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Abstract

Real-world evidence used for regulatory, payer, and clinical decision-making requires

principled epidemiology in design and analysis, applying methods to minimize con-

founding given the lack of randomization. One technique to deal with potential con-

founding is propensity score (PS) analysis, which allows for the adjustment for

measured preexposure covariates. Since its first publication in 2009, the high-

dimensional propensity score (hdPS) method has emerged as an approach that

extends traditional PS covariate selection to include large numbers of covariates that

may reduce confounding bias in the analysis of healthcare databases. hdPS is an

automated, data-driven analytic approach for covariate selection that empirically

identifies preexposure variables and proxies to include in the PS model. This article

provides an overview of the hdPS approach and recommendations on the planning,

implementation, and reporting of hdPS used for causal treatment-effect estimations

in longitudinal healthcare databases. We supply a checklist with key considerations

as a supportive decision tool to aid investigators in the implementation and transpar-

ent reporting of hdPS techniques, and to aid decision-makers unfamiliar with hdPS in

the understanding and interpretation of studies employing this approach. This article

is endorsed by the International Society for Pharmacoepidemiology.
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Key Points

• The high-dimensional propensity score (hdPS) is an automated, data-driven analytic approach

for covariate selection that empirically identifies pre-exposure variables and proxies to

include in a propensity score model.

Received: 27 April 2022 Revised: 14 September 2022 Accepted: 17 October 2022

DOI: 10.1002/pds.5566

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons Ltd.

Pharmacoepidemiol Drug Saf. 2023;32:93–106. wileyonlinelibrary.com/journal/pds 93

https://orcid.org/0000-0003-4369-7381
https://orcid.org/0000-0003-0730-2645
https://orcid.org/0000-0002-5981-8443
https://orcid.org/0000-0001-9314-5679
https://orcid.org/0000-0003-2575-467X
https://orcid.org/0000-0002-5160-0810
mailto:jrassen@post.harvard.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/pds


• This paper provides an overview of the hdPS approach, recommendations on the planning,

implementation, and reporting of hdPS, and a checklist with key considerations in the use

of hdPS.

• An hdPS implementation involves careful consideration of data dimensions, identification of

empirical variables and proxies, prioritization and selection of empirically identified variables,

and estimating the propensity score.

• To promote reproducibility and transparency of studies using real-world data, reporting doc-

umentation should include all key decisions.

1 | INTRODUCTION

Comparative effectiveness and safety studies using real-world data

are being adopted for regulatory, payer, and clinical decision-making.1

However, one major criticism of these nonrandomized studies is the

potential presence of unmeasured confounding, which can result in

biased estimates of treatment effects. Real-world evidence (RWE)

used for high-stakes decision-making must follow the principles of

epidemiology in design and analysis,2 and apply methods to minimize

confounding given the lack of randomization.3 Traditional propensity

score (PS) analysis is a commonly used technique. As used in pharma-

coepidemiology, a PS is the estimated probability that a patient will be

treated with one drug versus an alternative, and summarizes a range

of confounders; using a PS, investigators can adjust for a large number

of measured preexposure covariates.4 If all confounders are adjusted

for, and the confounding does not vary after exposure, then the treat-

ment effect estimate should be unbiased.

If some confounders are not able to be accounted for directly, in a

PS or otherwise, the concept of proxy measures may help, particularly

when working with secondary data that were not generated to answer a

specific research question.5 Proxy measure adjustment does not require

investigators to measure confounders directly and exactly, but rather to

measure observable markers correlated with these confounders. For

example, frailty is a known confounder in studies examining interventions'

effect on mortality in elderly populations, but frailty itself is difficult to

measure in claims data. To capture frailty, investigators can use proxies

such as use of a wheelchair or oxygen canisters, and use those proxies

either directly or as part of a more complex algorithm.6

Over the last decade, the high-dimensional propensity score (hdPS)

method has emerged as an approach that builds on the idea of large-

scale proxy measurements of unmeasured confounders for improved

confounding adjustment in the analysis of healthcare databases. First

introduced in 2009,5 hdPS is an automated, data-driven analytic

approach for covariate selection that empirically identifies preexposure

variables (“features” in data science parlance) to include in the PS

model. hdPS confers several attractive advantages versus manual identi-

fication of confounders and proxies, including data source indepen-

dence, data-optimized covariate selection, and the ability to be coupled

with traditional PS approaches.7 The method has been shown to yield

similar results as investigator-driven approaches.7

Existing guidance documents and user guides touch upon the use of

hdPS in pharmacoepidemiology and comparative effectiveness research.8,9

However, we currently lack best practice guidelines explaining when and

how to implement hdPS, and we lack guidance to support decision-makers

in fully understanding this method where it has been applied.

The paper provides a comprehensive guide on the planning, imple-

mentation, and reporting of hdPS approaches for causal treatment effect

estimations using longitudinal healthcare databases. We supply a checklist

with key considerations as a supportive decision tool to aid investigators

in the implementation and transparent reporting of hdPS techniques, and

to aid decision-makers unfamiliar with hdPS in the understanding and

interpretation of studies employing this approach. This article is endorsed

by the International Society for Pharmacoepidemiology.

