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Abstract: Recent years have witnessed a boom of machine
learning (ML) applications in chemistry, which reveals the
potential of data-driven prediction of synthesis performance.
Digitalization and ML modelling are the key strategies to fully
exploit the unique potential within the synergistic interplay
between experimental data and the robust prediction of
performance and selectivity. A series of exciting studies have
demonstrated the importance of chemical knowledge imple-
mentation in ML, which improves the model’s capability for

making predictions that are challenging and often go beyond
the abilities of human beings. This Minireview summarizes
the cutting-edge embedding techniques and model designs
in synthetic performance prediction, elaborating how chem-
ical knowledge can be incorporated into machine learning
until June 2022. By merging organic synthesis tactics and
chemical informatics, we hope this Review can provide a
guide map and intrigue chemists to revisit the digitalization
and computerization of organic chemistry principles.

Introduction

Reaction performance is one of the decisive factors for the
success of a synthetic reaction. The ideal yield and selectivity of
100% is the goal for any synthetic transformation when
chemists are making reaction designs,[1] as highlighted in the
well-known concepts of atom- and resource-economy.[2,3] There
are nearly infinite combinations of reactive compounds, how-
ever, chemists possess a limited experimental efficiency to
evaluate reaction performances. Among exciting prediction
tasks in organic synthesis (retrosynthesis route,[4–6] reaction
product,[7] reaction condition,[8,9] etc.), the nature of the reaction
performance prediction presents its distinctive challenges. The
synthetic space, on the one hand, is massive. It not only
involves the structural possibilities of involved compounds, but
also the choice of reaction conditions as well as the combina-
tions of reactants, which further complicate the issue.[10] On the
contrary, the performance space of a defined synthetic reaction

is quite simple and usually restricted within a finite range due
to detection limits. This requires the desired prediction to
connect a sparse and discontinuous high-dimensional synthetic
space to a dense and continuous one-dimensional performance
space (Scheme 1). Therefore, a seemingly trivial displacement in
the synthetic space could result in a non-intuitive and
noticeable influence on the reaction performance, such as a
subtle structural change of the catalyst[11,12] or switching to a
different solvent.[13,14] Consequently, time- and resource-con-
suming trial-and-error attempts continue to be required for an
ingenious reaction design.

Chemists make predictions of reaction performance based
on their domain knowledge. These may include the general
information of the reactants (reactivity, stability, solubility, etc.),
the molecular level reaction mechanism, the rate- and selectiv-
ity-determining elementary steps, and even the quantum
chemical origins of target performances (Figure 1). Such knowl-
edge can significantly improve the reliability of their predic-
tions, however, making these domain knowledge-based pre-
dictions is non-trivial and still often face challenges. Even
experienced synthesis and catalysis experts may struggle to
provide robust predictions of reaction outcomes, such as yields
and selectivities, despite their solid chemical knowledge.[10,15]

More importantly, the domain knowledge of organic synthesis
cannot be acquired and mastered simply by theoretical
deduction like mathematics. The training process of synthetic
chemists requires systematic study of chemical theory, but the
literature reading and experimental experience are equally
important. The resulting knowledge of organic synthesis is
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Scheme 1. A general definition of the performance prediction problem in
organic synthesis. y1, y2, and y3 are reaction performances of interest such as
yields, stereoselectivities, etc.

Chemistry—A European Journal 
Review
doi.org/10.1002/chem.202202834

Chem. Eur. J. 2023, 29, e202202834 (2 of 13) © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Wiley VCH Dienstag, 24.01.2023

2306 / 277026 [S. 24/35] 1

http://www.chemeurj.org/showcase


difficult to describe in quantitative and programmable expres-
sions, so it is highly challenging to create an “expert system” of
organic synthesis.[16,17] An experienced synthetic chemist is of
great value, and making an expert prediction of molecular
synthesis is precious. The exciting success of SynthiaTM has
revealed the remarkable potential of machines in learning
sufficient chemical knowledge, becoming experts in organic
synthesis once they have been adequately programmed and
trained.[15]

The causal link between synthetic space and reaction
performance, as well as the regression nature of the perform-
ance prediction task make machine learning (ML) a suitable
solution for this challenge.[18–20] ML is extremely attractive since
it is particularly good at determining and locating the hidden
connections between intertwined complex factors and
targets.[21] Nevertheless, this advantage comes at a cost (Fig-
ure 1). Most modern ML techniques require a large dataset for
the model training. Insufficient data may lead to an over-fitting
problem, where the model is trained too specifically on the
training data and has nearly no predictive ability towards
unseen cases, like predicting a new reaction. On the other
hand, an under-fitting problem could emerge due to insuffi-
cient data, where the model is incompetent to provide a
reliable answer. This results in the paradox between accuracy
and data requirement when establishing a regression ML model
for reaction performance prediction.

