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Abstract

Background: PARP (poly(ADP‐ribose) polymerase) inhibitors (PARPi) are now

standard of care in metastatic castrate‐resistant prostate cancer (mCRPC) patients

with select mutations in DNA damage repair (DDR) pathways, but patients with

ATM‐ and BRCA2 mutations may respond differently to PARPi. We hypothesized

that differences may also exist in response to taxanes, which may inform treatment

sequencing decisions.

Methods: mCRPC patients (N=158) with deleterious ATM or BRCA2 mutations who

received taxanes, PARPi, or both were retrospectively identified from 11 US academic
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centers. Demographic, treatment, and survival data were collected. Kaplan−Meier

analyses were performed and Cox hazard ratios (HR) were calculated for progression‐

free survival (PFS) as well as overall survival (OS), from time of first taxane or PARPi

therapy.

Results: Fifty‐eight patients with ATM mutations and 100 with BRCA2 mutations

were identified. Fourty‐four (76%) patients with ATM mutations received taxane

only or taxane before PARPi, while 14 (24%) received PARPi only or PARPi before

taxane. Patients with ATM mutations had longer PFS when taxane was given first

versus PARPi given first (HR: 0.74 [95% confidence interval [CI]: 0.37−1.50];

p = 0.40). Similarly, OS was longer in patients with ATM mutations who received

taxane first (HR: 0.56 [CI: 0.20−1.54]; p = 0.26). Among patients with BRCA2

mutations, 51 (51%) received taxane first and 49 (49%) received PARPi first. In

contrast, patients with BRCA2 mutations had longer PFS when PARPi was given first

versus taxane given first (HR: 0.85 [CI: 0.54−1.35]; p = 0.49). Similarly, OS was longer

in patients with BRCA2 mutations who received PARPi first (HR: 0.75 [CI:

0.41−1.37]; p = 0.35).

Conclusions: Our retrospective data suggest differential response between ATM and

BRCA2 mutated prostate cancers in terms of response to PARPi and to taxane

chemotherapy. When considering the sequence of PARPi versus taxane chemo-

therapy for mCRPC with DDR mutations, ATM, and BRCA2 mutation status may be

helpful in guiding choice of initial therapy.
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1 | INTRODUCTION

Germline and somatic mutations in DNA damage repair (DDR)

pathway genes are emerging therapeutic targets in advanced

prostate cancer.1–5 In particular, optimizing treatment for patients

with mutations in the DDR genes (especially BRCA1, BRCA2, and

ATM) is a key area of research, as these mutations portend aggressive

clinical courses.6–11 Poly(ADP‐ribose) polymerase (PARP) inhibitors

have revolutionized cancer therapy for patients with BRCA2

mutations5,12–15; however, the utility of PARP inhibitors in patients

with ATM mutations is less clear. Further, optimal sequencing of

PARP inhibitors relative to taxane chemotherapy is undefined.

ATM is mutated in approximately 5% of all cancers, in malignancies as

diverse as mantle cell lymphoma to lung cancer.16 Early gene panel assays

that identified ATM as a successful treatment target for PARP inhibitors

required a complete loss of function in the gene.17 In the real world, the

mutational landscape of ATM is vast and the clinical phenotype of many

of these mutations are yet unknown.16

Treatment outcomes in metastatic castration‐resistant prostate

cancer (mCRPC) patients with ATM mutations is an area of active

investigation. In the TOPARP‐B trial, complete loss of the ATM protein by

immunohistochemistry was associated with notable improved clinical

response to olaparib, but the overall response of patients with ATM

mutations to olaparib remained significantly lower than those observed in

patients with BRCA mutations.18 A large multicenter retrospective

analysis of mCRPC patients with BRCA2 and ATM mutations revealed

that patients with ATMmutations had longer time to next treatment with

first‐line enzalutamide, similar times with taxanes, and shorter times with

PARP inhibitors compared to patients with BRCA mutations, respec-

tively.19 Cell culture studies have demonstrated limited PARP inhibitor

response, even when the prostate cancer cells are fully ATM‐deficient.20

This limited response parallels outcomes in patients with only ATM

mutations in PROFOUND21 (olaparib) and TRITON222 (rucaparib).

