
RESEARCH AR T I C L E

Stochastic and deterministic processes shape bioenergy
crop microbiomes along a vertical soil niche

Gian Maria Niccolò Benucci1,2,3 | Pedro Beschoren da Costa1,2 |

Xinxin Wang2 | Gregory Bonito1,2

1DOE Great Lakes Bioenergy Research
Center, Michigan State University, East
Lansing, Michigan, USA
2Department of Plant, Soil, and Microbial
Sciences, Michigan State University, East
Lansing, Michigan, USA
3Department of Microbiology & Molecular
Genetics, Michigan State University, East
Lansing, USA

Correspondence
Gian Maria Niccolò Benucci, Great Lakes
Bioenergy Research Center, Michigan State
University, 1129 Farm Lane, East Lansing, MI
48824, USA.
Email: benucci@msu.edu

Funding information
Great Lakes Bioenergy Research Center,
Grant/Award Number: E-SC0018409; U.S.
Department of Energy; Office of Science;
Biological and Environmental Research

Abstract
Sustainable biofuel cropping systems aim to address climate change while
meeting energy needs. Understanding how soil and plant-associated
microbes respond to these different cropping systems is key to promoting
agriculture sustainability and evaluating changes in ecosystem functions.
Here, we leverage a long-term biofuel cropping system field experiment to
dissect soil and root microbiome changes across a soil-depth gradient in
poplar, restored prairie and switchgrass to understand their effects on the
microbial communities. High throughput amplicon sequencing of the fungal
internal transcribed spacer (ITS) and prokaryotic 16S DNA regions showed
a common trend of root and soil microbial community richness decreasing
and evenness increasing with depth. Ecological niche (root vs. soil) had the
strongest effect on community structure, followed by depth, then crop. Sto-
chastic processes dominated the structuring of fungal communities in dee-
per soil layers while operational taxonomic units (OTUs) in surface soil
layers were more likely to co-occur and to be enriched by plant hosts. Pro-
karyotic communities were dispersal limited at deeper depths. Microbial net-
works showed a higher density, connectedness, average degree and
module size in deeper soils. We observed a decrease in fungal-fungal links
and an increase of bacteria–bacteria links with increasing depth in all crops,
particularly in the root microbiome.

INTRODUCTION

Plants are rich microbial ecosystems and important
ecological engineers (Bulgarelli et al., 2013; Delgado-
Baquerizo et al., 2018; Tedersoo et al., 2014). These
sessile organisms are anchored to the soil by their
roots, which also assist in provisioning water, nutrients
and minerals to plants. Root and aboveground plant tis-
sues are populated by a rich diversity of microorgan-
isms known as the plant microbiome. Plant
microbiomes are capable of modulating plant health,
growth, and development, and have been implicated in
crop productivity and ecosystem functioning (Agler
et al., 2016; Dur�an et al., 2018; Howe et al., 2021;
Mendes et al., 2013; van der Heijden et al., 2016).

Soils are the largest and most diverse reservoir of
microorganisms on the planet (Bickel & Or, 2020;
Fierer, 2017). Soil food webs are fuelled by autotrophic
metabolism, thus, aboveground plant photosynthesis is
critical to soil development. Similarly, the activities of
soil microbes that feed on plant residues and exudates
help to stabilize soil carbon, while simultaneously recy-
cling nutrients necessary for plant productivity. Many
factors are known to influence community assembly of
microbial communities around the host. These include
environment, plant species, genotype or health condi-
tions (Fitzpatrick et al., 2018; Xiong et al., 2020; Wag-
ner et al., 2016), microbial interactions, mutualism, or
competition (Agler et al., 2016; Hassani et al., 2018), as
well as ‘neutral’ processes, such as dispersal
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limitation, speciation and ecological drift (Rosindell
et al., 2011). All these factors are likely to play a role in
the establishment of microbiomes and quantitative
models including neutral theory, which are becoming
more popular for assessing the role of adaptation to dif-
ferent environments and natural selection (Burns
et al., 2016; Venkataraman et al., 2015).

Soil chemistry and biology are known to change
with depth, yet most studies on belowground plant
microbiomes are focused on the top 10 cm of soils
since this is where the density of fine roots is often
highest (Zhang et al., 2017). Nonetheless, roots of
perennial plants may extend meters down into the soil
profile where they are important to soil carbon and min-
eral turnover (York et al., 2022). Therefore, knowledge
concerning bioenergy crops and their microbial commu-
nities, interactions and functions in deeper soils is
needed (de Vries et al., 2017).

Bioenergy crops are being researched as a sustain-
able alternative to fossil fuels for supplying society’s
energy needs. To be sustainable, bioenergy cropping
systems must maintain neutral or negative CO2 emis-
sions (Field et al., 2018), increase ecosystem macro-
(Fletcher et al., 2011) and micro-diversity (da C. Jesus
et al., 2010), require low or no inputs in terms of fertil-
izers (Tilman et al., 2006), limit soil erosion and distur-
bance and be productive on lands that are unsuitable
for agricultural food productions (Gelfand et al., 2013;
Howe et al., 2021). Research is aimed at understanding
how soils and their biodiversity help plants to maintain
productive and sustainable biofuel crops with low inputs
on lands that are otherwise not well suited for agricul-
tural production.