Simply improving the amount of chemical data and
applying established regression algorithms cannot provide an
all-purpose artificial intelligence model to make predictions for
organic reactions.[22] There are around 10171 possibilities for the
Game of Go.[23,24] Synthetic possibilities are beyond this number.
For relatively small molecules, the number of possible structures
is estimated to be around 1060,[25] which makes any three-
component synthetic reaction to outweigh the complexity of
Go. Reaxys® database now contains about 58 million individual
transformations.[26] The size of accumulated synthetic data will
remain a tiny fraction of synthetic space for an arguably long
time to come.

One promising path for artificial intelligence in chemistry is
to introduce chemical knowledge when constructing an ML
model.[27] Bridging chemical knowledge and ML has the power
to harness the benefits of both human intelligence and artificial
intelligence, dramatically improving the robustness and predic-
tive ability of ML models given the available data. In addition,
the predictor will have improved interpretability,[18,28,29] which
may offer new chemical inspiration and even knowledge from
synthetic statistics.[30]

How can chemical knowledge improve ML? First, chemical
knowledge can support the inclusion of fundamental model
requisites, such as rotational and translational invariance,[31]

which will steer the machine to learn chemically correct models.
In addition, chemical knowledge can be beneficial for ML
through the implementation of reaction-specific understand-
ings. Introducing chemically meaningful representations or the
inclusion of chemical understandings in model designs will
improve the model’s differential ability towards the organic
transformation as well as its predictive ability towards unseen
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Figure 1. Characteristics of reaction performance prediction by human
chemist and ML.
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candidates.[27,32–37] A representative proof of this concept is
Sigman’s multi-variant linear regression studies,[19,38,39] where
powerful models can be built using sophisticated chemical
descriptors with primitive regression techniques.

ML prediction generally involves three key components,
namely data, encoder and model (Figure 2). It should be noted
that encoder is also referred to as molecular representation,
which is the more common term. Data provides information on
the target transformation, which is the basis for ML training.
Particularly for synthetic performance, there is limited avail-
ability of open-source structural databases.[40–43] Commercial
synthetic databases, such as Reaxys®[26] and SciFinder®,[44]

provide access to browse the recorded information upon
purchasable licenses, while scalable utilization of the data is
unlikely. The available open-source structural database of
organic synthesis mostly stems from research articles on high-
throughput experimentation (HTE) and related ML applications.
Prime examples of this strategy include Doyle’s database of
Ullman–Goldberg/Buchwald–Hartwig cross-couplings (4140 re-
action yields)[18] and Denmark’s database of asymmetric imine
addition (1075 enantioselectivities),[20] which have now been
widely applied as benchmark databases for ML of synthesis/
catalysis performance. We recently built a database of asym-
metric hydrogenation of olefins (12619 enantioselectivities)
based on experimentation literature between the years 2000
and 2020.[45] In addition to the literature data, the reaction data
schemes from US patents were extracted as the USPTO reaction
database via text-mining techniques by NextMove.[46,47] How-
ever, it is noteworthy that, based on a recent study, there may
be some inherent potential problems in the data source.[48] To
remove the data barrier of chemistry, Coley and Kearnes
proposed an initiative called Open Reaction Database.[49] This
initiative provides an open-access infrastructure for sharing
synthetic statistics, which will significantly promote the struc-
tural data utilization of organic reactions.

Current implementations of synthesis knowledge in ML are
generally realized by the innovative design of encoders or
models. The encoder transforms the chemical data into
machine-readable codes. This represents the digital basis for
machines to differentiate organic reactions. Through the
implementation of chemical knowledge, the desired molecular
representation has the ability to distinguish and cluster the
relevant synthesis transformations, mostly within a certain
specified range. A textbook example constitutes the nucleophi-
licity vs. basicity, these two reactivity dimensions are closely
related, yet not linearly correlated (Figure 3A).[50] Therefore,

choosing the wrong parameter will fail to make a reaction
prediction, which is a typical out-of-distribution (OOD) issue in
artificial intelligence. The model treats the encoded data and
transforms them into target values. Here, ML discovers the
hidden connections and even causalities in synthetic chemistry
using mathematic equations and computer algorithms. Chem-
ical knowledge involvement would improve the model’s ability
to capture and predict the high-dimensional synthetic relation-
ship. A related case in physical organic chemistry is the well-
known break of the Hammett relationship (Figure 3B).[51] This
relationship cannot be described by a linear equation due to
the change of the rate-determining step. If such knowledge is
available, projecting these observed statistics in higher dimen-
sional space using algorithms like support vector machines
(SVM) would easily provide a predictive regression.

