs in both the CFH 
and the MCP genes in two large aHUS cohorts. In both cohorts, there 
was an association between aHUS and both CFH and MCP alleles. 
Furthermore, CFH and MCP haplotypes were significantly different 
in aHUS patients compared with controls. The results suggested that 
there are naturally occurring susceptibility factors in CFH and MCP 
genes for the development of aHUS. A characteristic feature of both 
CFH- and MCP-associated aHUS is reduced penetrance and variable 
inheritance.

2.1.3  |  Therapy and monitoring

Plasma therapy, including plasma exchange and infusion (PE/PI), has 
been the mainstay of aHUS treatment for many years, despite the 
lack of controlled trials and high-quality evidence for its efficacy. 
Even today, when targeted therapy with complement inhibitor is 
not available, plasma therapy remains the only approach with near-
complete global availability and is an important treatment for aHUS. 
Plasma therapy should be started as soon as aHUS is suspected and 
continued until the resolution of TMA. In individuals who respond, 
plasma exchange can be withdrawn gradually, although a significant 
proportion of patients requires continued treatment to maintain 
remission.72,73 Historical cohort data show that response to plasma 
therapy is in part related to the genetic background of the treated 
individual.33 Following the introduction of plasma therapy, the mor-
tality rate of aHUS decreased, but hematological manifestations of 
the disease normalize only transiently and these treatments do not 
affect the underlying causative factors. Therefore, a recurrence of 
aHUS is likely in patients treated with PE/PI and some may no longer 
respond after long-term therapy.74,75 Within 1 year of an aHUS di-
agnosis, up to 65% of patients who receive plasma therapy sustain 
permanent kidney damage, develop ESRF, or die.17

Eculizumab, a humanized anti-C5 monoclonal antibody, was the 
first medication approved for treating aHUS in 2011. It is recom-
mended as first-line therapy for both adult and pediatric patients 
with a confirmed diagnosis of aHUS. By binding with high affinity 
to C5, eculizumab blocks the formation of C5a and the C5b-9 cell 
membrane attack complex (Figure 1), leaving earlier functions of the 
complement system (opsonization and immune clearance) intact. 
Treatment with eculizumab has led to the inhibition of complement-
mediated TMA and the improvement and maintenance of kidney 
function in several clinical studies.16,76–78 The efficacy and safety of 
eculizumab for the treatment of aHUS were firstly demonstrated in 
two prospective, open-label, phase 2 trials,79 one involving patients 

with clinical evidence of progressive TMA and the other involving 
patients with long disease duration, chronic kidney disease, and pro-
longed PE/PI. The data indicate that terminal complement blockade 
with eculizumab inhibits complement-mediated TMA, decreases the 
need for TMA-related intervention, significantly improves the plate-
let count and renal function across patient groups, and is associated 
with substantial kidney function recovery. An aHUS-predisposing 
complement mutation is not required to begin treatment, since the 
drug is considered effective regardless of the presence of known 
complement mutations.72 A systematic review that considered 15 
studies involving 940 pediatric patients with aHUS treated with 
eculizumab confirms that the treatment resulted in a satisfactory 
response, with improvements in kidney function and hematological 
parameters for most patients. However, most studies were observa-
tional and had small sample sizes.80

Eculizumab has been shown to induce remission of acute epi-
sodes of aHUS when administered early after the onset of the 
disease,16,81,82 but can also successfully be used as a prophylac-
tic treatment to prevent post-transplantation aHUS recurrence in 
individuals who are at a moderate to high risk of recurrence.83–86 
Specifically, individuals with pathogenic variants in C3, CFB, and CFH 
or those who have the CFH/CFHR1 hybrid allele are considered to be 
at high risk for disease recurrence, whereas those carrying CFH anti-
bodies, pathogenic variants in CFI, variants of uncertain significance, 
and/or no identified pathogenic variants are considered at moderate 
risk for disease recurrence.84

Ravulizumab, a more recent humanized monoclonal antibody 
that targets the same epitope on the C5 protein as eculizumab, has 
also shown promising results in aHUS. This drug was engineered 
from eculizumab to have a longer half-life, resulting in an infusion 
rate of every 8 weeks instead of every 2 weeks, as is the case with 
eculizumab. The phase 3 single-arm study (NCT02949128) involv-
ing 58 adult patients with aHUS showed that ravulizumab induces a 
complete TMA remission in 53.6% of patients within 26 weeks. An 
improvement in renal function was observed in 68% of patients, and 
dialysis weaning was achieved in 58% of patients who were on dial-
ysis at baseline.87

At variance with eculizumab and ravulizumab, which are admin-
istered by intravenous infusion, crovalimab, another long-acting C5 
inhibitor, is administered subcutaneously. This drug will be examined 
in a phase 3 study (COMMUTE-a and COMMUTE-p) with adults or 
pediatric patients with aHUS (Table 1).

C5 inhibition is associated with increased susceptibility to 
Neisseria infections (including disseminated gonococcal infec-
tions) and with the potential risk of other infections, particularly 
those caused by encapsulated bacteria, including Streptococcus 
pneumoniae and Hemophilus influenzae type b (Hib), as well as 
Aspergillus in immunocompromised and neutropenic patients. 
Therefore, anti-meningococcal, anti-pneumococcal, and anti-Hib 
vaccinations should be administered at least 2 weeks before the 
start of treatment, and antibiotic prophylaxis may be considered 
for the overall period of anti-complement treatment in selected 
cases.16
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Platelet count and serum LDH concentration are the most sensitive 
laboratory markers for monitoring response to treatment. In patients 
with aHUS, lifelong anti-C5 treatment was initially recommended, 
based on the assumption that patients with aHUS have continuous, 
systemic complement activation and are hence at high risk of relapse 
in case of treatment discontinuation. However, there is no definite ev-
idence to support this assumption.88 When and how to discontinue 
C5 inhibition treatment remain unresolved questions. Several retro-
spective series89–92 and one more recent prospective trial93 indicate 
that the presence of complement gene pathogenic variants and a 
previous history of recurrent disease are the main factors associated 
with a high risk of aHUS relapse after C5 blockade cessation. On the 
other hand, in some patients the dose of eculizumab was reduced over 
time, the interval between infusions extended, or treatment even 
stopped, without disease recurrences. Microscopic hematuria is one 
of the earliest markers of disease recurrence and prompt detection of 
microscopic hematuria by regular (twice weekly) urine dipstick analy-
ses at home has been reported as a sensitive (admittedly non-specific) 
approach for the prompt diagnosis of disease recurrence.94 The diag-
nosis, however, must be confirmed by the subsequent detection of 
thrombocytopenia along with fragmented erythrocytes in the periph-
eral blood smear and other markers of microangiopathic hemolysis, 
including increased serum LDH levels and undetectable haptoglobin. 
The aim of discontinuing eculizumab therapy is primarily to protect 
patients against the risk of meningococcal infection, to which patients 
with complement deficiency are exposed because of their diminished 
capacity for complement-mediated lysis of capsulated bacteria.95,96 In 
a 10-year observational study reflecting 28,518 patient-years of cu-
mulative exposure to eculizumab for PNH and aHUS treatment, the 
incidence of meningococcal infections was 0.25 per 100 patient-years. 
Almost all cases occurred in patients who had received meningococcal 
vaccination, although not against all serotypes of Neisseria meningiti-
des.97 Antibiotic prophylaxis may prevent meningococcal infection but 
carries the risk of resistant bacterial strains emerging. Thus, because 
neither vaccines nor antibiotic prophylaxis guarantee full protection 
against meningococcal infection, treatment discontinuation—under 
close patient monitoring—could be a valuable option for patients with 
aHUS who are on chronic eculizumab therapy and are at low risk of 
disease recurrence. Eculizumab discontinuation is also proposed to 
minimize the intravenous infusion treatment impact on patients' qual-
ity of life. The current treatment regimen may be burdensome for 
individuals in terms of visits to the hospital. Venous access may also 
be difficult for these patients, in particular children, which can cause 
discomfort and prolong the time needed for infusion. Moreover, in-
travenous infusion may become more difficult over time because of 
progressive exhaustion of venous vascular accesses.