Here, we present results on fungal and bacterial
microbiomes in soils and roots across a 1 m soil-
depth gradient across three bioenergy cropping sys-
tems. This research leverages the Great Lakes Bioe-
nergy Research Center’s Biofuel Cropping System
Experiment (BCSE) at Michigan State’s Kellogg Bio-
logical Station. Specifically, we aimed to
(i) investigate the effect of depth on soil and root fun-
gal and prokaryotic microbiome diversity and struc-
ture of poplar, restored prairie and switchgrass,
(ii) identify a core set of taxa for each crop and depth
and (iii) identify the relationships between microbial
taxa, and microbial taxa and the plant host, across
the vertical soil niche. We hypothesized that soil
microbial diversity would be greatest in surface soils
where aboveground organic inputs are concentrated,
and would decrease with depth. Given that roots are
an important source of carbon belowground, we also
hypothesized that microbial community similarity
would increase with depth across all three biofuel
crops, and overall would be over-represented by root-
associated taxa—particularly in deep soils. Our
results expand knowledge on the fundamental rules
that govern microbial communities in bioenergy

cropping systems and the significant impact of host
plants on soil microbiomes in deep soils.

EXPERIMENTAL PROCEDURES

Sampling and metadata collection

In spring 2018, soil cores to 1 m depth (7.6 cm diame-
ter) were taken with a hydraulic probe (Geoprobe
540MT, Geoprobe Systems, USA) at the Kellogg Bio-
logical Station (KBS) poplar, switchgrass and prairie
research sites. A total of 3 replicate cores were taken at
different 5 plots (i.e., block) for each cropping system.
Cores were cut by specific depth intervals (0–10, 10–
25, 25–50 and 50–100 cm) and for each interval a ran-
dom of 1 root and soil sample was collected throughout
the entire core section. Fine roots were carefully sepa-
rated from soil with the use of a sieve and fine-tipped
forceps, changing gloves between processed samples,
cleansing off attached soil particles. Roots were then
washed with a 0.5% Tween 20 solution, rinsed three
times with sterile water, and finally wrapped in sterile
paper towels and air dried at room temperature. Prior to
DNA extraction, roots were powdered in 2 ml tubes
using stainless steel beads on a TissueLyser II
(Qiagen, USA).

Overall, 60 root and soil samples were collected for
each cropping system for a total of 360 samples. Cores
were also analysed for total carbon (C %), total nitrogen
(N%), sand (%), silt (%), clay (%), pH, PO4

3� (ppm), K+

(ppm), Ca2+ (ppm), Mg2+ (ppm), and cation exchange
capacity (CEC, meq/100 g soil) at each depth and
composited by plot (details available at https://data.
sustainability.glbrc.org/protocols/158).

DNA extraction and amplicon library
preparation

Genomic DNA was extracted from approximately
0.40 g of dried soils using the PowerMag® Soil DNA
Isolation Kit (Qiagen, USA) following the manufac-
turer’s instructions, and from approximately 1 g of fine
(ø ≤ 0.5 mm) roots using a CTAB chloroform extraction
protocol (Gardes & Bruns, 1993). DNAs were amplified
using DreamTaq Green DNA Polymerase (Thermo Sci-
entific, USA) with the primer sets: ITS1f–ITS4
(Gardes & Bruns, 1993; White et al., 1990) and 515F-
806R for Bacteria and Archaea (Caporaso, Lauber,
et al., 2010), following a protocol based upon the use of
frameshift primers as reported in (Benucci et al., 2019)
and originally modified from (Lundberg et al., 2013).
PCR products were observed through gel electrophore-
sis after staining with ethidium bromide and visualized
with UV light. Samples were normalized with the
SequalPrep Normalization Plate Kit (ThermoFisher
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Scientific, USA) and pooled together. The generated
amplicon library was concentrated to 20:1 with Amicon
Ultra 0.5 ml 50 K filters (EMDmillipore, Germany) and
purified from primer dimers with Agencourt AMPure XP
magnetic beads (Beckman Coulter, USA). We
sequenced the amplicon library on an Illumina MiSeq
instrument with the v3 600 cycles kit (Illumina, USA).

Bioinformatic data analysis

Raw internal transcribed spacer (ITS) and 16S reads
were evaluated for quality with FastQC
(Andrews, 2010). 16S reads were merged with PEAR
(Zhang et al., 2014). Forward ITS were used for all
downstream analyses. Reads were demultiplexed by
barcode sequences in QIIME (Caporaso, Kuczynski,
et al., 2010), and Illumina adapters and sequencing
primers were removed. Reads were then quality fil-
tered, and trimmed to equal length with Cutadapt
(Edgar, 2016; Edgar & Flyvbjerg, 2015; Martin, 2011).
After sequence read de-replication, singletons were
removed and sequences clustered into operational tax-
onomic units (OTUs) based on 97% similarity using the
UPARSE (Edgar, 2013) algorithms. Taxonomy assign-
ments were performed in CONSTAX2 (Gdanetz
et al., 2017; Liber et al., 2021) against the UNITE
eukaryote database, version 8.2 of 4 February 2020
(Abarenkov et al., 2020) and SILVA, version 138 (Quast
et al., 2013), respectively. The --high_level_db flag in
CONSTAX2 was used to identify non-target taxa as
well as OTUs unidentified at the Kingdom level
(Bowsher et al., 2020). Non-target taxa, OTUs not
assigned to a Kingdom, and OTUs identified as either
chloroplast or mitochondria in either dataset were
removed from subsequent analysis.