In respect to the performance prediction of organic syn-
thesis via ML, a number of exciting studies have emerged with
innovative model designs and powerful chemical
predictions.[18–20] The community is witnessing a paradigm-
shifting, and it is exciting to see the dynamic energy from the
merging between organic chemistry and artificial intelligence.
Representative ML applications[27,32–37,52–57] and molecular
representations[58–60] have been summarized in a few excellent
reviews, which have elaborated the synthesis targets and the
ML performances. In contrast, this Minireview will focus on the
strategies of implementing chemical knowledge in ML model-
ling until June 2022. By critically discussing the key concepts of
the highlighted research advances, state-of-the-art chemical
knowledge-based embedding techniques and ML model ap-
proaches are analyzed, with diversified applications in ML
predictions of reaction yield, chemo-, regio- and stereoselectiv-
ity.

Classic Techniques for Molecular Embedding and their
Applications in Reaction Performance Prediction

Before diving into the chemical knowledge-based embedding
approaches, we first briefly summarize the classic embedding
approaches for molecular structure, which do not require
explicit chemical knowledge. These embedding methods have
no chemical information about the target reaction, thusly theyFigure 2. Key components of ML in reaction performance prediction.

Figure 3. Typical scenarios where chemical knowledge is critical for the
statistical pattern of synthetic performance. A) Nucleophilicity vs. basicity of
selected pyrrolidines and imidazolidinones.[50] pKaH are the corresponding
Brønsted basicities in acetonitrile and N are the Mayr’s nucleophilicity
parameters. B) Nonlinear Hammett relationship observed in aminolysis of Y-
substituted-phenyl 2-methoxybenzoates in acetonitrile.[51]
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can only differentiate organic molecules. After the molecular
embedding of each reaction component, these digital represen-
tations are usually concatenated in a unified order as
descriptors for synthetic reactions.

One-Hot Encoding

The first category of embedding methods for organic molecules
is one-hot encoding (OHE). As the most basic embedding
technique in computer science, OHE is a vectorized representa-
tion with binary strings, where all the digits of a certain vector
are 0 except one digit of 1. The designation of “1” represents
the identity of the molecule, usually in the range of a limited
selection of compounds.

OHE gives each compound a unique binary vector. The
vector itself carries no chemical meaning and has to be
transformed into higher dimensions and elusive patterns during
model training. Therefore, all the required chemical relationship
to precisely predict the reaction performance is learned solely
from the training data. These embedding techniques could give
predictions of reaction performance when sufficient data are
provided.

In 2018, Cronin and co-workers designed an ML-guided
feedback loop to explore synthetic space with a designed
liquid-handling robot.[61] They selected a Suzuki–Miyaura cross-
coupling to examine the power of their ML approach in terms
of chemical yield prediction. Figure 4 displays the defined
synthesis space of 7 substituted quinolines, 4 substituted 1H-
indazole, 12 ligands, 8 bases and 4 solvents. The entire synthesis
space consists of 5760 transformations (Figure 4A). OHE is used
to describe this synthetic space. There is a total of 35 different
kinds of organic molecules (reactants, ligands, bases, and
solvents) in this defined space, thus OHE describes each specific
reaction by a unique 35-digit binary vector (Figure 4B). The
concatenation order does not matter in this case but should be
held consistent throughout encoding and model training. Based
on training with 60% of the entire synthetic space (3456
reactions of 5760 possibilities), the prediction by the trained

neural network model gave a root-mean-square error (RMSE) of
11% for a test set of 1728 transformations. This success of OHE
highly relied on the fairly large training set and the fact that the
defined synthetic space is already constrained by chemical
knowledge, which is a Nobel prize-winning catalytic reaction
with well-known high functional group tolerance. The trained
model is able to capture the statistical patterns of the training
data, specifically the presence of which compound or groups of
compounds can increase or decrease the reaction yield,
enabling the predicting of the reaction yield.

Strings

Strings use a naming system to differentiate molecules. There
are a few widely applied naming systems, including SMILES,[62]

the International Chemical Identifier (InChI),[63] and IUPAC
naming.[64] SMILES is perhaps one of the most widely used
string representations in modern ML of organic molecules. To
overcome certain limitations of the original version of SMILES,
such as its non-uniqueness on a single molecule, innovations of
the SMILES syntax rules have led to derivatized versions, such
as SMARTS,[65] DEEPSMILES[66] and SELFIES.[67] The string repre-
sentation does not possess a rich physical chemistry or trans-
formation-related information, thusly it usually requires a large
quantity of data in order to train reliable ML models.