Besides being used for diagnostic purposes, the previously de-
scribed ex vivo assay of complement activation on endothelial cells 
(2.1.1 section)25 can also be useful to monitor the efficacy of ecu-
lizumab therapy in aHUS. A study that included 121 patients with 
aHUS98 showed that the ex vivo test on ADP-activated endothelium 
showed complement dysregulation in all patients who were not 
treated with eculizumab or plasma, independently of disease activity, 

while the test on unstimulated endothelium was positive only in those 
with active disease. Serum-induced C5b-9 deposits on activated and 
unstimulated endothelial cells normalized during eculizumab treat-
ment. During eculizumab tapering/discontinuation, all patients who 
experienced relapses had elevated C5b-9 deposits on unstimulated 
endothelium, compared to only 6% of those who remained in re-
mission. The detection of serum-induced complement deposition 
on resting endothelial cells highlights and possibly predicts relapses 
after eculizumab discontinuation. The ex vivo endothelial assay could 
therefore be an advance over previous complement activity assays, 
moving toward personalized complement inhibitor therapy in aHUS.

A phase 4 study is ongoing with the aim to improve efficiency of 
eculizumab administration based on therapeutic drug monitoring. A 
personalized spacing of eculizumab infusions, using a pharmacoki-
netic population model to estimate eculizumab concentration, will 
be compared to the usual administration scheme (NCT04859608, 
EspacECU, Table 1).

2.2  |  C3 glomerulopathy and immune complex-
associated membranoproliferative glomerulonephritis

2.2.1  |  Classification and clinical manifestation

Membranoproliferative glomerulonephritis (MPGN), also known as 
mesangiocapillary glomerulonephritis, is a pattern of glomerular 
injury observed in kidney biopsies, with characteristic light micro-
scopic changes: mesangial hypercellularity, endocapillary prolifera-
tion, and duplication—double contours of the glomerular basement 
membrane (GBM).99 The histopathologic finding of MPGN is one of 
the most challenging, since it does not refer to a specific disease but 
may instead be the result of different etiologies.

In 2011, a classification on the basis of immunofluorescence (IF) 
was proposed100,101 that divides MPGN into (1) (C3G), character-
ized by dominant glomerular C3 deposition (at least two orders of 
intensity stronger than any other immune reactant) and little or no 
immunoglobulin (Ig) deposition and (2) immune complex-associated 
MPGN (IC-MPGN), with significant glomerular Ig and complement 
deposition. Through electron microscopy (EM), C3G may be further 
classified into dense deposit disease (DDD), with highly electron-
dense deposits in the GBM, and C3 glomerulonephritis (C3GN), 
with mesangial, subendothelial, subepithelial, and intramembra-
nous deposits, but without the typical electron-dense deposits of 
DDD. The term C3G is also used to define non-specific alterations 
or other proliferative patterns that share C3-dominant glomerular 
staining.102 Careful evaluation can help identify an underlying cause 
in C3G or IC-MPGN cases. When chronic infections, autoimmune 
diseases, or paraprotein-related kidney diseases are ruled out, and 
a clear underlying etiology cannot be identified, C3G and IC-MPGN 
are considered primary or idiopathic.

The current classification is based on the assumption that 
C3G arises from genetic and/or acquired abnormalities in the con-
trol of the AP, whereas IC-MPGN, also termed immune complex 
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glomerulonephritis (ICGN) in the most recent version of the Kidney 
Disease Improving Global Outcomes (KDIGO) Guidelines,103 de-
rives from the deposition of IC that trigger the classical complement 
pathway. The pathogenesis of these rare nephropathies is, however, 
more complex, and the role of AP activation in primary IC-MPGN has 
also been clearly documented.104,105 Among patients who under-
went repeated biopsies, 40% had different IF staining patterns on 
the initial and follow-up biopsies and 17% exhibited a shift from C3G 
to IC-MPGN or vice versa.106 Some children may present at onset 
with a biopsy characterized by proliferative GN and an IC-MPGN 
pattern with co-dominant C3 and Ig staining, with a subsequent bi-
opsy showing dominant C3.107 This likely relates to IC induced by 
infections or other triggers that initiate the disease in patients who 
have an underlying AP abnormality, and C3-dominance may become 
evident following classical pathway inactivation after the resolu-
tion of infection or after immunosuppressive therapy. Recently, it 
has been shown that in three of 11 individuals initially diagnosed 
with IC-MPGN, the diagnosis changed to C3GN following a second 
biopsy.108 These findings are consistent with the hypothesis that 
during the course of C3G, there may be episodes of IC deposition, 
possibly triggered by infections.

Acquired drivers of disease include autoantibodies—referred to 
as nephritic factors—that stabilize the alternative pathway C3 and/
or C5 convertase (C3NeF or C5NeFs).

Through an unsupervised cluster analysis in a cohort of 173 C3G 
and IC-MPGN patients, we explored whether they could be divided 
into relatively homogeneous groups.104 This approach, which places 
patients with many commonalities close together so that each indi-
vidual cluster has greater homogeneity than the whole, has previ-
ously enabled the identification of disease subtypes of Parkinson's 
disease, Alzheimer's disease, asthma, and other conditions.109–114 In 
the analysis, 34 histologic, biochemical, genetic, and clinical features 
that were available at disease onset were included. Four clusters 
were identified, indicating the existence of distinct disease enti-
ties characterized by specific pathogenetic mechanisms (Figure 2). 
Clusters 1-2 included patients with fluid-phase AP activation at both 
the C3 and C5 levels, highlighted by low serum C3 and high plasma 
levels of sC5b-9, but those in cluster 2 also exhibited markers of ac-
tivation of the classical pathway in the biopsy (C1q and IgG staining) 
and the highest prevalence of nephrotic syndrome. Patients in clus-
ter 3 had fluid-phase AP activation, mainly at the C3 level, and highly 
electron-dense deposits in the GBM. Finally, cluster 4 was charac-
terized by solid phase-restricted complement activation with glo-
merular C3 deposits and a normal complement profile in the blood 
and had the highest risk of ESRF. In this regard, clusters did better 
at predicting renal survival than the conventional classification into 
IC-MPGN, DDD, and C3GN.115 Notably, while a large majority of 
DDD patients fell into cluster 3, C3GN and IC-MPGN patients were 
distributed among clusters, reinforcing the overlap between C3GN 
and IC-MPGN and the heterogeneity of the two histologic groups. 
Genetic and acquired complement abnormalities were highly prev-
alent in clusters 1-3 but rare in cluster 4 (Figure 2). Further analysis 
revealed that variants affecting C3 and CFB, and C5NeFs were more 