Statistical analyses

We first imported summary files from ITS and 16S data-
sets into the R statistical environment (R Core
Team, 2022) and merged them into phyloseq objects
(McMurdie & Holmes, 2014). We then removed OTUs
with less than 10 total sequences (Lindahl et al., 2013;
Oliver et al., 2015) to protect against spurious errors,
for example, tag switching and artefacts (Carlsen
et al., 2012). Before starting the analysis, we explored
the library read distribution across samples and accord-
ing to different variables (Figure S1A,B). We then
removed PCR and sequencing contaminants with
decontam (Davis et al., 2018) using sequence data
generated in MiSeq library negative control samples
(Figure S1C).

Rarefaction curves for ITS and 16S datasets were
generated to visualize variation in sample sequencing
depth (Figure S2). The sequence depth was lower for

deeper soils than surface soils. To address this, we
removed approximately 3% of the samples having
fewer library sequences, and we normalized the
remaining samples adopting the cumulative sum scal-
ing technique implemented in the metagenomeSeq R
package (Paulson et al., 2013).

OTU richness (Simpson, 1949) and Shannon’s
diversity index (Hill, 1973) were calculated with the
function ‘specnumber’ and ‘diversity’ in vegan
(Website). Shannon’s index was then rescaled into a
0–1 scale to help comparison across groups using the
formula EH¼1� H

log kð Þ, with k denoting the number of
species (i.e., OTUs) and pi the proportional abundance
of species i. To test whether depth (i.e., 0–10, 10–25,
25–50 and 50–100 cm) and niche (i.e., root, soil)
affected richness and Shannon index we used factorial
analysis of variance (ANOVA) (�niche * depth) or
Kruskal–Wallis tests when datasets did not meet nor-
mality and/or homoscedasticity prerequisites.

Beta-diversity multivariate analyses were inspired
by Anderson and Willis (Anderson & Willis, 2003). In
particular, we used: (i) a principal coordinate analysis
(PCoA) unconstrained ordination (Kruskal, 1964) fol-
lowed by a permutational multivariate analysis of vari-
ance (i.e., PERMANOVA), to explore similarities
between roots and soil samples. (ii) A canonical analy-
sis of principal coordinates (CAP) (Anderson &
Willis, 2003) constrained ordination to display differ-
ences in community structure explained by the factors
in our model and validated with permutation tests to
assess the significance of the constraints, ‘cmdscale’
in vegan R package (Website). We also calculated
adjusted R2 as an unbiased measure of the explained
variance. We fit environmental vectors onto the CAP
ordination with the function ‘envfit’ in vegan. (iii) An
analysis of multivariate dispersion (Anderson
et al., 2006) to test for variance homogeneity among
samples and across sample groups. (iv) A taxon-group
association analysis to assess the degree of preference
and significance of each OTU for a target group in rela-
tion to other groups using function ‘multipatt’ in the
indicspecies R package (De C�aceres et al., 2010) with
the IndVal.g methods that incorporates a correction for
unequal group sizes. This analysis calculates two spe-
cies traits: exclusivity (exclusively present in a habitat)
and fidelity (present in all samples of that habitat) and
an indicator value is calculated based on these traits to
assess the extent to which an OTU is an indicator of a
treatment or a sample group.

We extracted core OTUs (i.e., frequent, more per-
sistent taxa) across depth for each crop and across
crops for each depth following the methodology pro-
posed by Shade and Stopnisek (2019). This approach
aids in the identification of core OTUs that differ
between crops or depth (all taxa that are core in a
group were kept even if not present in other groups).
Briefly, abundance-occupancy distributions were built
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for each crop and depth and core taxa identified as the
set of OTUs that maximize the beta-diversity resolution
(Bray–Curtis similarity) compared to the whole dataset.
To inform about stochastically or deterministically
recruited community members we then fit neutral
models into our OTU distributions to inform about com-
munity assembly recruitment processes (Shade &
Stopnisek, 2019; Sloan et al., 2006). According to the
Neutral Theory, species are ‘neutral’ in the niches they
live in. Individual organisms are identical in birth, death,
dispersal and speciation rates, and they are only lost or
acquired randomly from the source meta-community.
Fitting microbial community composition into a neutral
statistical model, which assumes community assembly
is driven only by stochastic dispersal and drift, will allow
us to delineate the importance of selection and neutral
processes and provide a broad insight into mecha-
nisms generating and maintaining community composi-
tion (Burns et al., 2016; Venkataraman et al., 2015).
Two main coefficients were evaluated in the models:
(i) the coefficient of determination (r2) and represent a
measure of the goodness of fit. It ranges from 0 (no fit)
to 1 (perfect fit) and is key to assess how important
neutral processes are in community structure. (ii) The
estimated migration rate (m) or the probability that a
random loss of an individual in a community is replaced
by dispersal from the meta-community, as opposed to
reproduction within the local community, and therefore
can be considered a measure of dispersal limitation.
The lower the value of m, the greater the dispersal limi-
tation impacts community assembly.