Because string representation is a chemical language that
describes the molecular structure, its use for existing com-
pounds or transformations contains the chemical knowledge of
why certain compounds or transformations are reasonable and
exist in the physical world. This makes it a very useful resource
for representation learning. This text-based representation
learning is particularly suitable for the transformer model,[68]

which is a trending translation model in computer science with
self-supervised techniques. One representative example is
Schwallder’s recent study of reaction space mapping;[69] pow-
ered by the reaction databases of Pistachio and USPTO, the
authors developed a BERT model for reaction classification,
which achieved excellent accuracy compared with the rule-
based classification. The learned representation can be used as
reaction fingerprints, providing the opportunity for mapping
the reaction space without specific synthetic knowledge and
can be used for encoding approaches in machine learning
predictions of reaction performance, like activation energies[70]

and reaction yields.[71] The string representation can also be
used for transfer learning involving large datasets, where one
highlighted case from Reymond[72] is discussed in section 4
(Figure 12).

Molecular Fingerprints

In addition to OHE and string representation, molecular finger-
print is the third category of molecular embedding methods
that applies to any organic molecule and does not require prior
chemical knowledge.[73] The idea of molecular fingerprints is to
identify the presence of topology, sub-structure, and/or scaf-

Figure 4. Application of OHE in yield prediction of Suzuki–Miyaura coupling
reactions. A) The target Suzuki–Miyaura coupling reaction and the defined
reaction space. B) OHE encoding details. C) The model performance.
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folds. They were initially designed to determine the similarity of
molecules but later have wide applications in ML of organic
chemistry. Because the determination rules of MF have large
freedom of customized possibilities, there have emerged
dozens of diversified MFs, including Morgan fingerprint,[74]

Avalon fingerprint[75] and MACCS-key fingerprint.[76] MFs are
usually, albeit not necessarily, binary vectors with hundreds to
thousands of digits. Their generation is efficient and structurally
sensitive. Though it can be argued that MF has more chemically
relevant information than OHE and strings, their utilization does
not require any transformation-related knowledge.

Glorius and co-workers recently showed that the utilization
of multiple fingerprint features can provide useful molecular
representations for reaction performance prediction.[77] The
effectiveness of their ML approach was demonstrated in both
Doyle’s Buchwald–Hartwig coupling dataset (Figure 5A)[18] and
Denmark’s asymmetric imine addition dataset (Figure 5B).[20]

The basis of this approach is that different prediction tasks
would require different determining molecular properties.
Therefore, they combined 24 types of molecular fingerprints
(i. e., Morgan fingerprint,[74] Avalon fingerprint[75] and MACCS-
keys fingerprint[76]) to a universal representation of each
reaction component, regardless of the modelling transforma-
tion or prediction target (Figure 5C). Through ML, the algorithm
is able to capture the determining molecular fingerprints from
the synthetic statistics, which builds an adaptive bridge
between molecular fingerprints and reaction performance
space. The Random Forest (RF) model gave satisfying prediction
performances, with a R2 of 0.93 for Doyle’s dataset and a mean

absolute error (MAE) of 0.144 kcal/mol for Denmark’s dataset
(Figure 5D).

The above classic molecular embedding techniques are
readily available and efficient for ML applications. Their
generation does not require any specific chemical understand-
ing of the target transformation, which is user-friendly for
researchers without chemical backgrounds. Nevertheless, it
should be noted that these classic embedding techniques can
only differentiate the molecules in a relatively primitive fashion.
Their predictions are primarily based on the statistics of the
training data. If the interested prediction problem is in a well-
defined and limited synthetic space where the statistical pattern
can be described by a fairly simple function, the statistics
themselves can support a predictive model. When performance
prediction tasks involve out-of-distribution (i. e., new substrate)
and out-of-range (i. e., yield optimization) issues, or when the
available data size cannot meet the complexity of the target
structure-performance relationship, application of the classic
molecular representation approaches may fall into limited
success and should be treated with caution.

Chemical Knowledge-Based Molecular Embedding
Approaches and Their Applications in Reaction Performance
Prediction

The most straightforward way to introduce chemical knowledge
in ML of reaction performance is to design transformation-
related chemical descriptors. One convincing example is
Nørskov’s discovery of volcano plot which projects the catalytic
behavior to a limited number of chemically meaningful
dimensions based on scaling relationship,[78] and the concept of
scaling relationship and volcano plot was later extended to the
realm of homogeneous catalysis by the elegant studies from
Corminboeuf[35,79–81] and Nørskov.[82]

Based on the chemical understanding of the target trans-
formation, especially the mechanistic origins of reactivity or
selectivity, chemists usually have a solid experience and instinct
for determining factors. These factors have strong physical
organic relevance, and some are known physical organic
parameters (i. e., Sterimol parameters,[83] and Hammett
constants[84]). Through this chemical vectorization, the synthetic
space is projected to a descriptor space, which is usually
composed of tens of essential chemical factors. Subsequently,
the ML model is trained to learn the relationship between the
descriptor space and the target reaction performance.

