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Abstract
Background: We reported the concept of patient-specific deep learning (DL)
for real-time markerless tumor segmentation in image-guided radiotherapy
(IGRT). The method was aimed to control the attention of convolutional neural
networks (CNNs) by artificial differences in co-occurrence probability (CoOCP)
in training datasets, that is, focusing CNN attention on soft tissues while ignor-
ing bones.However, the effectiveness of this attention-based data augmentation
has not been confirmed by explainable techniques. Furthermore, compared to
reasonable ground truths, the feasibility of tumor segmentation in clinical kilovolt
(kV) X-ray fluoroscopic (XF) images has not been confirmed.
Purpose: The first aim of this paper was to present evidence that the proposed
method provides an explanation and control of DL behavior. The second pur-
pose was to validate the real-time lung tumor segmentation in clinical kV XF
images for IGRT.
Methods: This retrospective study included 10 patients with lung can-
cer. Patient-specific and XF angle-specific image pairs comprising digitally
reconstructed radiographs (DRRs) and projected-clinical-target-volume (pCTV)
images were calculated from four-dimensional computer tomographic data and
treatment planning information.The training datasets were primarily augmented
by random overlay (RO) and noise injection (NI): RO aims to differentiate posi-
tional CoOCP in soft tissues and bones,and NI aims to make a difference in the
frequency of occurrence of local and global image features.The CNNs for each
patient-and-angle were automatically optimized in the DL training stage to trans-
form the training DRRs into pCTV images. In the inference stage, the trained
CNNs transformed the test XF images into pCTV images, thus identifying target
positions and shapes.
Results: The visual analysis of DL attention heatmaps for a test image demon-
strated that our method focused CNN attention on soft tissue and global image
features rather than bones and local features. The processing time for each
patient-and-angle-specific dataset in the training stage was ∼30 min, whereas
that in the inference stage was 8 ms/frame.The estimated three-dimensional 95
percentile tracking error, Jaccard index, and Hausdorff distance for 10 patients
were 1.3–3.9 mm, 0.85–0.94, and 0.6–4.9 mm, respectively.
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Conclusions: The proposed attention-based data augmentation with both RO
and NI made the CNN behavior more explainable and more controllable. The
results obtained demonstrated the feasibility of real-time markerless lung tumor
segmentation in kV XF images for IGRT.

KEYWORDS
attention-based data augmentation, IGRT, kV X-ray fluoroscopy, patient-specific deep learning,
tumor tracking and segmentation

1 INTRODUCTION

In radiotherapy, it is important to deliver a high dose to
a tumor while reducing a dose to normal organs. In par-
ticular, the monitoring and synchronizing of respiratory
movements is necessary for high-precision radiother-
apy of the thoracoabdominal organs such as lung and
liver. Motion monitoring methods can be classified into
two categories1,2:external monitoring by devices placed
on patient surface3 or directly sensing the surface4

and internal monitoring by kilovoltage (kV) X-ray fluo-
roscopy (XF)5 or magnetic resonance imaging (MRI).6

The insertion of fiducial markers around a tumor and
tracking them on kV XF images was a breakthrough
technique to ensure the tracking accuracy5;however, the
marker insertion is invasive to patients. Although MRI is
a less invasive method, such MRI-combined radiother-
apy systems are not extensively available.7 Therefore,
the realization of markerless tumor tracking using kV XF
images for image-guided radiotherapy (IGRT) remains
an important research topic in medical physics.

Many studies addressed the difficulties of markerless
tumor tracking in XF images.2,8,9 From the image pro-
cessing viewpoint,we can distinguish the difficulties into
four important factors:

1. Obstacle overlapping: For example, high-contrast
bone features projected on XF cause false tracking.
These obstacles require to be suppressed10–13 or
recognized as unimportant (ignored).14

2. Poor visibility:Because tumor contrast in XF is usually
insufficient, the tumor position should be estimated
by surrounding structures that may be more visi-
ble or the motion should be enhanced using XF
subtraction.15–19

3. Anatomy and/or respiration change: The underesti-
mation of respiratory motion in four-dimensional
computer tomographic (4DCT) imaging, daily
anatomical changes, and tumor shrinkage in
response to irradiation cause the difference between
planning and treatment sessions.20–25 The res-
piratory motion pattern continuously varies in
sessions.26,27

4. Image quality difference: Digitally reconstructed
radiography (DRR) and XF have different image
quality, thus making their comparison difficult.28–30

An advanced real-time image processing method
addressing the abovementioned problems is strongly
required to prevent false tracking in XF images.