To explore co-occurrence patterns of fungal and
prokaryotic OTUs for each crop and depth, we built
microbial networks of previously selected core OTUs
with the ‘spiec.easi’ function in the SpiecEasi R pack-
age (Kurtz et al., 2015). To obtain a more accurate net-
work modelling and for known statistical and
computational reasons (i.e., rare taxa occurrences can
create spurious correlations) (Barber�an et al., 2012;
Farrer et al., 2019) we built our network on just the core
community members obtained as described above. We
identified network hubs (OTUs that are central, densely
connected with other OTUs in the network) and module
hubs (OTUs more densely connected with module’s
OTUs rather than other OTUs in the network) based on
the ratio between within-module (Zi) and between-
module connectivity (Pi) and as previously shown
(Andrews, 2010; Olesen et al., 2007). We used heat-
maps to visualize the connection between proportions
of positive and negative intra- and inter-kingdom links
(i.e., connections between OTUs), and relative abun-
dances in root-to-root connected OTUs, for each crop
and depth level.

All analyses and figures were generated in R
(R Core Team, 2022) while minimal graphical adjust-
ments to improve figures’ visibility were performed in
Inkscape (Inkscape Project, 2020).

RESULTS

Sequencing results

After demultiplexing, we obtained a total of 14,923,238
forward and 8,204,925 reverse sequence reads for ITS,
and 21,640,158 forward and 19,917,130 reverse
sequence reads for 16S with Phred quality >19, respec-
tively. On average, we generated 38,264 � 20,136 for-
ward and 21,038 � 16,500 reverse sequence reads
per sample for ITS and 55,917 � 33,371 forward and
51,465 � 30,657 reverse 16S sequence reads, respec-
tively. After removing non-fungal OTUs and contami-
nants, including filtering out OTUs in positive and
negative control samples we were left with 5,123,276
ITS (2794 OTUs) and 17,373,582 16 S (13,855 OTUs)
clean sequence reads.

Microbial alpha diversity

In the ITS dataset, Ascomycota were the most abun-
dant phylum (72.9%), followed by Basidiomycota
(10.0%) and the subphyla Mortierellomycotina (1.7%)
and Glomeromycotina (1.7%), while in the 16S dataset,
the most abundant class was Actinobacteria (28.9%),
followed by Alphaproteobacteria (12.3%), Betaproteo-
bacteria (5.7%) and Acidobacteria_Gp16 (5.4%).
Archaea in the Thaumarchaeota (1.1%) and Crenarch-
aeota (<0.1%) phyla were also present but low in
abundance.

We found that soil fungal and prokaryotic OTU rich-
ness strongly decreases with increasing soil depth in all
crops while root communities were less impacted
(Figure 1). The Shannon index increased or stayed the
same for all crops. Factorial ANOVA (Table S1)
showed that niche, depth and their interaction were the
main factors driving alpha diversity metrics across
crops, and demonstrated that depth impacts microbial
richness more strongly than Shannon diversity. In gen-
eral, communities become less diverse (especially in
the soil) and slightly more even (especially in the roots)
with increasing depth for both fungi and prokaryotes.

Microbial beta-diversity

Fungal and prokarayotic communities clustered mainly
by niche (i.e., soil vs. root), depth and ultimately crop,
as displayed in the PCoA ordination graph (Figure 2).
The same trends were detected by PERMANOVA
(i.e., ‘adonis’, permutations [perm.] 9999), which
showed significant differences (p ≤ 0.0001) in commu-
nity structure between roots and soil samples
(i.e., niche factor) accounting about 11% and 26% of
the variation for fungi (Figure 2A) and prokaryotes,
respectively (Figure 2B). Depth was the second
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significant factor in terms of explaining variation affect-
ing microbial communities (7% fungi and 10% prokary-
otes) followed by crop (about 4% fungi and 2%
prokaryotes).

In addition, we detected significant dispersion
(p ≤ 0.0001) around centroids (i.e., ‘betadisper’ and
‘permutest’, perm. 9999) in niche, crop, and depth
samples for fungal (Figure 2C) and prokaryotic
(Figure 2D) communities. Fungal and prokaryotic root
samples showed significantly higher average disper-
sion than soil samples (i.e., higher heterogeneity
between samples), but soils showed a wider distribu-
tion implying there is greater variation between cen-
troids in soil samples compared to roots. Interestingly,
a significant dispersion effect was present between
samples at different crops and depths, with deeper soils
having a higher dispersion and narrower distribution.