A representative example of chemical knowledge-based ML
prediction of reaction yield is Doyle’s study on Buchwald–
Hartwig cross-coupling (Figure 6).[18] They defined a synthetic
space with 15 aryl halides, 23 additives, 4 palladium catalysts,
and 3 bases, which includes 4140 distinctive transformations.
The yields of the entire synthetic space were examined by
Merck’s mosquito robot system, which provides high parallelism
of the experiments and ensures the quality of the generated
dataset. Based on the understanding of the coupling mecha-
nism and reactivity-controlling factors, they used highly
compact and chemically meaningful descriptors to encode each

Figure 5. Application of molecular fingerprint representation in reaction
performance prediction of organic synthesis. A) The target Buchwald–
Hartwig coupling reaction and the defined reaction space. B) The target
asymmetric imine addition reaction and the defined reaction space. C) The
MFF representation technique. D) The model performance.
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reaction component. These descriptors include NMR shifts,
electrostatic charges, and others. It is worth noticing that the
vibration-related descriptors of shared substructures were
found useful for chemical yield prediction.

The influence of chemical vibration on organic reaction
performance has also been identified by Sigman et al.[39] The
knowledge-based chemical descriptors and RF algorithm pro-
vided a satisfying yield prediction model with a R2 of 0.92 and a
RMSE of 7.8% on a 70/30 split of training and test data
(Figure 6C). The authors also examined the challenging extrap-
olative prediction task. The dataset was split based on additives.
The training set was composed of data from 14 additives, while
the test set includes the rest data of 8 additives, which were not
present in the training set. Even though the additives of the
test set were not seen by the model during training, all the R2

values of the predictions are still higher than 0.70. This work by
Doyle showed the predictive power of knowledge-based
chemical descriptors and ML models in organic synthesis, which
was able to make accurate yield prediction that is challenging
for a human chemist.

In addition to reaction yield, enantioselectivity can also be
predicted in a robust fashion by knowledge-based descriptor
design and ML. Using chiral phosphoric acid-catalyzed thiol
addition to N-acyl imines as the model reaction, Denmark
showed the power of ML prediction in asymmetric catalysis
(Figure 7).[20] The reaction space includes 1075 asymmetric
transformations, considering the variations of 5 imines, 5 thiols,
and 43 BINOL phosphoric acids (BPA) catalysts (Figure 7A). Due
to the critical role of the steric environment on chiral induction,
the authors developed a novel steric descriptor called average
steric occupancy (ASO). By aligning the BPAs with the common

scaffold in a grid box (Figure 7B), ASO measures the steric
occupancy in each grid (0 for vacant, 1 for occupied). After
averaging the steric occupancies of conformers, the generated
ASO is a 16384-dimension vector with float numbers between 0
to 1. In addition to the judicious design of ASO, the authors also
applied the electrostatic potential (ESP) as a stereoelectronic
descriptor. The vectorization of BPA catalysts was further
truncated by removing the redundant features that are identical
for the studied BPAs. Using the SVM algorithm, excellent
prediction accuracy was achieved; the SVM model based on 475
random training data gave predictions with only 0.152 kcal/mol
MAE for the remaining 600 test reactions (Figure 7C). In
addition to the prediction in random data splitting, the authors
trained a deep feed-forward neural network (DFNN) model that
is able to make out-of-range (OOR) predictions. This model,
trained with data below 80% enantiomeric excess (e. e.), can
provide a remarkable prediction accuracy of 0.33 kcal/mol MAE
for test sets above 80% e. e. (Figure 7C). This extrapolative
ability for OOR prediction is highly desirable in organic
synthesis, considering the context of synthetic methodology
optimization.

ML can also make reliable predictions without a complete
dataset of synthetic space. In 2019, Sigman and co-workers
realized ML prediction of enantioselectivity, focusing on asym-
metric phosphoric acid-catalyzed nucleophilic addition of
imines (Figure 8).[19] They curated a dataset of 367 asymmetric
transformations from literature reports. This dataset covers a
fairly large synthetic space, containing 180 imines, 54 nucleo-
philes, 18 catalysts, 12 solvents, and additional changes in
reaction conditions (Figure 8A). By careful interpretation of the
reaction mechanism and evaluation of possible descriptors, the

Figure 6. Yield prediction of Buchwald–Hartwig coupling reactions using
chemically meaningful descriptors. A) The target Buchwald–Hartwig cou-
pling reaction and the defined reaction space. B) The chemically meaningful
descriptors and dimension. C) The model performance.