As there remains ambiguity regarding optimal treatment, we

investigated the optimal sequencing of PARP inhibitors relative to

conventional chemotherapy (taxanes) in ATM‐mutated mCRPC via a

large multicenter retrospective review. In light of the limited

response to PARP inhibitors reported in previous studies, we

hypothesized that using taxanes first (before PARP inhibition) may

yield better survival than using PARP inhibitors first in mCRPC

patients with ATM mutations, and vice versa in patients with BRCA2

mutations. We assembled a retrospective cohort of 158 mCRPC
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patients with ATM or BRCA2 mutations to answer this question. For

perspective, we analyzed 58 patients with ATM mutations, relative to

the number of patients with ATM mutations in the prospective trials

PROFOUND (86), TRITON2 (49), and TOPARP‐B (21).

2 | METHODS

2.1 | Study population

A retrospective chart review of mCRPC patients across 11 academic

centers in the United States was conducted from June to August

2021. Patients were included if any deleterious somatic or germline

ATM or BRCA2 mutation was detected on available clinical‐grade

genetic sequencing performed by individual study sites. Deleterious

mutations were defined as genetic changes that led to predicted

protein truncation or loss (frameshift, nonsense or splicing mutations,

or homozygous deletions) or missense mutations that were classified

as deleterious by the sequencing platform used. Patients were

excluded from final analysis if they harbored a mutation in both

BRCA2 and ATM. In addition to the presence of a deleterious ATM or

BRCA2 mutation, patient must have also received a taxane (docetaxel

or cabazitaxel) and/or a PARP inhibitor (any type) for the diagnosis of

castration‐resistant prostate cancer. Prior therapy with abiraterone

and/or enzalutamide was permitted. Patients were additionally

excluded from final analysis if they received ≤21 days of therapy.

2.2 | Study outcomes

Demographic, staging, treatment, and genomic characteristics were

collected from all patients. This included age, Gleason sum, histology,

presence of M1 disease at initial diagnosis, site of metastases, prior

enzalutamide and abiraterone exposure, duration of taxane and PARP

inhibitor therapy, progression (prostate‐specific antigen [PSA] or radio-

logic/clinical), and vital status. Genomic data included mutation mecha-

nism, mutation origin (germline or somatic), and zygosity status

(monoallelic vs. biallelic). The presence of concurrent genomic alterations

in BRCA1, CDK12, CHD1, FOXA1, FOXO1, MED12, MYC, PIK3CA, PTEN,

RB1, SPOP, and TP53 were also collected. Statistical analysis between

cooccurrence of BRCA2, ATM, PTEN, RB1, and TP53 alterations was

performed.

The primary study outcome was progression‐free survival (PFS)

on first taxane or PARP inhibitor therapy. This PFS outcome was a

composite outcome combining both PSA progression and

investigator‐assessed radiographic or clinical progression. Disease

progression was defined as PSA progression (≥25% increase in PSA

from baseline or nadir) or investigator‐assessed radiographic or

clinical progression. In patients with both PSA progression and

investigator‐assessed radiographic/clinical progression, the earlier

date was denoted as the date of disease progression. The secondary

study outcome was overall survival (OS), from the time of first taxane

or PARP inhibitor therapy until death from any cause.

2.3 | Statistical analysis

Univariate analyses were performed for demographic, staging,

treatment, and genomic characteristics using Pearson's χ2 or Fisher's

exact tests and Wilcoxon rank‐sum test for categorical and

continuous variables, respectively. Kaplan−Meier survival analysis

was performed for the primary and secondary time‐to‐event

outcomes. Multivariable Cox proportional‐hazards modeling with

backward stepwise selection was employed to assess the contribu-

tion of possible confounders on the primary and secondary

outcomes. All analyses were performed using SAS version 9.4.

F IGURE 1 Patient selection schematic.
mCRPC, metastatic castrate‐resistant prostate
cancer; PARP, poly(ADP‐ribose) polymerase.
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TABLE 1 Demographic, staging, and
treatment characteristics of study
population

Characteristic Overall
BRCA2‐mutated
patients

ATM‐mutated
patients p Value

N 158 100 58

Median age at first taxane or

PARP inhibitor therapy, years
(interquartile range)

72 (62−72) 66 (60−71) 69 (63−74) <0.01

Gleason sum at diagnosis (%) 0.34

8−10 107 (75%) 69 (78%) 38 (70%)

6−7 36 (25%) 20 (22%) 16 (30%)

Unknown 15 11 4

M1 disease at initial diagnosis (%) 0.37

Yes 70 (44%) 47 (47%) 23 (40%)

No 88 (56%) 53 (53%) 35 (60%)