For an in-depth understanding of the effects that
crop species and soil depth had on the microbial com-
munities, we analysed root and soil separately with
canonical analysis of principal coordinates (CAP)

(Figure 3) fitted to environmental vectors. In this case,
samples clustered mainly by depth (i.e., CAP1) both in
fungal (Figure 3A,B) and prokaryotic (Figure 3C,D)
communities, but tighter clusters were visible in the soil
compared to the root communities. A separation by
crops (i.e., CAP2) is also detectable in the CAP ordina-
tion, and more visible for fungi where poplar samples
lie further apart than the other crops, compared to the
prokaryotes. Indeed, depth showed the greatest signifi-
cant effect (p ≤ 0.0001) for both fungal and prokaryotic
communities, followed by crop and the interaction
between the two (Table 1). In particular, the variance
explained (i.e., adjusted R2) by depth was higher in the
soil (about 24% for fungi and 50% for prokaryotes)
compared to the roots (about 13% for fungi and 16%
for prokaryotes). The interaction factor (i.e., crop:
depth) explained a low amount of variance in all data-
sets, ranging from about 3% of the soil prokaryotes to
5% of root fungi (Table 1). We found non-significant dis-
persion around centroids (variances) between crops in
all communities, as shown in the box plots of
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Figure 3E–H, representing the distance to centroids
distribution for each sample. However, we found signifi-
cant dispersion (p ≤ 0.0001) around centroids between
samples of different depths for root fungi, soil fungi and
soil prokaryotes, whereas dispersion was not signifi-
cant for crops and depth for soil prokaryotes
(Figure 3G). Sample dispersion decreased with
increasing depth in the roots (i.e., root communities
became more similar to each other with increased
depth), but stayed constant or increased in soils
(i.e., communities were more different from each other
in deeper soils). Fitted environmental vectors showed
that soil microbial communities towards the surface cor-
related with higher total carbon (C%), nitrogen (N%),
phosphorus (PO4

3�), potassium (K+) and silt, whereas
communities of deeper soils correlated with increased
pH and sand content. Interestingly, PO4

3� fit signifi-
cantly into fungal ordinations, while calcium (Ca2+) and
magnesium (Mg2+) only fit into the prokaryotic ordina-
tions, with higher levels towards the soil surface.

Chemistry data alone indicate that soil N and C
%, as well as the amount of K+, (p ≤ 0.05)

decreased significantly with increasing depth. Soil
micronutrients (i.e., Ca2+ and Mg) accumulate at
median soil depths. Soil texture changed with depth,
with % sand increasing considerably in deeper soils.
An inverse pattern was seen for silt, and was statis-
tically significant (p ≤ 0.05) in prairie and switch-
grass but not in poplar. In addition, strong positive
correlations were found between Ca2+ and Mg2+

contents and cation exchange capacity (CEC)
values (Figure S3).

The adjusted R2 form CAP analysis performed on
individual groups of samples (Figure 4A) clearly
showed the effect of depth on community structure
was generally higher for soils than roots, particularly
for prokaryotes. Depth affected poplar soil fungi the
most and root fungi the least. On the other hand, the
effect of crop was higher in root than in soil communi-
ties and generally higher close to the surface with
respect to deeper soils in the fungal communities
(Figure 4B). For example, the highest effect of crop
was detected for fungal roots communities at
10–25 cm.
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Neutral models, core taxa and microbial
networks

Neutral processes could help drive community assem-
bly and maintenance. To assess the importance of neu-
tral and non-neutral processes, for example, microbial
interactions or dispersal, we fit our data into a neutral

assembly model (Figure 5A,B, Figure S4). We found
the proportion of neutral, above, and below model pre-
diction OTUs were similar across depths and in the dif-
ferent crops (Figure S5). However, when just the core
fungal and prokaryotic OTUs (defined here as the mini-
mum OTU set that preserve the same community struc-
ture) (Shade and Stopnisek, 2019) were selected
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F I GURE 3 Microbiome community structure shown by constrained analysis of principal coordinates (CAP) and distance to sample group
centroid box plots. A, root fungi; B, soil fungi; C, root prokaryotes; D, soil prokaryotes. Root samples are visualized as open, while soil samples
as solid points. Circles represent poplar, triangle represents switchgrass, and square represents prairie samples. Colours represent different
levels of depth, shape represents crops, open points represent roots, and closed (i.e., filled) points represent soil. Significant environmental
vector (‘envfit’, permutations [perm.] = 9999, p ≤ 0.05) were plotted in the ordination graph (see Experimental Procedures section for units). Box
plots of sample dispersion around centroids for crop and depth centroids (E–H) are also shown underneath each ordination graph. Letters
represent significant differences (p ≤ 0.0001) in average dispersion from centroids (‘permutest,’ perm. = 9999). Stars represent outlier samples.

TAB LE 1 Constrained analysis of principal coordinates (CAP) of soil and roots, fungal and prokaryotic, communities