Figure 7. Enantioselectivity prediction of phosphoric acid-catalyzed asym-
metric imine addition reactions using designed descriptors for chiral
environment. A) The target asymmetric imine addition reaction and the
defined reaction space. B) The chemically meaningful molecular representa-
tion by ASO and ESP. C) The model performance.
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authors found that six important features were enough to
encode each reaction component (Figure 8B). These descriptors
include the Balaban-type index, natural bond orbital (NBO)
related parameters, nucleophile’s bond angle, and steric
descriptors of the catalyst. These carefully selected descriptors
are highly related to the determination of enantioselectivity.
Using the multilinear regression (MLR) algorithm, the ML model
is able to achieve a convincing regression performance with a
R2 of 0.85 in the leave-one-out (LOO) analysis (Figure 8C). The
trained coefficients reflected the influence of each chemical
descriptor on the overall enantioselectivity prediction. Building
on the success of the MLR model, the authors further validated
the extrapolative prediction ability where the unseen reactions
were correctly predicted within an error of only 5% e. e.
(Figure 8C).

This highlights the transferability across chemically relevant
organic transformations, allowing the desired prediction using
existing data of a known reaction to be used for the perform-
ance evaluation of a new reaction.

In the above studies,[18–20] the knowledge-based vectoriza-
tion of molecules was achieved by selecting chemically mean-
ingful descriptors based on the local minimum structures (often
obtained by DFT-level optimization). The domain knowledge
can also play a role in the determination of the source
molecular structure that is responsible for descriptor gener-
ation. Grzybowski and co-workers recently reported an intrigu-
ing ML study for stereoselectivity prediction in Michael addition
reactions (MA) and Diels-Alder cycloadditions (DA) (Figure 9).[85]

The concave versus convex facial selectivity is challenging to
predict due to the involvement of the elusive steric factors and

non-covalent interactions (Figure 9A). To better describe the
interacting reaction components in proximity, the authors
designed a new type of embedding vector called atomic
contact vector (ACV), based on the atom contacts in pre-
assembled transition-state-like geometry (Figure 9B). This ap-
proach is demonstrated in a selected dataset of 1021 MA and
1326 DA reactions from the Reaxys® repository, which are all
bimolecular, ring-based, and stereospecific without any chiral
catalysts. It should be noted that their prediction is not a
regression problem for a quantified selectivity target. Instead,
the ML model is designed to predict the major product with the
correct facial selectivity, which is a binary classification problem.

The creation of transition-state-like geometries requires
sophisticated mechanistic knowledge to implement the right
geometric constraints. For example, in MA reactions (Figure 9B),
the distance of the forming C� C bond is set to be 2.5 Å, and the
C(Nu)� C=C angle is set to be the value of Bürgi-Dunitz angle
107° in order to generate the chemically correct MA transition-

Figure 8. Multi-variant-linear prediction of enantioselectivity of asymmetric
nucleophilic addition of imines using designed chemical descriptors. A) The
target asymmetric nucleophilic addition of imines reaction and the defined
reaction space. B) The chemically meaningful encoding by several selected
parameters. C) The model performance.

Figure 9. Molecular representation based on transition-state-like geometry
and its application in stereoselectivity prediction of Michael addition and
Diels-Alder cycloaddition. A) The Michael addition and Diels-Alder cyclo-
addition reactions. B) The ACV embedding technique. C) The model
performance.
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state-like geometries. Certain flexible fragments in the gener-
ated geometries were not considered during the descriptor
generation. Subsequently, the authors binned the interatomic
distances between each of their defined 11 atom classes into
five distance categories, which provides a 330-dimensional ACV.
The authors compared the performances of the ACV representa-
tion with other widely applied molecular representations. The
latter comprise of reaction energies at various computational
levels of theory, extended connectivity fingerprints (ECFP), and
extended three-dimensional fingerprints (E3FP). All these
representations showed significantly worse classification per-
formances than ACV (Figure 9C). The final ACV-based RF model
has a classification accuracy of 89.8% for MA and 92.0% for DA.
Finally, they selected a list of non-trivial MA and DA reactions,
and the ACV-based model gave a satisfying accuracy of 92% to
predict the correct product, while the human experts accuracy
was only 52%.[85]

Chemical Knowledge-based ML Model Designs and Their
Applications in Reaction Performance Prediction

In addition to the chemical knowledge-based descriptor design,
the design of the ML model itself is equally important for
making the correct chemistry prediction. The model designs
have generated strong momentum in ML prediction of
molecular property.[86–88] A series of ingenious ML have pushed
the performance of molecular property prediction to a remark-
able level, which is even comparable to modern quantum
mechanical (QM) chemical calculations.[89–91] For reaction per-
formance prediction, the introduction of chemical knowledge
can also improve ML’s predictive power and efficiency. In this
section, the representative model designs that allow the
introduction of chemical knowledge are discussed.