prevalent in clusters 1 and 2, whereas cluster 3 patients had a higher 
prevalence of C3NeFs and of heterozygous CFH variants compared 
with the other clusters.104,116 The cluster analysis approach was sub-
sequently validated by an independent group in another cohort of 
92 C3G and IC-MPGN patients, with similar results.117

Primary C3G and IC-MPGN are rare, with an estimated preva-
lence of 1.2–1.6 per million in Europe.118 The clinical picture is char-
acterized by a variety of symptoms, ranging from mild disease with 
asymptomatic microscopic hematuria and/or proteinuria, to severe 
disease with nephritic or nephrotic syndrome (NS) and renal func-
tion impairment. In general, outcomes are poor. Relevant prognostic 
factors, reported in both adults and children, include NS at onset and 
a higher proportion of sclerotic glomeruli and crescents in kidney bi-
opsies.119 The predictive value of the histological features regarding 
disease outcome has recently been documented.108 In a large cohort 
of C3G and IC-MPGN patients, the risk of progression to kidney fail-
ure was associated with estimated glomerular filtration rate (GFR) 
and proteinuria at the time of biopsy, cellular/fibrocellular crescents, 
segmental sclerosis, and interstitial fibrosis/tubular atrophy scores.

The risk of ESRF is similar for patients with C3G and IC-MPGN 
(4%–41% vs. 9%–41%).104,120 Compared with other forms of GN, pa-
tients with ESRF have comparable rates of survival when they are on 
dialysis and following kidney transplantation, but significantly higher 
rates of allograft loss due to disease recurrence (54%–60% in C3G 
vs. 43% in IC-MPGN).120

2.2.2  |  Genetic and acquired determinants of 
alternative pathway dysregulation

Genetic and acquired abnormalities associated with dysregulation of 
the AP are found in around 50-70% of patients with primary C3G/
IC-MPGN. These include LPVs that affect complement regulators, 
mainly factor H, or the two components of the alternative pathway 
C3 convertase, C3 and factor B; structural variants in CFH-CFHRs 
genes; common susceptibility variants, and/or acquired abnor-
malities. Notably, the percentages of primary C3G and IC-MPGN 
patients carrying genetic and/or acquired AP abnormalities were 
comparable.104,119,120

Several reports have described LPVs in complement components 
and regulators, such as C3, CFB, CFH, MCP, CFI, and THBD.102,119,121 
Compound heterozygosity122 and homozygous40 and heterozy-
gous123 LPVs in the CFH gene associated with factor H deficiency 
have been reported. Gain-of-function LPVs in the CFB gene have 
been demonstrated in C3G and IC-MPGN patients.119,124,125

Rearrangements that affect the genes that encode the five FHR 
proteins and lead to internal duplications, deletions, or hybrid genes 
that result in the deregulation of FH activity were initially described 
in C3G patients;126 however, more recently, they have been associ-
ated with primary IC-MPGN as well.127

Common susceptibility variants in the CFH and CFHR5 genes have 
been associated with MPGN,128 strengthening the hypothesis that 
complement control plays a role in the pathogenesis of the disease.
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Acquired drivers of disease include a heterogeneous group of 
nephritic factors (C3NeF or C5NeFs). They are the most commonly 
detected autoantibodies and recognize neoantigenic epitopes on 
C3bBb and C3b2Bb, the C3 and C5 convertases of the alternative 
pathway, respectively.129–132 In the presence of C3NeFs and C5NeFs, 
the half-lives of C3 and C5 convertase lengthen. Persistent cleavage 
of C3 drives down serum concentrations of C3 and increases serum 
concentrations of its cleavage products.116

Inhibitory FHAA16,127,130,133,134 and activating anti-factor B or 
anti-C3b autoantibodies have been observed in individuals with 
C3G.9 As a general rule, acquired drivers extend the half-life and sta-
bilize the C3 convertase, which leads to persistent AP activation in 
the fluid phase.135

2.2.3  |  Complement inhibition: ongoing 
studies and therapeutic perspectives

The optimal treatment for primary C3G and IC-MPGN has not been 
established yet, and there are no approved drugs for the affected 
patients. Immunosuppressive therapy is often prescribed, although 

the choice of drug and duration of treatment is based on retro-
spective analyses, limited case series, and observational studies, 
rather than randomized controlled intervention trials. The recently 
released KDIGO Guideline for the Management of Glomerular 
Diseases103 recommends the usual supportive measures (low-salt 
diet, treatment of hypertension, reduction of proteinuria with an-
giotensin inhibition, and treatment of dyslipidemia) together with 
immunosuppression in the setting of moderate to severe disease 
(initially with mycophenolate mofetil plus glucocorticoids, and if this 
fails, with eculizumab).

Eculizumab has been employed in single patients or small se-
ries of patients with primary C3G and IC-MPGN. The hypothesis 
is that by inhibiting the cleavage of C5, thereby precluding the 
formation of C5a and C5b-9 (Figure  1), the drug might protect 
the kidneys from complement-mediated damage. Published data 
suggest that high levels of serum sC5b-9 before treatment may 
predict a better response.136 Based on this consideration, we 
evaluated the effect of eculizumab in the context of a sequential 
off-on-off-on design in ten patients (six with primary IC-MPGN 
and four with primary C3GN) with nephrotic-range proteinuria 
and high plasma sC5b-9 levels.137 The finding that sC5b-9 plasma 