Presence of bone metastases 0.04

Yes 132 (84%) 79 (79%) 53 (91%)

No 26 (16%) 21 (21%) 5 (9%)

Presence of nodal metastases 0.25

Yes 99 (63%) 66 (66%) 33 (57%)

No 59 (37%) 34 (34%) 25 (43%)

Presence of liver metastases 0.32

Yes 35 (22%) 25 (25%) 10 (17%)

No 123 (78%) 75 (75%) 48 (83%)

Presence of lung metastases 0.43

Yes 35 (22%) 20 (20%) 15 (26%)

No 123 (78%) 80 (80%) 43 (74%)

Prior enzalutamide therapy 0.68

Yes 96 (61%) 62 (62%) 34 (59%)

No 62 (39%) 39 (38%) 24 (41%)

Prior abiraterone therapy 0.61

Yes 126 (80%) 81 (81%) 45 (78%)

No 32 (20%) 19 (19%) 13 (22%)

Taxane and PARP inhibitor treatment pattern <0.001

Taxane only 51 (32%) 21 (21%) 30 (52%)

PARP inhibitor only 38 (24%) 29 (29%) 9 (16%)

Taxane first, then PARP
inhibitor

44 (28%) 30 (30%) 14 (24%)

PARP inhibitor first, then
taxane

25 (16%) 20 (20%) 5 (9%)

Abbreviation: PARP, poly(ADP‐ribose) polymerase.
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Institutional review board approval was obtained at the local level at

each participating site.

3 | RESULTS

3.1 | Study population

The patient selection schema is shown in Figure 1. The final patient

population comprised 158 patients, with 100 (63%) and 58 (37%)

patients having deleterious BRCA2 and ATM mutations, respectively.

Among patients with BRCA2 mutations, 51 (51%) received a taxane

only or taxane before PARP inhibitor treatment, while 49 (49%)

received a PARP inhibitor only or PARP inhibitor before taxane

treatment. Among patients with ATM mutations, 44 (76%) received a

taxane only or taxane before a PARP inhibitor, while 14 (24%)

received a PARP inhibitor only or PARP inhibitor before a taxane.

3.2 | Patient characteristics

Patient demographic, staging, and treatment data are shown in

Table 1. The median age of all patients at the time of first taxane or

PARP inhibitor treatment was 67 years (interquartile range 62−72

years). There was a significant difference in age at receipt of first

taxane or PARP inhibitor therapy between the patients with BRCA2

and ATM mutations (median age 66 years for the BRCA2‐mutated

group and 69 years for the ATM‐mutated group, p < 0.01). There was

also a significant difference between bone metastases, present in

79% and 91% of patients with BRCA2 and ATM mutations,

respectively (p = 0.04). There were no significant differences between

the BRCA2‐mutated and ATM‐mutated groups with respect to

Gleason sum at diagnosis, M1 disease at diagnosis, presence of

metastases (nodal, liver, or lung), prior enzalutamide therapy, or prior

abiraterone therapy. Among patients with BRCA2 mutations, 21

(21%) received a taxane only, 29 (29%) received a PARP inhibitor

only, 30 (30%) received a taxane first then a PARP inhibitor, and 20

(20%) received a PARP inhibitor first then a taxane. Among patients

with ATM mutations, 30 (52%) received a taxane only, 9 (16%)

received a PARP inhibitor only, 14 (24%) received a taxane first then

a PARP inhibitor, and 5 (9%) received a PARP inhibitor first then a

taxane. This overall treatment pattern is significantly different

between patients with BRCA2 and ATM mutations (p < 0.001).

Mutation characteristics are shown in Table 2. Tissue samples were

obtained from primary tumor (41%), metastatic tissue (36%), circulating

tumor DNA (10%), or in some cases by germline‐only testing (13%). The

mechanisms of BRCA2 mutation included homozygous deletions (55%),

frameshift mutations (31%), missense mutations (6%), and nonsense

mutations (8%); while the mechanisms for ATM mutations included

deletions (28%), frameshift mutations (28%), missense mutations (22%),

nonsense mutations (17%), and splice site mutations (5%). In the overall

patient population, 50 (32%) had germline mutations, and 105 (68%) had

somatic mutations. A total of 31 (20%) of patients had confirmed biallelic

mutations. There was a significant difference in concurrent RB1 alteration

between BRCA2‐mutated and ATM‐mutated patients (35% vs. 17%,

p=0.04); there were no differences in cooccurrence in TP53 and PTEN

alterations between the two cohorts.