Based on the remarkable advances in computational
chemistry, modern quantum chemical calculation has reached
an excellent capability in calculating reactivity and selectivity of
organic transformation, even with chemical accuracy.[92–95] The
quantum chemical computational method itself and the
generated statistics contain rich chemical knowledge, which
can benefit ML purposes if introduced in the right way. In this
regard, the Hong group showed that computational structure-
performance statistics could serve as a useful data source to
support ML applications where limited experimental results are
available.[28,29] An example is represented by the site-selectivity
prediction of radical Minisci-functionalization of heteroarenes
(Figure 10).[28] This transformation is particularly useful when a
certain combination of radical and heteroarene can give high
regioselectivity. However, only a few experimental regioselectiv-
ity results were available.[96,97] Based on the mechanistic under-
standing that the regioselectivity-determining step is the radical
addition step, the Hong group applied DFT calculations to
generate the virtual dataset of 6114 C� H functionalization
reactions and 9370 regioisomeric competitions. Relying on this
DFT-computed dataset, the authors selected a set of physical
organic descriptors based on chemical knowledge of the
regioselectivity-determining elementary transformation. The

selected descriptors include atom-specific descriptors (bond
order, charge and buried volume, among others) and global
descriptors (molecular orbital energies and Nucleus-Independ-
ent Chemical Shifts (NICS) values, etc.). The trained RF model
provided a satisfying prediction performance with a R2 of 0.965
and a MAE of 0.50 kcal/mol. The DFT statistics-trained RF model
can be directly applied in the predictions of experimental
results. For 15 of 20 experimental radical C� H functionalizations,
the regioselectivity was correctly predicted despite the fact that
none of the experimental data was used in the model training.
These findings demonstrated that the computational reaction
performance data is a useful resource for ML of synthesis
transformation, especially for transformations that are exper-
imentally challenging to access the needed data support for ML
purposes.

QM computations and statistics can also build a bridge to
connect molecular properties and reaction performance pre-
diction. In 2021, Jensen and co-workers reported a new strategy
to synergistically use machine-learned molecular representation
and quantum chemical descriptors (Figure 11).[98] The machine-
learned molecular representation was generated by a graph
neural network (GNN) based on the Weisfeiler-Lehman network
(WLN) architecture. This GNN is an annotated graph in which
the annotation is based on chemical knowledge. This
chemistry-based annotation in the graph model provides a
promising and general strategy to introduce explicit chemical
information in molecular representation.[99,100] The selected
quantum chemical descriptors include atomic charge, Fukui
index, NMR shielding constant, bond length and order. 136,000
organic molecules were computed at the B3LYP/def2-SVP level
of theory using GFN2-xTB optimized geometries. The authors
developed an ML platform to connect the GNN and QM parts
by concatenating the GNN-generated embeddings and QM
descriptors, which realizes excellent interpolative and extrap-
olative regioselectivity predictions for a series of organic trans-
formations (Figure 11A). In addition, the authors showed that it

Figure 10. ML prediction of the regioselectivity of radical C� H functionaliza-
tion of heteroarenes based on mechanism-based computational statistics. A)
The virtual radical C� H functionalization reactions. B) The reaction mecha-
nism-based ML loop. C) The model performance.
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is possible to avoid the expensive DFT calculations of quantum
chemical descriptors by using another ML model for QM
descriptor prediction. For this purpose, they trained a multitask
directed message passing neural network (D-MPNN), which
eventually provided an end-to-end fusion ml-QM-GNN model
for accurate and efficient reactivity performance prediction. This
model requires only 70 ms per reaction to predict the selectivity
from SMILES. Each using 5000 training reactions from available
datasets, this fusion model achieved 89.7% top-1 accuracy for
aromatic C� H functionalization reactions, 96.7% top-1 accuracy
for aromatic C� X substitution reactions, and 97.2% top-1
accuracy for other substitution reactions in predicting the
primary reaction outcome.

Model design can also help the ML model use synthetic
data smartly, especially for application scenarios with limited
data for target transformation. An emerging artificial intelli-
gence strategy for this problem is transfer learning, which
applies the statistics or ML model from an external source to a
new related task. In this regard, Reymond and co-workers
reported an insightful framework for reaction performance
prediction (Figure 12).[72] The reaction-related chemical knowl-
edge was learned by machine via a molecular transformer
model and then subjected to a specific target reaction via
transfer learning. Two datasets were selected to describe the

application scenarios. One is a big and all-purpose dataset,
which includes 1.1 million transformations in the USPTO data-
base and represents the general knowledge in synthetic trans-
formations. The other is a small and specialized dataset CARBO,
which includes 25 thousand carbohydrate transformations
curated from the Reaxys® database and refers to as a target
transformation with interesting reaction performances (regio-
and stereoselectivities in this case). The two datasets can be
used for simultaneous training if the big dataset is publicly
available. In this multitask scenario, the authors found that the
hybrid utilization of the two datasets (weight 9 on the data
from USPTO and weight 1 on the data from CARBO) showed
excellent performance, with top-1 accuracy of 71.2% for
prediction in the CARBO test set. The transfer learning strategy
is also feasible by fine-tuning a pre-trained model even if the
big dataset is not available. In the fine-tuning scenario, the pre-
training was performed on the USPTO dataset and subse-
quently fine-tuned based on the data of CARBO. The fine-tuning
model reaches a comparable top-1 accuracy of 70.3% without
access to USPTO data. This work demonstrated the potential of
a transfer learning strategy to connect chemically related
synthetic databases as a way to improve the reaction perform-
ance prediction.