F I G U R E  2  Characteristics of the 4 clusters obtained through unsupervised cluster analysis. Clusters 1 to 3 showed evidence of fluid-
phase alternative pathway activation and a high prevalence of complement gene abnormalities (mutations) and/or nephritic factors (NeFs). 
In clusters 1 and 2, AP activation occurs both at the C3 and C5 levels, as documented by low serum C3 and high levels of sC5b-9. Cluster 2 
is distinguished by the fact that these patients also have signs of activation of the classical pathway (Ig and C1q staining in biopsy). In cluster 
3, fluid-phase C3 convertase activity predominates over C5 convertase activity, as shown by mostly normal sC5b-9 levels. Most of these 
patients have highly electron-dense deposits in the glomerular basement membrane. Most patients in clusters 1 and 2 carried NeFs that 
stabilized both the C3 and the C5 convertases, whereas NeFs stabilizing the C3 convertase only were mainly found in cluster 3. Cluster 
4 patients separated from the others since they have normal serum C3 levels but intense C3 staining in the kidney, indicating solid phase 
AP activation in the kidney. N: normal value. Green rectangles highlight abnormalities in circulating blood, and red rectangles highlight 
glomerular abnormalities. Reprinted from Noris M, Daina E, Remuzzi G. Membranoproliferative glomerulonephritis: no longer the same 
disease and may need very different treatment. Nephrol Dial Transplant. 2021 Oct 1:gfab281. doi: 10.1093/ndt/gfab281
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levels were fully normalized by eculizumab in all subjects, whereas 
proteinuria decreased in only three patients, is consistent with 
evidence that disease activity, at least in some patients, is only 
partially mediated by the activation of the terminal complement 
pathway. It could also be assumed that in non-responder patients, 
the activation of other upstream C3-convertase-dependent path-
ways, which cannot be blocked by eculizumab, may cause kidney 
damage despite the inhibition of the terminal pathway. The het-
erogeneous response to eculizumab treatment could be related 
to the extent of terminal complement activation, which may vary 
substantially from patient to patient.104

The oral C5aR1 antagonist CCX168 (avacopan), recently ap-
proved by the US Food and Drug Administration (FDA) for ad-
junctive treatment of anti-neutrophil cytoplasmic autoantibody 
(ANCA)-associated vasculitis, has been investigated in a phase 2 
trial with C3G patients (ACCOLADE; NCT03301467). C5a is a po-
tent anaphylatoxin that, by interacting with the C5aR1 receptor, 
increases vascular permeability and induces oxidative bursting 
and the release of pro-inflammatory cytokines in myeloid cells, as 
well as having chemotactic properties for myeloid and lymphoid 
cells.138 Avacopan blocks the interaction of C5a with C5aR1 and 
potentially exerts an anti-inflammatory effect. Preliminary results 
from the ACCOLADE study139 showed that there was an increase 
in the C3G Disease Chronicity Scores despite treatment with ava-
copan. Nonetheless, investigators noted differences in disease pro-
gression compared with placebo, suggesting that avacopan had at 
least a partial effect on attenuating C3G progression. Compared to 
eculizumab, avacopan does not affect the formation of the termi-
nal complement complex, that plays a key role in controlling infec-
tions caused by encapsulated bacteria, such as Neisseria meningitidis. 
However, terminal pathway inhibitors like eculizumab or avacopan 
do not affect complement activation upstream of C5 and do not pre-
vent the formation of C3 activation fragments and their accumula-
tion in glomerular immune deposits of C3G and IC-MPGN patients. 
The future therapeutic landscape for C3G/IC-MPGN seems more 
encouraging thanks to new complement inhibitor drugs that directly 
counteract AP dysregulation.

Agents that target the AP are thus being tested in C3G and IC-
MPGN. In this regard, ACH-0144471 (danicopan)140 is a small, orally 
active inhibitor of factor D. Factor D is a serine protease, mainly 
produced by adipose tissue, that catalyzes the cleavage of factor B, 
a rate-limiting step that converts the inactive enzyme proconvertase 
C3bB into the active C3 convertase C3bBb of the alternative pathway 
(Figure 1). By inhibiting factor D activity, danicopan specifically targets 
the control point of the complement cascade amplification loop, block-
ing C3 convertase formation and, therefore, significantly reducing the 
production of C3 cleavage products (C3 fragments) and downstream 
MAC formation. An open-label phase 2 study in PNH documented the 
effective inhibition of hemolysis at week 24 in 12 patients with an inad-
equate response to eculizumab. In particular, the addition of danicopan 
resulted in a mean increase in hemoglobin of 2.4 g/dl and a clinically 
significant reduction in transfusion needs vs baseline in patients who 
were transfusion-dependent on eculizumab.141 Two proof-of-concept 

phase 2 studies with this factor D inhibitor, a randomized placebo-
controlled phase 2 study in C3G (NCT03369236) and a single-arm 
phase 2 study with C3G or IC-MPGN patients (NCT03459443), have 
been conducted. The manuscripts describing these results are in 
press, but the company has stated that they will halt development of 
the drug for C3G and IC-MPGN, citing that the phase 2 study data 
showed a suboptimal clinical response, due to an insufficient pharma-
cokinetic and pharmacodynamic response and incomplete inhibition of 
the AP.142 In vitro and in vivo studies indicated that a very high degree 
of factor D inhibition (likely more than 95%) needs to be achieved to 
efficiently block the AP.143 These findings are particularly relevant to 
C3G and IC-MPGN patients, who may require an even higher degree 
of factor D inhibition, since they suffer from hyperactivity of the AP 
due to C3 convertase dysregulation. In addition, circulating levels of 
factor D are dependent on kidney function, since factor D is filtered 
through the glomerulus and catabolized in the proximal renal tubule.144 
An inverse correlation between plasma factor D levels and creatinine 
clearance has been reported in patients with various renal diseases.145 
Preliminary results from the two clinical trials of danicopan in C3G and 
IC-MPGN confirmed an inverse correlation between factor D levels 
and renal function, so that patients with renal impairment had higher 
than normal factor D levels,146 which represents another hurdle for 
efficient AP inhibition in these conditions. A phase 1 clinical study has 
been planned (NCT04623710), involving healthy subjects and three 
cohorts of patients with severe, moderate, or mild impairment of renal 
function, respectively, to determine the effect of renal dysfunction 
on the pharmacokinetics and pharmacodynamics of the new, more 
potent factor D inhibitor ALXN2050. The drug is also currently being 
evaluated in a phase 2 study in PNH (NCT04170023). An open-label, 
multicenter, proof-of-concept phase 2 study is ongoing to evaluate 
the safety, tolerability, and therapeutic potential of another factor 
D inhibitor (BCX9930)147 administered for 24 weeks to adult partici-
pants with either C3G, IgA nephropathy, or membranous nephropathy 
(NCT05162066, RENEW, Table 1).

Another AP inhibitory drug is iptacopan (LNP023) a small, 
orally active molecule that binds to factor B. It does not prevent 
the formation of the C3 convertase, but it specifically inhibits 
C3 convertase enzymatic activity, blocking the conversion of C3 
to C3b (Figure 1) and the activation of the amplification loop. In 
turn, this blockade prevents downstream generation of the AP 
C5 convertase, without affecting the activity of the classical/
lectin pathway's C5 convertase.148 In vitro, iptacopan inhibited 
complement activation in sera from C3G patients and inhibited 
the activity of the C3 convertase stabilized by C3NeFs isolated 
from C3G sera.148 An open-label non-randomized phase 2 study 
on the efficacy, safety, and tolerability of iptacopan in patients 
with C3G on the native kidney or after transplant has been car-
ried out (NCT03832114), and the long-term extension study is 
ongoing (NCT03955445). Preliminary results from 12 adult pa-
tients with biopsy-proven native C3G who received iptacopan for 
12 weeks are available. Iptacopan inhibited AP activity, and plasma 
C3 levels recovered, with complete normalization in five of seven 
tested patients at 12 weeks.149 Most importantly, urinary protein 
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excretion fell by 49% at 12 weeks and renal function stabilized. 
The treatment was well-tolerated, with no treatment-emergent 
severe adverse events. A multicenter, randomized, double-blind, 
placebo-controlled phase 3 study on the efficacy and safety of 
iptacopan in C3G is ongoing (NCT04817618, Table 1).