TABLE 2 Baseline mutation characteristics of study population

Characteristic Overall

BRCA2‐
mutated
patients

ATM‐
mutated
patients p Value

N 158 100 58

Sample source 0.21

Primary tissue 60 (41%) 42 (46%) 18 (33%)

Metastatic tissue 52 (36%) 30 (33%) 22 (41%)

Circulating
tumor DNA

14 (10%) 6 (7%) 8 (15%)

Germline‐only
testing

19 (13%) 13 (14%) 6 (11%)

Unknown 13 9 4

Mechanism of mutation <0.001

Homozygous
deletion

69 (45%) 53 (55%) 16 (28%)

Frameshift 46 (30%) 30 (31%) 16 (28%)

Missense 19 (12%) 6 (6%) 13 (22%)

Nonsense 18 (12%) 8 (8%) 10 (17%)

Splicing 3 (2%) 0 (0%) 3 (5%)

Unknown 3 3 0

Origin of mutation 0.09

Germline 50 (32%) 36 (37%) 14 (24%)

Somatic 105
(68%)

61 (63%) 44 (76%)

Unknown 3 3 0

Allelic status of mutation 0.49

Bialleic 31 (20%) 21 (22%) 10 (17%)

Monoalleic or
unconfirmed

123
(80%)

75 (78%) 48 (83%)

Unknown 4 4 0

TP53 comutation (missing data = 35) 0.70

No 80 (65%) 49 (64%) 31 (67%)

Yes 43 (35%) 28 (36%) 15 (33%)

PTEN comutation (missing data = 35) 0.85

No 76 (62%) 47 (61%) 29 (63%)

Yes 47 (38%) 30 (39%) 17 (37%)

RB1 comutation (missing data = 35) 0.04

No 88 (72%) 50 (65%) 38 (83%)

Yes 35 (28%) 27 (35%) 8 (17%)
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The pattern of cooccurring mutations in 14 preselected prostate

cancer‐relevant genes is shown in Figure 2. Statistical analyses

between the most commonly expressed genes other than ATM and

BRCA2 (PTEN, RB1, and TP53) demonstrate significant coalteration of

RB1 in PTEN mutated patients (47% vs. 17% in PTEN nonmutated

patients, p < 0.001).

3.3 | Study outcomes

The primary outcome of PFS on first taxane or PARP inhibitor

therapy by ATM or BRCA2 mutation status is shown in Figure 3.

Patients with ATM mutations who received a taxane first had

numerically longer median PFS compared to those who received a

PARP inhibitor first (6.2 vs. 3.3 months, hazard ratio [HR] with 95%

confidence interval [CI] 0.74 [0.37−1.50]; p = 0.40). In contrast,

patients with BRCA2 mutations who received a PARP inhibitor first

had numerically longer median PFS compared to those who received

a taxane first (11.2 vs. 7.2 months, HR: 0.85 (0.54−1.35); p = 0.49).

These differences were not statistically significant.

The secondary outcome of OS from the time of first taxane or

PARP inhibitor therapy to death, by ATM or BRCA2 mutation status,

is shown in Figure 4. Patients with ATM mutations who received

taxanes first had numerically longer median OS compared to those

who received PARP inhibitors first (38.1 vs. 33.0 months, HR: 0.56

(0.20−1.54); p = 0.26). In contrast, patients with BRCA2 mutations

who received PARP inhibitors first had numerically longer median OS

compared to those who received taxanes first (36.6 vs. 32.8 months,

HR: 0.75 (0.41−1.37); p = 0.35). Again, these differences did not reach

statistical significance.

Multivariable Cox proportional‐hazards modeling using backward

stepwise selection to evaluate the impact of possible factors, including

choice of first therapy (taxane vs. PARP inhibitor), age, Gleason score,

presence of M1 disease at initiation diagnosis, presence of metastases

(nodal, liver, or lung), and prior enzalutamide or abiraterone exposure on

patients with ATM or BRCA2 mutations did not demonstrate a significant

association of any factor with PFS or OS in our model.

4 | DISCUSSION

In our multicenter retrospective chart review investigating the optimal

sequencing of PARP inhibitors and taxanes in mCRPC patients with ATM

or BRCA2 mutations, we found that patients with ATM mutations

demonstrated a trend toward longer PFS and OS when taxane was given

first rather than PARP inhibitors. The reverse was true for patients with

BRCA2 mutations: that PARP inhibitors demonstrated numerically longer

PFS and OS when given first over taxanes. However, none of these

survival analyses were statistically significant.