2 | PREIMPLEMENTATION STUDY
PLANNING

2.1 | Basic study design

The approach to designing and conducting a study that employs

hdPS does not vary from other pharmacoepidemiologic analyses:

core activities include developing a protocol that details data

sources, study design, variable measurements, and a data analysis

plan, executing the study according to best practices, and docu-

menting the process following accepted guidelines.10,11 The guide-

lines for Good Pharmacoepidemiology Practice and ENCePP

methodological standards recommend the development of a proto-

col prior to conducting a study and implementing the analysis,8,11

and this protocol should include known or suspected confounders

that should be accounted for. hdPS can be a useful addition should

the investigator believe that not all of the confounders are known

a priori and/or can be suitably measured. The choice to use hdPS is

no different than any other analytic technique in that it its ratio-

nale for use and implementation details should be shared as part of

the study design.

2.2 | Data sources

One of the benefits of employing hdPS is the ability to leverage

comprehensive longitudinal claims data, and/or electronic health

records (EHRs) with deep clinical information, to adjust for con-

founding. The hdPS approach is data source-independent in that the
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hdPS algorithm operates without consideration of the semantics

(clinical meaning) of coded or uncoded information; as such, any

data source, regardless of data structure or coding systems, can be

utilized.7 While the hdPS approach was first developed using US-

based administrative claims data, the method has been used in geo-

graphically diverse datasets, such as UK EHRs,12,13 Danish registry

data,14 French claims data,15–17 German claims data,18 and Japanese

claims data.19

Being data source independent, however, does not imply that

knowledge of the data source is not important: even with automated

variable selection, one should have familiarity with the data source

and content of the data to ensure optimal identification of variables

to manually include or exclude, as well as for parameter specification

for automated covariate identification.

Knowledge of the structure of underlying coding systems is

particularly important, including how codes are utilized and

whether hierarchies among codes may affect interpretation. For

example, US administrative claims generally have longitudinal data

with inpatient and outpatient diagnoses coded with the Interna-

tional Classification of Diseases, 10th Revision, Clinical Modifica-

tion (ICD-10-CM) coding system, which is hierarchical. By

contrast, UK EHRs using their National Health System's READ

TABLE 1 hdPS checklist

Guidance Key concepts & considerations

Study planning, protocol and statistical analysis plan (SAP) development, and hdPS implementation

Specify parameters used for identifying

and selecting empirically identified

covariates in the statistical analysis

plan:

• Select data dimensions

• Identify empirical variables and proxies

• Prioritize and select empirical variables

• Variables automatically created from healthcare databases are called “empirically-identified”
variables

• Before the analysis, prespecify and decide how covariates will be identified, ranked, and

selected

• A data dimension is a type of patient data—such as inpatient events, outpatient events, drug

fills, or lab tests—recorded in healthcare data

• Parameters to specify with the hdPS approach include data dimensions, coding systems, level

of hierarchy for the codes, number of variables to include, ranking method

• Consider the unique characteristics of each data source carefully when specifying parameters,

such as data dimensions' capture of information and their coding systems

Define and identify investigator-specified

variables

• Document known important confounders in the study protocol

• Recommend including patient characteristics such as age, sex, race, and important health

service utilization variables such as, number of visits and number of prescriptions filled

Specify and exclude instrumental

variables and colliders from the hdPS

• Instrumental variables and colliders are often excluded from the hdPS to avoid bias

amplification

• Variables noted by the investigator will be removed from the pool of covariates that the hdPS

prioritizes

Document the method and software

environment used for estimating the PS

and how the PS will be used in the

study in the protocol and statistical

analysis plan.

• Estimate the PS

• Estimate the treatment effect

• An hdPS functions similarly to a traditional PS

• As with a traditional PS, logistic regression is commonly used for estimating the hdPS

• Traditional approaches (e.g., matching, weighing, and stratification) apply to hdPS as well and

should be selected a priori

Document planned diagnostics to be

reported along with actions to take

should anomalies be detected

• Diagnostics to be employed include inspection of selected variables by creating a “Table 1” of
baseline patient characteristics and any acceptable thresholds for summary measures, for

example, maximum absolute standardized mean differences

• Other output often presented includes PS distribution plots and sequential additional of

variable plots

Prespecify any other sensitivity analysis

being conducted

• A priori, investigators may vary certain parameters to determine the robustness of the results

or test assumptions

• Note specifically any post hoc sensitivity analyses conducted over the course of the study

Reporting and transparency

Present diagnostic tables and graphs to

show successful confounding

adjustment and hdPS performance

• Construct a “Table 1” showing baseline patient characteristics of patients between two

treatment groups, using a summary measure such as the standardized mean difference