Group Factor

CAP

F/t Adjusted R 2

Fungi–roots Crop 4.0162(2,57)*** 0.0931

Depth 3.8513(3,56)*** 0.1271

Depth:Crop 1.6413(6,48)*** 0.0517

Fungi–soil Crop 3.3111(2,57)*** 0.0728

Depth 7.1076(3,56)*** 0.2375

Prokaryotes–roots Crop 4.0065(2,57)*** 0.0930

Depth 4.6826(3,56)*** 0.1585

Depth:Crop 1.4213(6,48)** 0.0337

Prokaryotes–soil Crop 1.2017(2,57) 0.0068

Depth 20.358(3,56)*** 0.4961

Depth:Crop 1.6466(6,48)*** 0.0321

Note: Partial model effect sizes (F-ratio) and t-statistic (t) were based on permutational ANOVA with 9999 permutations. Adjusted R2 values represent a measure of
explained variance (%). Only significant partial models from the full model crop + depth + crop:Depth are shown. Signif. Codes: “0.001” (***), “0.01” (**), “” (not
significant).
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separately, some interesting trends were found. In the
fungal communities, neutral OTUs (i.e., OTUs driven by
drift) were more abundant in deeper soils
(Figure 5C, D, E, G). In surface soils, OTUs above
(i.e., OTUs selected or maintained by the host) or
below (i.e., these are OTUs selected against by the
host, or dispersal limited) the model predictions were
more abundant (Figure 5A, C, E), particularly in poplar
and switchgrass. To detect if the proportions of core
OTUs classified by the neutral models were grouped
according to crop or depth, we performed a PCA and
significant differences between groups tested with
PERMANOVA. The proportion of neutral, above and
below prediction fungal OTUs statistically significantly
separate by depth, which explained about 53% of varia-
tion in data. In the prokaryotic communities, we can
clearly see a higher number of OTUs below the model
prediction in deeper soils and a lower number of neutral
OTUs (Figure 5B, D, G), especially in poplar and
switchgrass.

In general, microbial patterns in prairie systems
were less distinguished, perhaps due to the diverse
nature of prairies in terms of plant species present and
their associated microbiomes. Regarding the neutral
models goodness of fit (r2), the models based on the
prokaryotic communities showed on average a higher
fit compared to the fungal ones (Figure S4) implying a
higher importance of neutral processes in structuring
these communities. Neutral fit was also generally lower
in deeper soil samples compared to the surface in both
communities. In addition, the migration rate (m) was on
average higher in soil samples closer to the surface
and lower in deeper soils, for both fungi and prokary-
otes. Low m values suggest higher influence of dis-
persal limitation in community assembly (Figure 5F, H).
Again, we used PCA and PERMANOVA to detect sig-
nificant differences in r2 and m rate between crops or

depths. We found that only in the prokaryotic communi-
ties, r2 and m significantly separated by depth, explain-
ing about 66% of variation in the data, indicated that
neutral processes have greater consequences for com-
munity assembly in deeper samples compared to more
shallow ones.

Since the core taxa appear to follow specific trends
or relationships across depths (i.e., 0, 25, 50 and
100 cm) and to particular plant hosts, we used these
taxa to explore covariance networks (Figure 6A–C) to
identify potential interactions between the members of
the communities. Microbial networks showed quantita-
tive and qualitative shifts in diversity across soil depth
and crop species. The number of Ascomycota fungal
OTUs decreased with depth while bacterial, Actinobac-
teriota and Proteobacteria increased with depth. This
was most pronounced in poplar and prairie systems,
but not in switchgrass, where samples at 25 and 50 cm
depth were the most diverse (Figure 6D). Bacterial
OTUs within the Actinobacteriota, Proteobacteria,
Chloroflexi and fungi in Ascomycota and Chytridiomy-
cota were defined as network hubs (Table S2). Interest-
ingly, only a single fungal hub was present in poplar,
and a few in switchgrass—which was comprised exclu-
sively by bacteria, as reported by the number within the
bubbles in Figure 6D.

Positive and negative intra- and inter-kingdom links
showed that fungi–fungi links decreased with increas-
ing depth in all crops, while bacteria–bacteria links
increased but stayed more or less the same in switch-
grass (Figure 7A). Fungi–bacteria links decreased with
depth in poplar but not in prairie and switchgrass.
Regarding network complexity, several network proper-
ties increased with depth until 50 cm, and then
decreased (Table S3).

When we look at the abundance of positive and
negative intra- and inter-kingdom root-to-root links

Switchgrass

Prairie

Poplar

0.0 0.1 0.2 0.3 0.4 0.5

A d j .R
2

Effect of depth across crops(A)

50-100cm

25-50cm

10-25cm

0-10cm

0.0 0.1 0.2 0.3 0.4 0.5

A d j .R
2

Soil Fungi
Root Fungi
Soil Prokaryotes
Root Prokaryotes

Effect of crop across depths(B)

F I GURE 4 Effect of depth and crop species on root and soil microbiomes. Each point represents the adjusted R 2 as a measure of the effect
of depth (A) across different crops, or the effect of crop (B) at different soil depths. R 2 values were calculated using CAP (constrained analysis of
principal coordinates) on dataset divided by crop (A), for each niche and organism group (i.e., soil fungi, root fungi, soil prokaryotes, root
prokaryotes), with the model: Capscale(otu � depth, dist = “bray”), and the dataset divided by depth (B) for each niche, with the model:
Capscale(otu � crop, dist = “bray”). All CAP models were tested for significance using permutational ANOVA (“permutest”,
permutations = 9999, p ≤ 0.05) before inclusion in the plot.
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(i.e., the higher the abundance the more the links are
between root OTUs), we discovered that root-to-root
and fungi–fungi links decrease with increased depth in
all crops (in deeper soil there are more soil-to-root links
compared to the surface), except for switchgrass were

differential patterns were not very clear (Figure S7).
Root-to-root bacteria–bacteria links increase with
increased depth (in deeper soil there are more root-to-
root links compared to the surface). Positive and nega-
tive root-to-root fungi–bacteria links decrease in Poplar,
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while seems to increase or not having a defined trend
in prairie and switchgrass (Figure S7). Interestingly, the
highest positive fungi–fungi root-to-root abundance
was detected for prairie at 0–10 cm, while the highest
bacteria–bacteria abundance for poplar at 50–100 cm.
At phylum level, there was an increase of root-to-root
links between OTUs within Proteobacteria and Actino-
bacteriota, and a decrease within Ascomycota, for all
crops (Figures S8, S9).