Drugs that target C3 are also under clinical development. 
Specifically, APL-2 (pegcetacoplan), a synthetic cyclic peptide conju-
gated to a polyethylene glycol polymer, binds to C3 and inhibits C3 
activation from all three pathways. In addition, APL-2 binds to C3b 
and prevents the activity of the C3 and C5 convertases (Figure 1). 
Pegcetacoplan was approved by the FDA in May 2021 for treating 
adult patients with PNH,150 thereby further expanding the list of 
approved treatment options that target the complement system. 
The safety and efficacy of pegcetacoplan has been investigated in 
a phase 2 open-label study (NCT03453619) involving patients with 
different glomerulopathies, including C3G. Preliminary results from 
C3G patients were presented at the 2020 ASN meeting.151 Of the 
eight recruited patients, two non-compliant patients were excluded 
from the analysis. The other six experienced an increase in serum C3 
and a decrease in plasma sC5b-9 levels, indicating that pegcetaco-
plan was able to modulate complement hyperactivity in C3G, both 
at the C3 and C5 level. During treatment, there was a trend toward 
a reduction in proteinuria (mean reduction of 24-h urinary proteins 
at day 84: 50%) and an increase in serum albumin. A phase 2 open-
label randomized study is ongoing to evaluate the safety and effi-
cacy of twice-weekly subcutaneous doses of pegcetacoplan in the 
post-transplant recurrence of C3G or IC-MPGN (NCT04572854, 
NOBLE, Table 1).152 The phase 3 randomized, placebo-controlled, 
double-blinded study in patients with a diagnosis of primary C3G or 
IC-MPGN (with or without previous renal transplant) has recently 
been initiated (NCT05067127, VALIANT, Table 1). Of note, this is so 
far the only study opened to adolescent patients.

3  |  OTHER KIDNE Y DISE A SES 
A SSOCIATED WITH ALTERNATIVE 
COMPLEMENT PATHWAY DYSREGUL ATION

Dysregulation of the AP is known to cause or accentuate different in-
flammatory diseases in which glomerular injury leads to the appear-
ance of hematuria and proteinuria and ultimately to the development 
of progressive chronic kidney disease. Experimental and clinical evi-
dence is reported for each condition, with particular focus on the oc-
currence of AP dysregulation along with classical and lectin pathways 
involvement. Although the role of the AP is likely less prevalent in most 
of these conditions, growing data support careful evaluation of drugs 
specifically targeting AP in clinical trials (Table 1).

3.1  |  Membranous nephropathy

(MN) is one of the most common causes of NS in Caucasian, non-
diabetic adults, with estimated annual incidence rates of 2-17 per 

million in Europe and 10-12 per million in North America.153 The 
disease can affect individuals of all ages, with a mean age of diag-
nosis of 50–60 years,154 and a male-to-female ratio of 2:1.155 MN is 
morphologically characterized by the deposition of IgG, the relevant 
antigens and complement components in the subepithelial space of 
the glomerular capillary wall, with variable degrees of GBM thicken-
ing. Despite there being a common histopathological pattern, MN is 
a heterogeneous disease, which occurs either in the absence of an 
associated disease (80% of cases) or in association with clinical con-
ditions, such as hepatitis virus infection, systemic lupus erythemato-
sus, malignancies, or drug toxicity, thereby classified into so-called 
primary and secondary MN, respectively.156 Heterogeneity is also 
highlighted by the variable clinical course. On average, one-third of 
patients experience spontaneous remission, usually within the first 
2 years of presentation.157,158 The other two-thirds of patients can 
be divided equally into those who maintain variable levels of pro-
teinuria and stable long-term kidney function and those who pro-
gress to ESRF.159

Advances over the last two decades have shown that pri-
mary MN is a kidney-specific autoimmune disease induced by 
autoantibodies specific to podocyte antigens, such as M-type 
phospholipase A2 receptor (PLA2R) and thrombospondin type-1 
domain-containing protein 7A (THSD7A), which have been iden-
tified in about 70% and less than 5% of adult patients, respec-
tively.160,161 More recently, several other proteins, such as 
contactin 1, semaphorin 3B, transforming growth factor-β recep-
tor 3, and netrin G1, have been characterized as potential autoan-
tigens in primary MN.162

Our understanding of the pathophysiology of MN largely 
comes from studies that used the rat model of Heymann nephri-
tis induced by antibodies against the podocyte membrane protein 
megalin. In this experimental model, local complement activation 
by subepithelial immune complexes with subsequent podocyte 
damage through C5b-9 is a major effector mechanism of protein-
uria.163,164 Nevertheless, since megalin is not expressed on human 
podocytes, it does not work as a disease mediator in patients 
with MN. Recently, murine models of PLA2R-165 and THSD7A-
associated MN166,167 have been developed, but they have not yet 
convincingly demonstrated the pathogenic relevance of comple-
ment activation.

The involvement of the complement system in patients with MN 
is based on the consistent presence of C3 and C5b-9 alongside IgG 
in subepithelial deposits.168,169 However, the exact contribution 
and clinical significance of the individual activation pathways re-
mains a matter of investigation. PLA2R and THSD7A autoantibod-
ies are predominantly of the IgG4 subclass,170–173 which is unable 
to bind C1q and activate the classical complement pathway.174,175 
Accordingly, in kidney biopsies from patients with MN, glomerular 
staining for C1q is generally weak,176 while staining for mannose-
binding lectin (MBL) and C4d is commonly positive, consistent with 
the activation of the lectin pathway.177–179 Moreover, in PLA2R-
associated MN, altered glycosylation of IgG4 autoantibodies was 
found to promote binding of MBL and complement activation via 
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the lectin pathway, leading to sublethal injury to human podocytes 
in culture.180 On the other hand, cases of PLA2R-associated MN 
have been reported in patients with complete MBL deficiency, 
with complement activation mainly induced by the alternative 
pathway, as determined based on glomerular deposition of factor 
B and properdin.181 The activation of the AP has also been con-
firmed by mass spectrometry analyses of laser capture microdis-
sected glomeruli from patients with PLA2R-associated MN, which 
showed low levels of factor B and properdin, along with the ac-
cumulation of factor H and FHR proteins.182 The pathogenic rel-
evance of the AP was supported by findings in a mouse model of 
MN, where the lack of factor B prevented glomerular deposition of 
C5b-9 and protected against albuminuria development.183 In line 
with this, THSD7A immune complexes predominantly containing 
IgG4 have been found to activate complement in vitro via the alter-
native pathway, albeit only at a high surface density.184 Another in 
vitro study showed that inhibition of the classical and lectin path-
ways significantly decreased complement-mediated cytotoxicity 
induced by anti-PLA2R antibodies, suggesting that the alterna-
tive pathway plays a limited role in complement activation.185 It 
is conceivable that the low amounts of non-IgG4 autoantibodies, 
which were found to be predominant in the early stage of immune 
deposition,186 are sufficient to initiate complement activation by 
the classical pathway, which is followed by amplification through 
the alternative pathway.187