• Plotting PS distributions and standardized differences, or showing the sequential additional of

prioritized covariates are useful visualizations to demonstrate hdPS performance

Consider completing Appendix Table 3F

from the STaRT-RWE framework to

specify parameters used to identify and

select empirically derived covariates to

ensure reproducibility and transparency

• STaRT-RWE structured templates aid in the overall planning and reporting of study methods

• Supplemental Table 3F from STaRT-RWE recommends specifying key parameters including

algorithm for covariate definition, covariate assessment period, code types, and diagnosis

positions

• If feasible, provide a detailed list of variables along with interpretable descriptions in a table in

the supplemental appendix to aid transparency of the hdPS method
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Codes, are less structured, have varying frequency of recorded

data, and have lower granularity.13 Even among countries that use

the same coding systems—ICD-10 codes are used in many coun-

tries worldwide—the way that codes are recorded may not be

directly comparable. As an example, while US claims data typically

include diagnosis and procedure codes from both inpatient and

outpatient settings, the Nordic healthcare system does not cap-

ture codes observed in primary care.14 Understanding the level of

data capture, data granularity, and completeness of recording is

critical: while the hdPS approach can extract all likely confounders

in virtually any data source, it cannot overcome an inherent lack

of information.

2.2.1 | hdPS implementation steps

The following section discusses implementation of the hdPS algo-

rithm, as applied to a specific study question and in specifically

selected fit-for-purpose data sources. While choices of parameters

are discussed through this section, a summarized checklist can be

found in Table 1.

2.3 | Selection of data dimensions

hdPS variable identification is built upon identifying codes present in one

or more data dimensions. A data dimension is a type of patient data—such

as inpatient events, outpatient events, drug fills, or lab tests—recorded in

healthcare data (Figure 1). Rather than looking at all data taken together,

hdPS considers data dimensions one at a time to avoid mixing measure-

ments of heterogeneous meaning and quality. Within each dimension,

variables are created from the presence of codes in patient records, such

as diagnosis codes or drug identifiers; for each of often several thousand

codes, patients are noted to have the code present or not present, thus

creating a high-dimensional variable space. Each dimension will have an

associated coding system, such as ICD-10-CM codes for inpatient proce-

dures, Current Procedural Terminology (CPT) codes for outpatient

procedures, and National Drug Codes or generic drug names for outpa-

tient pharmacy drug dispensing.

When coding systems are hierarchical, a decision must be made

as to what level of the hierarchy to consider. Generally speaking, the

lowest level of granularity (highest level of specificity) may be too

granular for hdPS, as the prevalence of any given code will tend to be

low. Selecting a level that gives an appropriate level of clinical context

without too much detail will be most effective. For example, ICD-

10-CM code E11.3 (Type 2 diabetes mellitus with ophthalmic compli-

cations) may provide sufficient confounding information as opposed

to a code deeper in the hierarchy, such as E11.321 (Type 2 diabetes

mellitus with mild nonproliferative diabetic retinopathy with macular

edema) or even E11.3211 (as above, but left eye specifically).

To extract additional information from the presence of codes,

codes can be further classified by frequency prior to exposure (occur-

ring once, sporadically, or frequently). Extensions to hdPS have also

considered temporality relative to exposure (proximal to exposure,

evenly distributed, and distal to start) (Figure 1).7 With the codes and

the variations considered, a typical hdPS analysis may consider thou-

sands of variables for each patient.

Table 2 contains examples of data dimensions used in various

data sources in North America, Europe, and Japan. Typical data

dimensions specified in US claims data are inpatient and outpatient

diagnostic and procedures and drug dispensing. However, other data

dimensions such as staging and biomarker information for an oncol-

ogy study may be specified as needed for specific study questions, as

available in specific data sources.

2.4 | Identification of empirical variables and
proxies

The hdPS algorithm begins with identification and measurement of

variables and proxies (Figure 2, Step 1).5,20 All variables automatically

created from healthcare databases are called “empirically-identified”
variables, which contrast with more traditional “investigator-speci-
fied” variables. All of these variables, each a potential confounding

Inpatient diagnoses

Outpatient diagnoses

Inpatient procedures

Outpatient procedures

Drug dispensing

Laboratory test results

Others

Unstructured text notes

Once

Sporadic

Frequent

Proximal to exposure

Evenly distributed

Distal to exposure start

Data dimension Intensity attribute Temporality attribute

S
tr

u
c
tu

re
d

 h
e
a
lt

h
 c

a
re
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a
ta

RxDx

F IGURE 1 Classification of codes by
data dimensions, frequency, and
temporality. Adapted from Schneeweiss,
Clin Epidemiol. 2018.
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factor, are identified during a covariate assessment window, usually

defined as the time period covering the assessment of baseline

patient covariates and prior to study entry (index date) (Figure S1).25

Typically, measurement of nontime-varying factors after index date

would lead to bias by adjustment for intermediates; whether to mea-

sure factors on the index date itself is a study-specific choice.