Figure 11. ML prediction of regioselectivity in organic transformations using
on-thy-fly generated quantum chemical descriptors. A) The target reactions.
B) The model design of quantum mechanics descriptors incorporated with
GNN. C) The model performance.

Figure 12. Application of transfer learning strategy in stereoselectivity
prediction of carbohydrate transformation. A) The dataset and target
reactions. B) The model design for transfer learning. C) The model perform-
ance.
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Targeting the few-shot learning problem in catalysis devel-
opment, the Hong group recently reported an ML approach to
connect synthetically related data in model training.[45] Based
on the curated database of asymmetric hydrogenation of
olefins (12619 enantioselective transformations from
literature),[101] the developed hierarchical learning model can
provide satisfying enantioselectivity prediction using only
dozens of data with the target olefin. This so-called hierarchical
learning model is essentially an ensemble model that combines
individual predictions from different hierarchies (Figure 13). By
judging the chemical similarity between the target olefin and
the olefins in the database, the data of related asymmetric
transformations were split into various hierarchies. With increas-
ing hierarchies, the chemical structure of the involved olefins is
closer to that of the target olefin, thusly the data size is also
decreasing. The base model, trained by a large amount of data
in hierarchy one, provides a general structure-enantioselectivity
relationship prediction, which was further corrected by delta
learnings in the subsequent hierarchies. The effectiveness of the
hierarchical learning approach is validated by the error
reduction with increasing hierarchies, as well as the superior
performance compared with the naïve model training (Fig-
ure 13C). This work provides a useful ML approach for synthetic

method optimization where limited data is available, revealing
the critical role of chemical relevance in data utilization.

Summary and Outlook

We have discussed representative strategies for implementing
chemical knowledge into ML predictions toward reaction
performances. The general pipeline for this implementation is
presented in Figure 14. The knowledge source of organic
synthesis is generally provided by human beings. This allows
the installation of explicit rules in ML modelling, such as
selecting chemically meaningful descriptors or the assignment
of transition-state-like geometries. In addition, chemical statis-
tics itself contains rich knowledge, which can be learned by
machines to support the performance prediction of a target
transformation. The utilization of quantum chemical computa-
tions and computed statistics, as well as transfer learning and
ensemble learning strategies to connect the sizeable related
dataset and the small focal dataset, have been found effective
in introducing implicit chemical knowledge from synthetic
statistics.

Through the implementation of chemical knowledge, both
the molecular embedding and model design can be innovated,
which can either improve the prediction performance or
mitigate the data requirement, providing powerful predictive
tools for molecular syntheses.

Witnessing the exciting advances in ML prediction of
organic synthesis, the impact of the data-driven research
paradigm in synthetic chemistry is apparent. The digitalization,
computerization, and especially intellectualization of synthetic
transformations will provide a strong momentum to push the
frontiers of organic synthesis. However, it should be noted that
the ML prediction of reaction performance is still in its infancy.
There are a few essential but underdeveloped directions. For
ML models, synthetic chemists strongly require extrapolative
and heuristic predictions. Therefore, there is a strong demand
for ML models that can provide predictions to help chemists in
the design of new catalysts, reagents or entirely new trans-
formations. Likewise, identifying robust ML tools for highly
productive and selective chemical transformations continues to
be challenging. These out-of-distribution and out-of-range

Figure 13. Application of transfer learning strategy in stereoselectivity
prediction of carbohydrate transformation. A) The general reactions in the
curated database of asymmetric hydrogenation of olefins. B) The model
design for hierarchical learning. C) The model performance.

Figure 14. General pipeline for reaction performance prediction with chem-
ical-aware ML.
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prediction challenges require the invention of new ML models,
and chemical knowledge is expected to provide critical
assistance.

Moreover, the innovation of synthetic methods will play a
significant role in facilitating the development of AI-guided
syntheses. For example, If ML provides a catalyst design that
requires a twenty-step synthesis, arguably this prediction will
not be followed or valued by the experimentalists. By
developing robust and programmable synthetic methods, it can
open the gate to a large-scale and diversified library of
molecules with the desired function, this molecule library will
provide a critical physical and digital basis to drive the iterative
optimization of ML algorithms and synthetic methods. It is
without a doubt that the path of AI-assisted synthesis requires
synergistic efforts between chemists and data scientists in order
to build the desired bridge that connects chemical knowledge
and computer algorithms. We have a strong belief that it will
soon become true that artificial intelligence can accelerate,
optimize, and even guide the development of organic synthe-
ses.
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