In MN, alternative pathway activation may also occur inde-
pendently of immune complexes, due to local complement dysreg-
ulation. In particular, the loss of heparan sulfate chains from the 
glomerular basal membrane, which has been observed in human 
and experimental MN,183,188,189 could lead to impaired recruitment 
of factor H, the major inhibitor of the AP in plasma. It has also been 
posited that FHAA, which have been reported in a small subset of 
patients with primary MN,190,191 may contribute to the activation 
of the AP. However, these antibodies were not identified in all the 
MN cohorts tested, and their presence did not correlate with worse 
disease outcome.190,192 Thus, even when FHAA are produced in pa-
tients with primary MN, they are unlikely to play a significant role in 
the development of severe forms of the disease.

Collectively, the available evidence suggests that each of the 
three complement pathways may be active to different extents in 
patients with MN, but in most cases none appear to be exclusive or 
indispensable for disease initiation and progression.

3.2  |  Anti-neutrophil cytoplasmic antibody-
associated vasculitis

Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated 
vasculitides (AAV) are a group of systemic autoimmune diseases 
characterized by necrotizing inflammation of small vessels and the 
common presence of circulating autoantibodies against neutrophil 
primary granule proteins, especially proteinase 3 (PR3) and myelop-
eroxidase (MPO).193 They comprise granulomatosis with polyangiitis 

(GPA), microscopic polyangiitis (MPA), and eosinophilic granulo-
matosis with polyangiitis (EGPA).194 Most patients with GPA have 
ANCA directed to PR3 (PR3-ANCA), while those with MPA are pre-
dominantly MPO-ANCA positive.195 The global incidence of AAV 
was estimated to be 17.2 per million person-year and the prevalence 
of 198 per million persons.196 Incidence rates increase with age, and 
are marginally higher in males.197 Although any organ and tissue can 
be involved in AAV, the kidneys and lung, which are rich in small ves-
sels, are the most frequently and severely affected, with rapidly pro-
gressive glomerulonephritis and diffuse alveolar hemorrhage being 
major threats.

Histologically, renal involvement is characterized by necrotiz-
ing crescentic glomerulonephritis with little, if any, immunoglobu-
lin and complement deposition in the glomeruli.198 These findings, 
along with the observation that hypocomplementemia is rare in 
patients with AAV, previously led to the assumption that the com-
plement system was minimally involved in the pathogenesis of 
these conditions. Over the past 15 years, however, studies using 
a mouse model of MPO-ANCA vasculitis have suggested that 
complement plays a critical role in the development of AAV.199 
In this model, MPO-deficient mice are immunized with purified 
murine MPO, and the subsequently produced autoantibodies are 
passively transferred into wildtype recipients, resulting in cres-
centic glomerulonephritis and vasculitis. When recipient mice 
were deficient in C5 or factor B, or pretreated with a C5-inhibiting 
monoclonal antibody, no disease developed, while C4 deficiency 
did not have any protective effects, suggesting that complement 
activation via the alternative pathway is involved in the patho-
genesis of AAV.199,200 Intriguingly, C5aR1 blockage or deficiency 
protected against ANCA-induced necrotizing and crescentic glo-
merulonephritis in mice, whereas C6 deficiency did not, pointing 
to the anaphylatoxin C5a, and not C5b-9, as a pathogenic mediator 
of experimental AAV.201,202 Indeed, the interaction between C5a 
and neutrophil C5aR1 was found to cause an amplification loop 
for ANCA-induced neutrophil activation.201 Consistent with this, 
another study showed that neutrophils, primed by cytokines or 
coagulation factors, were able to activate the AP on their mem-
brane, leading to the release of C5a and further amplification of 
the inflammatory response.203

Despite the usual absence of immune complex deposits, posi-
tive staining for C5b-9, C3d, factor B, and properdin has been docu-
mented in kidney biopsies from patients with AAV.204,205 The finding 
that factor B colocalized with C5b-9 in active glomerular lesions 
suggests that activation of the AP could lead to kidney damage.204 
Further studies showed that properdin staining was associated with 
the proportion of cellular crescents and proteinuria levels, while 
the glomerular deposition of Bb, the active subunit of factor B, 
correlated with the percentage of total crescents observed in the 
kidney biopsy.205,206 Likewise, plasma levels of Bb are closely asso-
ciated with disease activity, including the proportion of crescents 
documented in renal biopsies, the erythrocyte sedimentation rate, 
and the Birmingham Vasculitis Activity Score.207 The involvement of 
alternative pathway regulators in AAV has also been investigated. In 
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particular, plasma levels of factor H were reported to be inversely as-
sociated with disease activity and with the proportion of total cres-
cents and cellular crescents in kidney biopsy specimens.208 Further 
research has shown that factor H from AAV patients is generally 
less effective in binding and regulating C3b, and in the protection 
of cells against complement damage.209 Notably, two SNPs in CFH 
which were reported to be strongly associated with the risk of de-
veloping age-related macular degeneration (ie, I62V, rs800292 and 
Y402H, rs1061170) were identified in some patients with AAV.210,211 
Whether such genetic variants directly account for the impaired 
functional activities of factor H observed in AAV patients remains ill 
defined. Moreover, in vitro evidence indicates that MPO, which can 
be released from neutrophils following activation by ANCA, binds to 
and inhibits the regulatory activity of factor H.212 Thus, quantitative 
deficiency or functional impairment of factor H may be related to 
the development of AAV.

Together, these findings highlight the importance of complement 
activation through the alternative pathway in the pathogenesis of 
AAV.