The hdPS algorithm considers distinct codes as recorded in each

dimension—without needing to understand their specific meaning—

and turns these codes into dichotomous variables. Codes are consid-

ered as yes/no values indicating the presence of each code during the

covariate assessment window,5 and are ranked according to preva-

lence within the dimension (Figure 2, Step 2). Because the variable-

generating algorithm is agnostic to the semantics of each feature, it

can therefore be applied to almost any structured or unstructured

data source and coding systems.7

The hdPS originally developed by Schneeweiss et al.5 suggested

considering the 200 most prevalent codes in each data dimension.

There is debate as to the optimal maximum number of most prevalent

codes to specify. In practice, going beyond 100 prevalent codes likely

makes little difference, depending on the data source and data type.

In Scandinavian data sources with less rich data than those in for

example, US claims data, Hallas and Pottegård14 showed that going

above 100 covariates per dimension (200 total covariates in their

case) demonstrated no additional improvement; the additional covari-

ates added were false for almost all study individuals. Schuster et al.26

also explicitly omitted codes with very low prevalence or very infre-

quent occurrence, and it has been argued that the prevalence filter

may not be necessary. At a number that's sufficiently large, the pre-

cise choice of n may not strongly impact study results.

Once the n most prevalent codes in each data dimension are

identified, the algorithm creates three binary intensity variables for

each code, indicating at least one occurrence of the code over the

covariate assessment window, sporadic occurrences of the code, and

many occurrences of the code (Figures 1 and 2, Step 3).5

The high number of codes considered leads to the high dimen-

sionality of the algorithm. A typical example with five data dimensions

(inpatient diagnoses, inpatient procedures, outpatient diagnoses, out-

patient procedures, pharmacy dispensing) yields up to 3000 binary

variables per patient (five data dimensions * n = 200 prevalent codes

per code dimension * three levels of frequency per code). Additional

dimensions, such as lab test results, biomarker status, or words or

phrases in free text notes, or more variables in each dimension, would

lead to substantially larger numbers of candidate variables.

2.5 | Prioritization and selection of empirical
variables

Successful confounding adjustment with PSs controls for all risk fac-

tors associated with the outcome even if they are seemingly unrelated

• For pre-specified covariates, identify demographic information    
(e.g., age, sex) and investigator-defined covariates. Save for Step 6. 
• For empirical covariates, define p number of data dimensions and 
the covariate assessment window.

Assess code prevalence

Assess code intensity

• Sort codes by prevalence within each data dimension.
• Identify n number of most prevalent codes.
• Specify how codes should be treated (e.g., code level).

• Classify code occurrence: once, sporadic, or frequent.
• Create an indicator variable for each patient.

Prioritize covariates
• Calculate bias for each covariate (e.g., Bross formula).
• Rank covariates by this potential bias.

Select covariates
• Select top k number of empirical covariates with high bias ranking.
• Consider machine learning approaches.

Estimate PS
• Enter empirical covariates into a PS model, including pre-specified 
covariates.
• Estimate PS using multivariate logistic regression.

Use hdPS
• Use traditional PS methods (e.g., PS-matching, stratification, 
inverse probability weighting).

a b c

a b c

a b c

c a b> >

c a b

Causal
treatment effect

estimation

Identify covariates
Covariate

identification

Covariate
prioritization

1

2

3

4

5

6

7

F IGURE 2 Overview of hdPS
approach. The main phases of
covariate adjustment with hdPS
are (A) covariate identification,
(B) covariate prioritization, and
(C) causal treatment effect
estimation, with specific steps
1 through 6 automated by the
hdPS algorithm. hdPS, high-

dimensional propensity score; PS,
propensity score.
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to treatment choice or weakly associated with the outcome of

interest.27–29 One problem with a high number of risk factors in a PS

model, however, is the practical challenge of estimating patients' PSs.

For example, including all 3000 variables from the above example

without prioritization or selection is likely unfeasible with standard

logistic regression. Including too many variables would also lead to

inefficiencies due to collinearity and possible bias amplification by

including instrumental variables (IVs, variables associated with expo-

sure but not associated with outcome, more below).29 Therefore,

hdPS uses a heuristic process to determine which of the variables

appear most important to include in the PS model.

The basic hdPS algorithm reduces the large number of candidate

covariates by prioritizing covariates using a scoring algorithm and

selecting covariates for inclusion into the PS the k of those that score

highest (Figure 2, Steps 4 and 5). Schneeweiss et al.5 noted that

k = 500 compared with k = 200 covariates yielded little change to

the effect estimate. Likewise, in an analysis using German statutory

health insurance data, the authors noticed an insubstantial change in

results when varying the number of covariates from k = 500 to

k = 100, 200, and 1000 covariates.30

A traditional PS variable selection algorithm would prioritize vari-

ables according to their association with exposure (RRCE). This may

not work with hdPS, however, because as the candidate variables are

empirically identified proxies as opposed to a priori specified con-

founders, the pool of candidates may contain both confounders and

IVs. Alternatively, a scoring algorithm prioritizing variables by their

outcome association (RRCD) may not overlook variables that are

important predictors of exposure (the focus of PS estimation), though

with that said, debate is ongoing on the utility of the outcome ranking

method.30 In most cases, a combination of the two is used: the origi-

nal hdPS algorithm employed the formula by Bross which scores vari-

ables based on the observed joint association between covariate and

outcome (RRCD) and covariate and exposure (RRCE) (Figure S3).5,31,32

While hdPS to date has generally considered variables one by one,

more advanced implementations, such as machine learning algorithms

to identify predictors of the outcome or ensemble methods pooling

multiple machine learning algorithms,33–37 or the use of regularized

regression in related techniques such as large-scale propensity

scores,38 have been demonstrated.33–37 With that said, the Bross

approach has been observed to be effective and durable, and is

recommended for most applications.