Five network properties were able to statistically dis-
criminate (p ≤ 0.05) between the networks across

depth but not across crops (Figure 7B). Modularity and
the number of module hubs were higher in deeper soils.
Average module size and average degree were corre-
lated one another and together with negative links
higher in soils at 25–50 cm depth (Figure 7B).

DISCUSSION

In this study, we assessed the major forces that regu-
late the dynamics of soil microbial communities in
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plant–soil environments along a vertical niche below-
ground. Leveraging long-term field-scale replicated
experiments, we were able to analyse several aspects
of these plant-associated microbiomes along a 1-m
soil-depth gradient for poplar, prairie, and switchgrass
biofuel crops in replicated plots. We demonstrate a sig-
nificant vertical niche in soil and root compartments,
and consider the drivers and consequences of this ver-
tical diversity gradient in roots and bulk soils.

Differences between root and soil
microbiomes

As documented in other studies, we report that micro-
bial communities in roots are less diverse and quite dis-
tinct from those in bulk soil (Goldmann et al., 2016;
L�opez-Angulo et al., 2020). We also found microbial
communities are variably distributed at a fine scale.
Yet, alpha diversity in roots and soils follow different
trends along the sampled depth gradient. Soil carbon,
together with pH and nitrogen, appear to be the most
important factors explaining microbial biomass and
functional diversity in soil ecosystems (Fierer &
Jackson, 2006; Fierer, 2017; Bastida et al., 2021). As
previously suggested (Celestina et al., 2019; Mundra
et al., 2021; Yokota et al., 2022), greater carbon stocks
and nutrient content of surface soils may account for
significantly greater microbial diversity in surface soils,
as we found across all bioenergy crops. Aboveground
litter contributes diverse organic matter to mineral soils,
but these inputs decrease significantly with increasing
soil depth where carbon from roots becomes increas-
ingly important in driving heterotrophic soil food webs.
Greater nutrient, oxygen and water availability, as well
as higher microclimatic variation may also contribute to
more ecological niches in surface soils compared to
deeper soil, thus, enabling the support of greater micro-
bial diversity (Mundra et al., 2021).

The belowground vertical niche

While drastic differentiation within bacterial and fungal
communities are known to exist between organic and
mineral soil horizons (Peršoh et al., 2018), our study
focused on soil below the organic horizon and also
found significant differentiation. Previously, ectomycor-
rhizal fungi were shown to differentiate along a vertical
niche (Dickie et al., 2002). Although poplar was the only
ectomycorrhizal host sampled here, we expected that
other microbial guilds would follow similar patterns of
differentiation, and this is what we found. Decreasing
microbial species richness with increasing soil depth is
well documented in soil microbial ecology studies
across different ecosystems (Zhang et al., 2017; Jiao
et al., 2018; Hao et al., 2020; Frey et al., 2021). It has

been also shown that variable gradients of carbon,
nitrogen, pH and oxygen usually correlate with declines
in microbial biomass and diversity (Fierer et al., 2003;
Schlatter et al., 2018; Ren et al., 2022). For instance,
the abundance and diversity of bacterial communities
in a permafrost zone were both found to decrease to a
70-cm depth, and abiotic factors, such as soil tempera-
ture, carbon, nitrogen, phosphorus, moisture and clay
content, respectively, were the most significant factors
driving bacterial community diversity (Ren et al., 2022).
Yet, these factors often co-vary with depth, making it
challenging to disentangle the main drivers without
more controlled studies.

Core microbiome

Taxa that are consistent across samples and datasets
constitute the core microbiome, and can be defined by
specific abundance-occupancy distributions (Shade
and Stopnisek, 2019). Core microbiome members are
hypothesized to be functionally significant to their
niche. To better understand the ecological and poten-
tially functional relationships shared between soil
microbes and plant rhizospheres, we identified core
microbiome members across niches and depths. We fit
these microbial distributions into a neural model to pre-
dict the importance of selection and drift in organizing
these communities. Together, our data showed the fun-
gal communities of sampled bioenergy crops in the sur-
face soil layers (e.g., 0–25 cm) have a higher number
of core OTUs that are above or below the neutral model
predictions, while neutral OTUs are higher in the deep
layers (50–100 cm). This is in contrast with what was
found by Powell et al. who investigated the role of
deterministic and stochastic processes in vertical soil
horizons at 183 sites across Scotland, and measured
high stochasticity in fungal communities on the surface
soils (Powell et al., 2015). However, Powell et al. ana-
lysed natural sites to a depth of 75 cm, rather than agri-
cultural fields, which may explain the differences in the
results.