3.3  |  Acute postinfectious glomerulonephritis

Acute postinfectious glomerulonephritis (APIGN) is a glomerular 
disease that occurs as a result of host response to an extrarenal in-
fection. The classic example is poststreptococcal glomerulonephri-
tis caused by specific nephritogenic strains of group A β-hemolytic 
Streptococci in the setting of an infection of the pharynx or skin.213 
APIGN most commonly affects children, but it can also develop in 
adults, especially in patients who are older than 60.214 Clinically, 
the disease presents with hematuria, proteinuria, hypertension, low 
serum C3 levels, and a variable degree of kidney function impair-
ment. Although the prognosis for patients with APIGN is good over-
all, it has—rarely—been associated with chronic C3 consumption, 
persistent proteinuria, and even progression to ESRF.213,215 There is 
considerable overlap in the clinical, biochemical, and histopathologic 
features of APIGN and C3G at onset, making a differential diagnosis 
challenging.216

The pathogenesis of APIGN is thought to be the result of the 
glomerular deposition of immune complexes, either formed in 
situ or in the circulation, against Streptococcus bacteria antigens, 
with secondary complement activation, as shown by bright C3 
staining on immunofluorescence microscopy. In spite of a robust 
antibody response to bacterial antigens, the activation of the clas-
sical complement pathway is inhibited by chemokine-binding eva-
sins secreted by Streptococcus bacteria,217 and by proteins of the 
streptococcal surface, which bind a C4b-binding protein.218,219 In 
fact, the finding that a large majority of patients with APIGN have 
decreased serum C3 levels and normal C4 levels during the acute 
phase of the disease suggests that there is a selective activation 
of the AP.220 The glomerular presence of properdin and the ob-
servation that C3 deposition may precede or occur without that of 
immunoglobulins also point to alternative pathway activation.221 

Moreover, streptococcal components have been found to activate 
this pathway in vitro.222,223 Further research provided evidence of 
AP involvement in the pathogenesis of APIGN. In particular, most 
patients presenting with an atypical disease course, characterized 
by persistent proteinuria and hematuria, were found to have under-
lying abnormalities of the AP, including LPVs in genes that encode 
for complement-regulating proteins and/or antibodies to the C3 
convertase.224 More recently, autoantibodies against factor B have 
been identified in 31 out of 34 children with APIGN.225 At disease 
onset the anti-factor B antibody titer, which decreased over time, 
correlated inversely with plasma C3 levels and directly with soluble 
C5b-9 levels. In functional studies, anti-factor B antibodies isolated 
from the patients enhanced the activity of the alternative pathway 
C3 convertase.225 It remains to be established whether these anti-
bodies are the actual drivers of alternative pathway activation and 
of kidney disease in APIGN, or if complement activation occurs be-
fore their appearance.226

3.4  |  IgA nephropathy

IgAN is the most common primary glomerulonephritis worldwide, 
with the highest prevalence in Eastern Asia. The incidence has been 
estimated at 2–10 per 100,000 person per year and peaks during 
the second and third decades of life.227 The clinical course of IgAN 
is heterogeneous: after 20 years of follow-up following diagnosis, 
up to 40% of patients will have reached ESRF, but 20% of patients 
will have preserved renal function.228 The pathogenesis of IgA is 
believed to follow a multi-hit process involving the production of 
abnormal galactose-deficient IgA1, which leads to the formation 
of anti-galactose-deficient IgA1 autoantibodies and the deposition 
of IgA1-containing immune complexes in the mesangium, result-
ing in glomerular inflammation and kidney injury.229 In addition to 
IgA1 deposition, IgAN is characterized by glomerular deposits of C3, 
properdin, C4d, MBL, and C5b-9, whereas C1q is typically absent, 
suggesting a predominant involvement of the alternative and the 
lectin pathways in this disease.230 Consistent with this, the ability 
of human polymeric IgA to activate the AP in vitro has been demon-
strated.231 Furthermore, in a rat model of IgA-mediated glomerular 
inflammation, polymeric (but not monomeric) IgA triggered mesan-
gial deposition of C3, whereas C4 and C1q were not detectable in the 
glomeruli.232 These findings suggest that IgA polymerization plays 
a critical role in inducing the activation of the AP. In patients with 
IgAN, plasma levels of Ba, the smaller activation fragment of fac-
tor B, were found to be higher compared with those who had focal 
and segmental glomerulosclerosis or healthy controls.233 Moreover, 
in IgAN patients plasma Ba levels correlated directly with circulating 
C3a concentrations and the degree of proteinuria, and inversely with 
estimated GFR,233 suggesting a relationship between AP activation 
and the clinical severity of the disease.

Several lines of evidence point to the involvement of comple-
ment FHR proteins, which have been shown to antagonize factor 
H activity, in the pathogenesis of IgAN. In particular, genome-wide 
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association studies have identified a SNP within the CFH gene (ie, 
rs6677604) that is closely associated with a deletion polymorphism 
of the CFHR3 and CFHR1 genes (delCFHR3-R1), whose presence 
was robustly associated with protection against IgAN.234,235 Across 
populations worldwide, delCFHR3-R1 frequency showed marked 
differences in a pattern inverse to that of disease prevalence.235 
In a Chinese cohort of IgAN patients, the protective delCFHR3-R1 
allele was associated with reduced mesangial C3 deposition, higher 
circulating levels of factor H, and lower C3a concentrations.236 
Moreover, rare CFHR5 gene variants were found to contribute to 
the genetic susceptibility to IgAN.237 Two independent studies 
showed that circulating CFHR1 levels and the CFHR1/factor H 
ratio, as an index of the relative abundance of dysregulating and 
regulating proteins, were higher in IgAN patients than in healthy 
controls, and associated with more rapid disease progression irre-
spective of the delCFHR3-R1 allele carriage.238,239 Circulating lev-
els of CFHR5 were also found to be higher in IgAN patients than 
in healthy controls in two large cohort studies and correlated with 
histologic markers of kidney injury.238,240 Remarkably, glomerular 
deposition of CFHR5 has been observed in kidney biopsies from 
IgAN patients, along with complement-activating products,241,242 
and associated with disease progression.241 Together, these find-
ings suggest that CFHR1 and CFHR5 may contribute to the patho-
genesis of IgAN by impairing factor H-dependent regulation of the 
AP, thereby influencing the severity of glomerular inflammation and 
injury.

3.5  |  Lupus nephritis

Systemic lupus erythematosus (SLE) is a chronic multisystem au-
toimmune disease of unknown etiology characterized by the loss 
of immune tolerance to endogenous nuclear and cellular antigens, 
which can lead to the injury of several organ and tissues.243 The 
overall global incidence ranges from 1.5 to 11 cases per 100,000 
person per year, with the global prevalence reported as ranging from 
13 to 7,713.5 cases per 100,000 individuals.244 Possible reasons for 
this wide discrepancy are discussed in (244). Lupus nephritis is one of 
the most severe manifestations of SLE, which develops in up to 60% 
of patients during the disease course, more commonly in individuals 
of African American, Hispanic, or Asian ethnicity who are younger 
and male.245 The clinical presentation is highly variable, ranging from 
asymptomatic proteinuria and/or hematuria to rapid and progressive 
loss of renal function from glomerulonephritis. The risk of ESRF at 
ten and 15 years from LN diagnosis has been estimated at 17% and 
22%, respectively.246