Artificial intelligence (AI), especially deep learning
(DL),has recently developed as an advanced image pro-
cessing tool.31,32 While many AI studies deal with big
data, we reported a conceptual study of patient-specific
DL,which uses patient-specific convolutional neural net-
works (CNNs) trained by individual datasets.14 Since our
study, several similar studies have been reported.33–35

The difference between our strategy and others’ strate-
gies was whether the CNNs were trained by attention-
based or scenario-based augmented datasets. Here,
scenario-based means simulating inter- and intrafrac-
tion variations of CT images (deformation, transla-
tion, and rotation) and thereafter creating anatomically
correct DRRs.34 In contrast, our attention-based aug-
mentation intentionally generated anatomically partial-
incorrect DRRs where soft tissues were placed at the
right positions but bony structures were randomly over-
layed (RO) at the wrong positions.14,36 This strategy is
based on a reasonable hypothesis that since DL is a
data-driven statistical optimization method, its behav-
ior depends on the co-occurrence probability (CoOCP)
of features and labels in the training dataset. CNNs
will recognize the image features with high CoOCP as
important and ignore ones with low CoOCP as unim-
portant. That is, our strategy aims to control the CNN’s
attention by the artificial difference of CoOCP in order
to focus on soft tissues while ignoring bones.14 How-
ever, our conceptual study used DRRs in both training
and testing; verification using clinical XF images was
not performed because the determination of compara-
ble ground truths (GTs) of target position and shape in
clinical XF images was complex. To date, the accuracy
of tumor segmentation in clinical XF using DLs learned
with DRRs generated only from planning CT data has
not been reported. Furthermore, the DL behavior in
IGRT was not examined by explainable techniques.

The first aim of this study is to visualize CNN atten-
tion to the evidence that the proposed method provides
explainable and controllable DL behavior. The second
purpose is to report a real-time lung tumor segmentation
accuracy in clinical kV XF images using the proposed DL
method.
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TABLE 1 Tumor characteristics

4D pCTV (T00-T50)
Centroid shift
(mm)

4D pCTV
Jaccard index

4D pCTV
Hausdorff distance
(mm)

Patient Stage Site Posture

Prescribed
dose (GyE)/
fractions

4D T50%
CTV (cc)

Frontal
(LR/SI)

Lateral
(AP/SI) Frontal Lateral Frontal Lateral

1 IA2 RUL Prone 72.6/22 10.5 0.9/6.5 3.5/6.4 0.84 0.86 1.7 1.6

2 IA2 RLL Prone 72.6/22 18.9 0.2/1.7 1.0/1.8 0.91 0.91 1.5 1.8

3 IVa RLL Supine 66/10 11.2 0.4/25.6 2.8/25.2 0.91 0.92 1.6 1.5

4 IA2 RUL Supine 66/10 10.3 0.1/0.1 0.6/0.1 0.99 0.96 0.3 0.3

5 IA RUL Supine 66/10 14.9 1.6/1.5 2.6/1.2 0.87 0.87 1.4 2.4

6 IA2 LUL Supine 66/10 6.7 3.2/1.2 0.9/1.2 0.85 0.86 1.2 1.2

7 IIA RML Supine 80/20 41.3 0.1/0.4 0.4/0.1 0.98 0.97 1.0 1.0

8 IA RUL Prone 72.6/22 25.5 0.7/6.5 0.6/6.3 0.91 0.86 5.3 6.6

9 IIB b RLL Supine 66/10 69.4 1.5/11.5 3.0/10.4 0.67 0.72 12.3 10.4

10 IA2 RLL Supine 66/10 28.6 1.1/6.1 0.5/ 8.7 0.75 0.63 10.9 10.9

Note: (a) Lung metastasis of rectum cancer. (b) This CTV included two adjacent GTVs. Jaccard index and Hausdorff distance were evaluated after centroid matching.
Abbreviations: LUL, left upper lobe; pCTV, projected-clinical-target-volume; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe; GyE, Gray-equivalent
dose.

2 MATERIALS AND METHODS

2.1 Patient selection and ethics
statement

A retrospective analysis was performed on 10 lung can-
cer patients undergoing proton therapy with approval
(number: H28-170) from the Ethics Committee of our
hospital. The criterion for patient selection was whether
the stored sequential XF images were appropriate for
this study: longer than one respiratory cycle and without
information loss because of halation (details in Sec-
tion 2.5). Table 1 summarizes the tumor characteristics.

2.2 Workflow from CT imaging to target
definition

As per our radiotherapy procedure, respiratory-gated
3D CT images in the exhalation phase and 10-phased
4DCT images were acquired under free-breathing by
a CT (Optima 580 W; GE Healthcare, WI, USA) with a
respiratory monitoring system (AZ-733VI; Anzai Med-
ical Co. Ltd, Tokyo, Japan). The spatial resolution
of CT images was 1.07 mm in left-right (LR) and
anterior-posterior (AP) directions; furthermore, the slice
pitch corresponding superior-inferior (SI) direction was
2.5 mm. Then, a radiation oncologist delineated the
gross-tumor-volume and clinical-target-volume (CTV)
on the gated 3DCT images using a planning support
system (MIM Maestro:MIM Software Inc.,OH,USA).The
CTVs were automatically propagated on the 10-phased
4DCTs by MIM nonlinear deformable image registration
function.37,38 Only for patient 3,a medical physicist man-

ually set 30-mm diameter spheres on 4DCT images to
identify the target position because the automatic con-
tour propagation did not work well because of significant
motion artifacts in the 4DCT images.