The following factors may have contributed to the observed PFS and

OS results. First, previous studies17,18 have demonstrated that complete

loss of ATM is associated with improved response to PARP inhibitors. As

28% of patients with ATM mutations in our cohort had homozygous

deletions in ATM, these patients may have demonstrated a better

response to PARP inhibitors compared to other ATM‐mutated patients. It

is important to note, however, that other types of ATM‐mutations

observed in our cohort may have also led to a loss‐of‐function phenotype,

increasing the number of patients in this group. Second, there may have

been other unmeasured differences in baseline demographics, clinical

characteristics, or previous prostate cancer therapy between the cohorts

that affected survival. However, our baseline demographics and clinical

characteristics are similar to ATM and BRCA2 patient cohorts in other

mCRPC studies.19,23 Third, our cohorts may not have contained sufficient

patient numbers to detect a significant difference in outcomes given the

unknown relative hazard of PARP inhibitor and taxane therapy in patients

with ATM or BRCA2 mutations, and thus our analysis was likely

underpowered to interrogate differential treatment sequences.

Although the PFS and OS differences did not reach statistical

significance, our study provides insight into the current treatment

landscape of mCRPC patients with ATM or BRCA2 mutations. First,

the observed numeric advantage in PFS and OS of upfront taxanes

compared to upfront PARP inhibitors in ATM‐mutated mCRPC should

be confirmed in larger datasets and prospective studies, such as

TRITON3. Since mCRPC patients with ATM mutations also appear to

be less sensitive to platinum chemotherapy,19,24 ascertaining an

efficacious treatment agent in this population is especially important.

Second, 49% of patients with BRCA2 mutations in our cohort

received PARP inhibitors as the first line of mCRPC therapy,

compared to only 25% of patients with ATM mutations, showing

the increasing uptake of upfront PARP inhibitor therapy in mCRPC

patients with BRCA2 mutations.

F IGURE 2 Heatmap of cooccurring alterations. The X‐axis
indicates the primary mutated gene (n indicates the number of
patients), and the Y‐axis indicates the second comutated gene. The
colored squares demonstrate the percentage of patients with a
genetic mutation shown in the X‐axis, who also have a concurrent
mutation denoted by the Y‐axis. Patients with both BRCA2 and ATM
mutations were specifically excluded. [Color figure can be viewed at
wileyonlinelibrary.com]
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There were several limitations to our study, including the

retrospective nature and the possible heterogenous phenotypes in

our ATM‐mutated cohort. Second, composite PFS was defined as the

earliest of three possible indicators of disease progression (biochemical

progression, radiological progression, investigator‐determined clinical

progression) in this study which may have affected the PFS analysis.

Although using a defined biochemical progression would be preferable,

limitations in retrospective clinical data across multiple institutions

made standardizing this data challenging. Third, retrospective

sequencing studies in the metastatic population require controlling

for previous treatment courses that may have affected tumor biology

at the time of receipt of the treatments of interest. To address this, we

did account for prior abiraterone and enzalutamide use in our analysis.

Despite these limitations, we were able to collate the largest

retrospective ATM‐ and BRCA2‐mutated mCRPC cohort in the

literature to our knowledge that contains detailed diagnostic and

treatment data with respect to sequencing of taxane and PARP

inhibitor agents in these patients.19,23

F IGURE 3 Progression‐free survival (PFS) by first taxane or PARP inhibitor therapy, in (A) patients with ATM mutations and (B) patients with
BRCA2 mutations.PARP, poly(ADP‐ribose) polymerase. [Color figure can be viewed at wileyonlinelibrary.com]
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5 | CONCLUSION

Our retrospective multicenter analysis of mCRPC patients with ATM

or BRCA2 mutations demonstrates a numerically increased PFS and

OS when taxanes are given upfront in patients with ATM mutations,

and vice versa with PARP inhibitors in patients with BRCA2

mutations. These differences in clinical outcomes, while not

statistically significant, support increasing genomic profiling uptake

and the use of tailored optimal sequencing of therapies for mCRPC

patients with specific classes of DDR mutations. We hope that these

hypothesis‐generating results inspire additional clinical consortia to

confirm or refute these findings in larger genetically‐defined mCRPC

populations.
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