The activation of the classical complement pathway, triggered 
by the interaction of C1q with immune complexes, has been recog-
nized as an important mechanism in the pathogenesis of LN.247,248 
Nonetheless, several lines of experimental and clinical evidence 
point to the involvement of AP activation in the development or 
worsening of kidney injury. In particular, in MRL-lpr mice, an ani-
mal model of LN, genetic deficiency of either factor B or factor D 

protected against glomerulonephritis.249,250 Consistent with this, 
a reduction in factor B expression, achieved by antisense oligonu-
cleotides, ameliorated kidney histopathology, reduced glomerular 
C3 deposition and proteinuria in two different mouse models of 
LN, MRL-lpr and NZB/W F1.251 In the same experimental models, 
treatment with a selective alternative pathway inhibitor consisting 
of a fragment of complement receptor 2 linked to the N-terminal 
region of factor H (CR2-fH), but not total complement inhibition, 
reduced glomerulonephritis.252,253 The authors of these studies 
have postulated that the benefits of selectively inhibiting the AP 
may be related, at least in part, to the relative contributions of 
the alternative pathway versus the classical pathway in the han-
dling of circulating immune complexes and apoptotic cells. Both 
the alternative and the classical pathways are involved in the 
clearance of immune complexes.254 Therefore, it was hypothe-
sized that inhibiting both pathways has the potential to increase 
circulating immune complex levels and exacerbate disease. The 
classical pathway also plays an important role in the clearance 
of apoptotic cells, which have been posited to provide a source 
of autoantigens responsible for driving antibody production in 
SLE.255 Another study showed that treatment with a soluble Fc 
fusion protein of the complement receptor of the immunoglobulin 
subfamily (CRIg-Fc), an intrinsic inhibitor of alternative pathway 
activation that binds to C3b, thereby blocking the formation of C5 
convertase, significantly reduced proteinuria, kidney inflamma-
tion, and glomerular deposition of C3 and IgG in MRL-lpr mice.256 
In patients with LN, the hypothesis that the AP contributes to the 
development of kidney damage is supported by the observation 
that reduced plasma levels of C3, but not C4, were independently 
associated with renal flare.257 A large cohort study found lower 
plasma levels of C1q and C3, along with higher concentrations of 
Bb, C3a, C5a, and sC5b-9 in patients with active LN compared 
to those in remission.258 Moreover, Bb and C5b-9 colocalized in 
the glomeruli of LN patients, further suggesting that AP activation 
may participate in complement-mediated renal tissue injury.258 
Another study showed that patients with glomerular deposition 
of factor B and factor H had more severe interstitial fibrosis, while 
those with positive properdin staining exhibited higher urinary 
protein excretion.259 Furthermore, LN patients with kidney biop-
sies showing glomerular deposition of C3 without C1q and C4, as 
an index of alternative pathway-limited complement activation, 
had poorer response rates to one-year immunosuppressive ther-
apy and were more likely to experience renal disease progres-
sion.260 Interestingly, a transcriptomic analysis found higher C3 
and factor D expression in renal biopsies from patients with LN 
during flare than normal kidney controls.261 6 months after induc-
tion therapy with corticosteroids, combined with either mycophe-
nolate mofetil or cyclophosphamide, C3 and factor D expression 
further increased in the kidneys of patients who did not respond 
to treatment, but remained stable in those who achieved a com-
plete clinical response.261

The role of AP regulators in the pathogenesis of LN has also 
been investigated. In MRL-lpr mice, a genetic deficiency of factor H 
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accelerated the development of lupus nephritis and reduced animal 
survival.262 At the clinical level, plasma levels of factor H were found 
to be significantly lower in patients with LN than in those with SLE 
without clinical evidence of renal involvement or healthy controls 
and inversely correlated with SLE disease activity index and renal 
activity index scores.263 Moreover, some biofunctions of factor H, 
including binding activity to C3d, cell protection from complement-
mediated lysis and clearance of apoptotic cells, were reported to be 
impaired in about half of the patients with active LN.264 Therefore, 
quantitative deficiency or dysfunction of factor H may play a role in 
the development of LN. Together, the available evidence suggests 
that uncontrolled complement activation, especially through the al-
ternative pathway, promotes kidney injury in LN.

4  |  CONCLUSIONS

Despite its evolutionary role in survival and defense against infec-
tion, the complement system can be a prominent mediator and/
or amplifier of the pathogenesis of many serious diseases, includ-
ing kidney diseases. The success of eculizumab in the treatment of 
PNH has kindled the pharmaceutical industry's interest in the clini-
cal development of inhibitors that target the complement system at 
various levels.265,266 Complement inhibition has dramatically trans-
formed the outcome of aHUS, one of the most severe kidney dis-
eases.88 The availability of complement-directed therapies has also 
opened promising new perspectives for the management of several 
other kidney diseases in which complement activation is involved to 
a variable extent. Although the value of inhibiting AP-mediated kid-
ney diseases has long been recognized, incorporating complement-
targeted drugs into clinical use has proved challenging. Numerous 
drugs that interfere with AP activity have recently been developed 
and are currently undergoing testing. At least 19 clinical trials in this 
context are now registered (Table 1). However, clinical trials to test 
new therapeutics are difficult to carry out due to the rarity of these 
diseases. In addition, because each drug may act only on specific 
subgroups of patients, its effect on the overall population will likely 
be diluted and heavily influenced by the heterogeneity of these 
diseases.3

In this regard, there is a need in clinical settings not only to 
make prognoses but also to assist in decision-making regarding 
the most appropriate therapeutic agents.267 When developing 
novel treatments for complement-driven diseases, it is important 
to consider which component of the cascade may be the most ap-
propriate target. For example, although inhibition of C5 impedes 
the C5a and MAC formation, this inhibition does not block the 
pro-inflammatory and opsonization actions of C3, because C5 
acts downstream of C3 as part of the terminal cascade (Figure 1). 
Therefore, anti-C5 therapy may have limited effects in diseases 
where the involvement of C3 is prevalent in the pathogenesis. In 
addition to considerations regarding the proper target, it is also im-
portant to understand what dosages to use to optimize treatment 

efficacy. For example, responses to factor D inhibition may vary 
greatly, depending on the degree of AP dysregulation and on fac-
tor D levels. Specific in vitro and ex vivo tests are needed to verify 
the potential responsiveness of each patient to a given complement 
inhibitor drug and evaluate the dose associated with the maximal 
effect. The ex vivo assays used to evaluate alternative pathway C3 
convertase activity116 can, for instance, be considered a tool for 
monitoring patients treated with factor D inhibitor to understand 
whether they may benefit from the drug and, if so, to establish the 
effective dose. Ideally, the choice of drug should be tailored to each 
patient's individual characteristics, including clinical, histologic, 
and biochemical parameters and genetic and acquired complement 
abnormalities. Drugs need to not only be highly selective and po-
tent but also be associated with minimal adverse effects and sus-
tainable treatment costs.268 Experience with PNH seems to show 
that drugs that act at different levels of the complement cascade 
can be administered in combination in a beneficial manner and with 
manageable toxicity.141 The risks of new anti-complement agents 
remain to be quantified, and it should be taken into account that 
drugs that target complement, either by blocking the AP or by more 
broadly inhibiting C3 or C5, may have greater effects on reduc-
ing the patient's defenses against bacterial infections. Successfully 
treating patients requires further research in the field and close 
collaboration between the clinicians and researchers who have an 
interest and special expertise in the complement system.
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