2.6 | Including investigator-specified covariates

While hdPS is generally effective at identifying and selecting variables

that are measured with recorded codes—so much so that investigator

specification of such variables may not be required at all7—other vari-

ables will likely need to be entered specifically by the investigator. In

any hdPS analysis, it is strongly recommended to specifically include

patient attributes such as age, sex, and other measured factors that

may be confounders. It is also recommended to include typical health

service utilization variables such number of office visits, number of

drug prescriptions filled, total cost of inpatient or outpatient care, or

number of unique medications dispensed, as these are generally good

markers of health status and disease severity.15,17,33,39 Like other cov-

ariates, these markers are measured over the covariate assessment

period, or over a standard period such as 6 months or 1 year prior to

cohort entry.

Further investigator-specified covariates can also be included.

While doing so may introduce collinearity between investigator-

specified variables and those identified by hdPS—which can affect

interpretability of the PS model coefficients but does not negatively

impact the PS itself—explicitly incorporating the subject-matter exper-

tise of the investigator may provide additional levels of transparency

and interpretability, since these prespecified variables are apparent

and verifiable in a typical “Table 1.”

2.7 | Excluding instrumental variables and colliders

While PSs tend to be forgiving with respect to what variables are

included, two sources of bias introduced by variable inclusion are

well-documented: “Z-bias” and “M-bias,” each of which is described

below. From the outset, however, we note that while Z-bias should

be actively avoided, M-bias tends not to be an issue in day-to-day

practice.

As briefly described above, an IV is a variable associated with

the treatment assignment but not the outcome; the canonical IV is

the random treatment assignment in an randomized clinical trial.40

Adjusting for an IV, often denoted Z, may increase the bias

(Figure S2). It is well known that IVs should not be included in a PS,

high-dimensional or otherwise.4,28,29,41,42 Using the typical prioriti-

zation with the Bross formula—which considers variables' joint asso-

ciation between exposure and outcome—may help avoid Z-bias, as

the Bross prioritization tends not select variables that only have an

exposure association.33

However, to the extent that IVs can be identified either a priori or

through inspection of hdPS's selected variables, they should be manu-

ally removed. One common way to identify potential IVs is to score all

variables by quintile of exposure association and outcome association.

Inspecting those variables in the top quintile of exposure association

and bottom quintile of outcome association may help identify IVs. As

a practical matter, if it is unclear whether a variable is an IV or con-

founder, erring on the side of assuming it is a confounder is likely the

safer choice in nonrandomized research.34

Separately, colliders—variables that are the common effect of

exposure and outcome, or a common effect of two variables that

themselves each affect exposure or outcome—should also be

excluded from a PS (Figure S2).43 Colliders may be more difficult to

identify than IVs, though consistently measuring variables prior to the

index date will tend to minimize their presence. A simulation study

showed that bias due to controlling for a collider—M-bias, so named

because when collider relationships are plotted in a directed acyclic

graph, they often resemble the letter M—was small, unless associa-

tions between the collider and unmeasured confounders were very

RASSEN ET AL. 99



large (relative risk > 8). As above, controlling for confounding should

take precedence over avoiding M-bias.44

2.8 | Estimating the propensity score

The steps above will yield long lists of prioritized covariates, which

should collectively capture a substantial portion of the underlying

confounding. The final step is to estimate a PS, and to use that PS to

control for confounding.

PSs are often estimated using logistic regression,4 and as such,

the standard estimation method for the hdPS is to use logistic regres-

sion to predict the probability of exposure as a function of all hdPS

covariates, investigator-specified and empirically identified. PSs are

designed to reduce a large number of covariates into a single value,

but in the hdPS case, the number of those covariates can be quite

large.45,46 Estimation of any PS is limited by the quantity of source

data, and the usual recommendation is to not exceed 1 covariate in

the model for every 7–10 exposed patients.47 For hdPS models,

where the number of covariates can be large, a substantial number of

exposed patients may be required for proper estimation of the hdPS.

This summary score is useful in many cases, including when there

are a large number of covariates and a small number of outcomes. In

those instances, parametric and regularized outcome regression have

been recognized to have inadequate confounding adjustment.48,49

2.9 | Estimating the treatment effect

While the nuances of the application of PSs for confounding adjustment

are outside the scope of this article, we note that once estimated, the

hdPS will function as a traditional PS, and traditional approaches includ-

ing matching,50 weighting,51–53 stratification,54 and fine stratification55

are all appropriate with hdPS (Figure 2, Steps 6 and 7).