In our analysis, most of the fungi on the soil sur-
face undergo selective processes, mediated by the
host, or by the microbes themselves, and finally
occupy and maintain a specific occupied niche—
coexistence through niche differentiation. In contrast,
in deeper soils, we find more fungi that follow a model
of passive dispersal and ecological drift. This phe-
nomenon causes species abundances to randomly
vary, reducing diversity within communities and
increasing differences between communities. In
harsh environments, such as deeper soils where
resources are limited, an equalizing mechanism that
reduces differences in relative fitness among species
has also been proposed to maintain species coexis-
tence (Kim & Ohr, 2020).
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Interestingly, we saw a different pattern in the pro-
karyotic communities. A higher number of OTUs below
the model prediction was observed in the deeper soil
layers while the number of neutral OTUs decreased
with increasing soil depth. For instance, neutral, above-,
and below-prediction core OTUs proportions clustered
significantly by depth in fungal communities, but not in
the prokaryotic communities. Depth was a statistically
significant factor that influenced model fit and migration
rate with decreased depth for the core prokaryotic com-
munities. We speculate that the unicellular nature of
prokaryotic organisms, including traits of motility, and
dispersal via soil hydrology, differentiates the macroe-
cology of bacteria from that of filamentous fungi.
Indeed, It has been shown that the soil water content
correlates with the richness of soil microbial communi-
ties (Jonas et al., 2015; Aung et al., 2018) and that
motility impacts root colonization by bacteria (Knights
et al., 2021). It is also important to consider that mois-
ture content and temperature are generally more stable
in deeper soils compared to surface soils.

Microbial networks

Microbial networks are a way to statistically assess the
strength of interactions and linkages between taxa
within a dataset. We assessed microbial networks
based on identified core microbiomes and found that
deeper soils consist of more dense networks that have
higher connectivity. A similar approach was recently
used in grassland ecosystems (Upton et al., 2020),
who found that fungal and bacterial networks of native
plants were more connected at lower soil depths, even
if there were fewer nodes. Higher connectivity in deeper
soil may be due to the relative importance that root C
inputs have on microbial activity at deeper rooting
depths. In addition, since deeper soil depths harboured
less diverse fungal communities, we expected to see
larger networks as more OTUs were shared between
samples across niches and depths. In all crops, we
detected the general trend of decreasing fungal and
increasing prokaryotic core OTUs with increasing depth
in all crops. Our results correlate with what obtained by
Yao et al. used phospholipid fatty acids (PLFA) analy-
sis to investigate factors influencing soil microbial com-
munities in temperate grasslands of northern China
(Yao et al., 2018). They also found that fungi were more
abundant in the surface while prokaryotes in deeper
soils, highlighting another fundamental difference
between patterns of fungal and bacterial community
diversity.

Results from our study show that fungi–fungi links
decreased with increasing depth in all crops while
bacteria–bacteria links increased with depth, or
remained fairly constant in the case of switchgrass.
The diversity of core fungi in the roots decreased with

depth, while that of bacteria increased. Microbial net-
work modularity, number of hubs, average module size,
average degree and negative links were statistically
significantly separated by depth, with more modules
(and more module hubs) in deeper soil implying they
may have greater resistance to environmental changes
compared to communities in upper soil layers. These
results contrast with those found by Mundra et al.
(2021), where upper mineral soil harboured a higher
modularity and also more inter-kingdom links compared
to the above organic layers or deeper mineral layers.
Nonetheless, the differential partitioning of core fungal
and bacterial networks with soil depth across all three
bioenergy species highlights the important contribution
of plant communities on deep soil microbial communi-
ties, whose functions are critical to the sustainability of
these bioenergy cropping systems.

CONCLUSIONS

Microbial communities are a key component of any
agricultural system and their role in biogeochemical
cycling is well known. However, the extent that these
communities vary in diversity and structure with soil
depth, and their relationships with the host, are less
studied. In this study, we found that soil depth has a
major impact on soil and root microbiomes, with soil
microbial diversity correlating with carbon availability
and decreasing with soil depth. Communities in the
deeper soil were less diverse, but were also less het-
erogeneous in the roots and more heterogeneous in
the soils. In deeper soils, roots appear to be a major
factor generating niche breadth for microbial life to per-
sist and function, further impacting soil structure and
functioning. Stochastic process described the prokary-
otic communities more accurately than they did fungal
communities, and there was a significantly different
model fit for fungi and bacteria across this vertical soil
niche. Overall, neutral fungal core taxa were higher in
deeper soils, which were dominated by dispersal-
limited prokaryotes, underlying the biological, ecologi-
cal and morphological differences present in these
Kingdoms. Co-occurrence networks were more con-
nected and modular in deeper soils, indicating a higher
rate of interdependence in more confined oligotrophic
soil environments. Taken together, we provided a novel
understanding of soil microbiomes and their interac-
tions in connection to different bioenergy hosts and
cropping systems. This knowledge is key to leveraging
plant microbiomes for the many functions they provide
in the environment to support cleaner, and more sus-
tainable agricultural and energy economies.
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