3 | MEASURING hdPS PERFORMANCE

Diagnostic tools are frequently used to evaluate the performance of

analytic approaches, and the diagnostics for hdPS demonstrate or

illustrate several of the items noted above: that balance on measured

covariates has been achieved, that instruments have been removed,

and that to the best of the investigator's ability, confounding has been

accounted for.

3.1 | Covariate balance diagnostics

Because PS methods are intended to control for confounding by balan-

cing covariates between exposed and referent patients, demonstrating

qualitative success in doing so is typically achieved by constructing a

“Table 1” outlining baseline patient characteristics of study participants

before and after PS adjustment, with the goal of showing that baseline

characteristics are balanced between the two comparison groups. In a

typical PS analysis, the variables in this Table 1 are generally those vari-

ables that were entered into the PS model; with hdPS, a typical Table 1

would have all investigator-specified variables, with additional empiri-

cally identified variables appearing in a supplementary or online table.

Inclusion of variables not specified by the investigator but that may

have an expectation of imbalance in the Table 1 can help verify whether

treatment group imbalance has in general been resolved by the hdPS.

More quantitatively, balance-checking techniques are recom-

mended for both investigator-specified covariates (including key

demographic variables like age and sex) and empirically identified vari-

ables. A common diagnostic to demonstrate balance between two

comparison groups is to report for each variable the absolute stan-

dardized mean difference between the two treatment groups; this

value is calculated as the absolute value of the difference in standard-

ized mean in each group. An absolute standardized mean difference

of 0.1 or less is an often-used threshold to indicate adequate balance

between treatment groups.56 A number of other diagnostics are also

commonly employed.57

With that said, for empirically identified variables, imbalance may

result for reasons that do not indicate lack of comparability between the

exposure and comparator groups. For example, if an empirically identified

variable impacts the outcome but not exposure, it may appear imbal-

anced; however, it may well be appropriate to include it in the PS, and

since it is de facto not a confounder, no bias should result. Separately, if

an empirically identified variable is strongly correlated with other empiri-

cally identified or investigator-specified variable, balance may be achieved

among the correlates but not the variable in question.58 For that reason,

not all residual imbalances of individual variables result in bias, but they

need inspection and explanation to the extent possible.17,59,60

3.2 | Graphical diagnostics

Visualizations are also helpful to visualize the performance of covari-

ate balance and comparability between comparison groups. Typical

visualizations include plots of the PS distribution before and after

matching or weighting, and plots of standardized differences before

and after application of the hdPS. For example, to demonstrate the

performance of hdPS-matching, Blin et al.15 presented the standard-

ized mean differences before and after matching as well as the over-

lap in hdPS distribution, which can help identify cases of nonpositivity

(Figure 3). It is noted that these visualizations are not unique to hdPS

and are suggested for any PS analysis.

A useful hdPS-specific diagnostic is a forest plot of the estimated

treatment effects as sequentially more confounding adjustment is

applied, displaying the unadjusted (crude) estimate, the estimate after

adjustment with key demographic covariates (e.g., age and sex), the

estimate with adjustment for all investigator-identified covariates, and

the estimate after hdPS has been applied. Such a plot has the ability

to show the added value (or perhaps lack of value) of including the

empirically identified covariates, as measured relative to a known

ground truth.
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Another visualization that can be useful is a plot of the treatment

effect estimate as additional empirically identified covariates are

added to the hdPS model (Figure 4). If the estimate with 50 versus

100 variables is substantially different, this implies that the addition of

50 variables to the hdPS was useful in additional confounding control.

On the other hand, if a large number of variables are added and there

is no change to the treatment effect estimate, then that suggests that

a more parsimonious hdPS model may be appropriate.

4 | TRANSPARENCY AND
DOCUMENTATION

Overall efforts to improve the reproducibility and transparency of

studies using real-world data are broadly underway.10,25 For

example, Wang et al. developed a structured template to aid in

planning and reporting study methods, including hdPS if used, and

recommend including key specifications such as the algorithm for

covariate definition and other parameters (e.g., covariate assess-

ment window, code type and granularity, diagnosis position)

(Table S1).

Though not exhaustive, the following are items that should be

reported and documented, first as part of a study protocol, and later

as part of a final study report. By and large, the items below are syn-

theses of the decisions discussed above and thus will be familiar.

• Parameters for covariate identification. Within hdPS, decisions

around how covariates will be identified, ranked and selected

should be prespecified and documented. These parameters include

which data dimensions will be considered (e.g., inpatient, outpa-

tient, pharmacy); which coding systems will be used (e.g., ICD-

9-CM, ICD-10-CM, CPT); to what level of detail the codes will be

captured (e.g., the first three characters of ICD-10-CM codes); how

many codes per dimension will be considered; how many variables

will be included overall; and what ranking method will be applied

(e.g., bias ranking, exposure association ranking).

• Investigator-specified variables. As in all pharmacoepidemiology

studies, noting a priori what confounders the investigators deem

important to specifically adjust for is an important part of the anal-

ysis plan. Unlike typical protocols that include all variables, with

hdPS, only investigator-identified variables will be prespecified

since the hdPS approach will empirically select further variables.

• Investigator-specified excluded variables. Investigators should

note any variables they consider instruments—and thus not appro-

priate to include in the hdPS—ahead of time.29,41,61,62 Such vari-

ables would include direct or near-direct proxies for exposure. If

F IGURE 3 Examples of diagnostic output illustrating plots of the PS distribution and plots of standardized differences before and after hdPS-
matching for a study comparing anticoagulants dabigatran and rivaroxaban. Adapted from Blin et al., CPT 2019.
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further variables are excluded over the course of the study, those

should be documented in the final study report.

• Estimation and use of PS. As with any PS, the method for estimating

the hdPS (e.g., logistic regression) should be noted, along with any criteria

for removing variables that may affect the estimation (e.g., employing a

prevalence filter, such as not having at least five exposed and five refer-

ent patients). Furthermore, how the hdPS will be used in the analysis

(e.g., matching, weighting) should be noted, as well as the software envi-

ronment in which the score will be estimated and used.

• Diagnostics and reporting. The diagnostics to be employed

(e.g., inspection of selected variables, surveilling for IVs) along with

actions to take should anomalies be detected should be noted, as

should other output (e.g., PS distribution plots, sequential addition

of variables plot).60 We also recommend including a detailed list of

variables included along with interpretable descriptions (e.g., the

ICD-10-CM code description alongside the ICD-10-CM code) as a

table or supplemental appendix. Software can aid in creating this list.

• Sensitivity analyses. While the decisions noted above should be

made a priori, investigators may wish to vary certain parameters to

determine robustness of the result or otherwise test their assump-

tions. For example, investigators may choose to conduct sensitivity

analysis varying the confounder selection strategy with or without

investigator-identified covariates. To the extent possible, these sensi-

tivity analyses should also be specified ahead of time, while acknowl-

edging that certain variations may be made in response to observed

data or observed performance of the hdPS. Any post hoc sensitivity

analyses should be called out as such in the final study report.

5 | LIMITATIONS AND MISCONCEPTIONS

Since its original publication,5 a number of limitations and misconcep-

tions regarding hdPS have emerged.

A first misconception is that data-adaptive methods that consider

hundreds of covariates for estimating the PS will lead to “over-
adjustment,” but it has been shown that the exposure effect size esti-

mation should remain consistent even with additional covariates.7

With that said, adjusting for too many preexposure may lead to statis-

tical inefficiency,37 so if a larger number of covariates are desired,

principled data-adaptive PS estimation such as crossvalidation

methods like Super Learning (SL) can be used to protect against over-

fitting when estimating the PS.37

There is also concern that liberal variable selection—including col-

liders and IVs—will lead to the introduction of M-bias and Z-bias,

respectively. We would argue that the true threat to pharmacoepide-

miology studies is unmeasured confounding, and as such, M- and Z-

bias are second-order concerns. Furthermore, M- and Z-biases are

themselves mitigated with good study design (to avoid the introduc-

tion of colliders to begin with) and strong control of unmeasured con-

founding. As discussed earlier, any M-bias will most likely be

small,20,44 and the careful measurement of covariates prior to expo-

sure is a way to avoid including many colliders. Similarly, while Z-bias

may amplify any unmeasured confounding when IVs are included in

the PS, Z-bias's effect is greatly reduced by reducing the presence of

unmeasured confounding. Unmeasured confounding remains the top

problem to solve.20

Some consider hdPS to be a black box with limited transparency.

While it is true that the hdPS method does not allow investigators to

know the covariates that will be empirically identified a priori, the spe-

cific parameter settings of an hdPS algorithm can and should be pre-

specified and remain unchanged through the primary analysis. And

while they are not known a priori, all selected variables are fully trace-

able back to source data, and their impact on baseline covariate bal-

ance can be assessed through the calculation and reporting of

standardized differences.7

hdPS can sometimes bring to light the limitations of the source

data or of the research question asked. While hdPS extracts the maxi-

mum confounding information available in a database via proxy ana-

lytics to adjust for unmeasured confounding,21 a given data source

may inherently lack data dimensions that are required to reduce resid-

ual confounding to an acceptable level.7,37 hdPS is not a statistical

technique to resolve poor data source selection, insufficient data con-

tent, or incorrect study design.

The performance of hdPS may be impacted by small sample sizes,

including small cohorts, few exposures, and/or few outcome events.

For example, because the PS model predicts exposure, PS estimation

may be challenging when the number of exposed patients is small.

However, in a study where investigators sampled data from four

North American cohort studies and applied hdPS methods on the

samples, they obtained similar hdPS-adjusted point estimates in the

samples relative to the full-cohorts when there were at least

50 exposed patients with an outcome event. hdPS performed well in

samples with 25–49 exposed patients with an outcome event when a

zero-cell correction was applied.33 Zero-cell correction allows compu-

tation of the association between the variable and outcome by adding

0.1 to each cell in the 2 � 2 table, making computable values from

values that are noncomputable due to division by zero.20

O
d

d
s

 R
a

ti
o

Number of hdPS variables

0 100 200

1.20

1.00

0.80

F IGURE 4 Sequential plot of odd ratios adjusted by hdPS with
increasing size of empirically identified variables. The odds ratio
broadly stabilizes after the addition of �100–150 empirically
identified variables. Hypothetical data following empirical analyses.33

hdPS, high-dimensional propensity score.
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6 | NEW DIRECTIONS

Since the publication of the original hdPS method,5 a number of

extensions and other developments have been shown. Below are sev-

eral examples of new directions that hdPS has gone in.

6.1 | Treatment effect estimation

The hdPS approach has most typically been applied to evaluate the

effect of a static, binary treatment using PS matching. In more recent

applications, hdPS was combined with alternate treatment effect esti-

mation approaches such as inverse probability weighting and collabo-

rative targeted minimum loss based estimation.37,63 This was done to

take advantage of these methods' improved statistical properties over

PS matching, such as the ability to properly adjust for time-dependent

confounders and sources of selection bias,64 to employ double robust-

ness, and to evaluate alternate causal estimands, such as the average

effects of time-varying dynamic treatment regimens. With that said,

whatever the causal estimand and estimator chosen, hdPS at its core

can be viewed as a pragmatic approach to automate selection of the

covariate adjustment set in the analysis of healthcare databases.

6.2 | Estimation of the PS

After identifying hdPS-derived covariates, the investigator must use

the covariates to estimate a PS for each patient, or for outcome

regression in the case of doubly robust estimation of the causal effect.

The standard logistic regression estimation methods rely on paramet-

ric assumptions such as the assumption that a PS or outcome regres-

sion model can be correctly represented by a logistic linear model

with only main terms for each covariate and no interactions. Incorrect

causal inferences are expected if these—often arbitrary—modeling

assumptions do not hold, for example if the logit link between the lin-

ear part of the model and PS is incorrect. Finite sample bias and

increased variability can also be expected when a large number of

hdPS-derived covariates are included in the parametric models.37 To

protect against incorrect inferences due to mis-specified parametric

models and to automate dimensionality reduction of the covariate

adjustment set (e.g., to reduce collinearity), statistical learning can be

used to nonparametrically estimate a PS or outcome regression based

on empirically identified and investigator-specified variables while

maintaining explainability using, for example, Shapley Additive Expla-

nation values.

SL—an ensemble learning method—is one such approach that

was proposed to improve confounding adjustment with hdPS cov-

ariates. SL is a data-adaptive estimation algorithm that combines,

through a weighted average, predicted values from a library of

candidate learners such as neural networks, random forests, gradi-

ent boosting machines, and parametric models—all possible

methods of estimating patients' PSs. The selection of the optimal

combination of learners is based on crossvalidation to protect

against overfitting. The resulting learner (called the “super
learner”) is intended to perform asymptotically as well or better

(in terms of mean error) than any of the candidate learners

considered—and the number of candidate learners can grow as

large as is computationally feasible. The practical performance of

combining hdPS with SL for confounding adjustment has been

illustrated using both real-world and simulated data.36,37 Future

research is needed to evaluate the value of alternate methodolo-

gies such as deep learning.

6.3 | Other new directions

6.3.1 | Unstructured data

hdPS typically works with structured, coded data. However, using nat-

ural language processing methods, it is also possible to convert free-

text into tokens, which can stand on their own as potential variables.

These data may give additional information beyond what is coded in

diagnosis, procedure, medication and other fields, especially when

electronic medical records are used as source data.65

6.3.2 | Continuous covariates and outcomes

The Bross formula typically used is intended for use with binary cov-

ariates and outcomes, but in many cases, continuous values for one or

both may be appropriate. Extensions to the ranking formula can incor-

porate such continuous values.66

6.3.3 | Combination matching or weighting
methods

Most studies that match or weight with a PS do so exclusively with the

PS variable. However, it is also possible to match (weight) on specific

key investigator-identified factors, and then match (weight) on a PS.67

7 | CONCLUSION

In this article, we provide an overview and guidance on the planning,

implementing, and reporting of studies using the hdPS approach in

the analysis of healthcare databases, an approach to minimize residual

confounding by identifying and adjusting confounding factors or prox-

ies for confounding factors. As illustrated by case examples included

in the supplemental materials, a wide range of studies across different

data sources have used hdPS over the past decade, and new applica-

tions with machine learning techniques are emerging. A basic under-

standing of the hdPS approach—for both researchers and decision-

makers consuming RWE—and recommendations for the planning,

implementation, and reporting of hdPS process are critical for contin-

ued generation of transparent and robust RWE.
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