2.3 Workflow in training data
generation

2.3.1 DRR and label calculation

The training dataset in this study was special for each
patient and frontal/lateral XF angle (patient-and-angle).
First, all CT values were converted to the linear attenu-
ation coefficient (LAC: 𝜇) using the interpolation of the
energy-LAC tables for multiple tissue substitutes,39 con-
sidering tube voltage and effective energy (Eeff ) in the
CT and XF (Table 2). The LAC contributions of the scat-
terer (𝜇scat) were provided in the table.39 The LACs were
distinguished into the contribution of soft tissue (𝜇soft)
and that of bone (𝜇bone) by the LAC threshold (𝜇200)
corresponding to the Hounsfield unit (HU) of 200.

The LAC at an arbitrary point was represented as
follows:

𝜇 = 𝜇soft + 𝜇bone

=

{
𝜇soft ≤ 𝜇200, 𝜇bone = 0 (CT value ≤ 200 HU)

𝜇soft = 𝜇200, 0 < 𝜇bone (200 HU < CT value)

(1)

The 2D matrixes for the calculation of soft tissue
(Msoft), bone (Mbone), and scatterer (Mscat) were defined
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TABLE 2 Summary of the linear attenuation coefficient (LAC: μ) for multiple tissue substitutes39

Lung Water Griffith-Bone
Threshold
in this study

Modality
Tube voltage
(kV)

Eeff
(keV)

µ
(cm-1)

µscat
(cm-1)

µ
(cm-1)

µscat
(cm-1)

µ
(cm-1)

µscat
(cm-1)

µ200
(cm-1)

XF 50 28 0.114 0.065 0.399 0.235 1.150 0.304 0.642

XF 70 31 0.098 0.063 0.345 0.227 0.915 0.293 0.529

XF 90 34 0.088 0.062 0.309 0.222 0.753 0.283 0.453

CT 120 56 0.059 0.052 0.212 0.196 0.343 0.244 0.254

Calculated CT value (HU) −722 0 618 200

Note: Lung, Water and Griffith-Bone are tissue substitutes.39

Abbreviations: CT, computer tomography; Eeff , effective energy; HU, Hounsfield unit; μscat, scatter contribution of LAC; μ200, LAC threshold to separate contribution of
soft tissue from that of bone; XF, X-ray fluoroscopy.

as follows:

Msoft (x, y) = exp

(
−
∑

s
(𝜇soft)x,y,sls

)
, (2)

Mbone (x, y) = exp

(
−
∑

s
(𝜇bone)x,y,sls

)
, (3)

Mscat (x, y) =

[
1 − exp

(
−
∑

s
(𝜇scat)x,y,sls

)]
⊗ g (x, y) ,

(4)

where s was the ray tracing path from the X-ray source
to an arbitrary point (x, y) on a detector plane, ls was the
calculation step length. The Mscat was a semiempirical
approximation of the multiple scattering effects using a
2D Gaussian distribution g. The g had a sigma of 6 mm
that could blur local image features. The 2D convolution
operator was denoted as ⊗.

The DRR (IDRR) as a 2D image could be concisely
presented using the following equation,

IDRR = fLUT ( Msoft◦Mbone + wMscat) , (5)

where operator ◦ means the Hadamard product, w was
the variable weight. The nonlinear contrast differences
between DRR and XF were compensated by patient-
and-angle-specific lookup tables (fLUT). The fLUT was
determined by pairing the sorted pixel values of the
DRR and the XF image obtained on the same day but
not the test XF images.

The label images contained projected-CTV shapes
(pCTV), which were calculated based on whether each
ray tracing passed through the CTV.

pCTV =

{
1 (target)
0 (others) (6)

2.3.2 Data augmentation

Baseline
First, the 4DCT data were augmented using 3D rotation
(± 1◦ in coronal/sagittal and ± 2◦ in axial with 1◦ inter-
val). Next, both DRRs and labels were generated using
the abovementioned method with slight modifications to
make contrast variations,

IDRR = fLUT

(
Msoft◦Mbone + wMscat

R
)
. (7)

Here, the superscript R indicates that the images were
randomly affine transformed within positions (±50 pix-
els; ±26 mm) and angles (±2◦), and w was from 0
to 0.1. Finally, both DRRs and labels were augmented
using 2D crop (shift within ±25 pixels;13 mm),2D resize
(within ±5%), and angle (±2◦).

We defined these datasets containing anatomical-
correct DRRs and labels as baselines. The DRRs and
labels had 256 × 256 pixels, which corresponded to
about 0.52-mm resolution at the isocenter.

Random overlay
As reported in our conceptual study,14 the RO of bones
aimed the low positional CoOCP between bones and
labels, and high positional CoOCP between soft tissues
and labels. The following equation shows the modi-
fied RO operation in which bone DRRs and scatter
components were RO on the soft-tissue DRRs,

IDRR = fLUT

(
Msoft◦Mbone

R
+ wMscat

R
)
. (8)

Here, the random affine transformation was within
positions (±50 pixels;±26 mm) and angles (±2◦).

Noise injection
Our CT data with coarse 2.5-mm slice pitch made
the DRR quality different from the XF quality primar-
ily in local image features rather than global ones. To
avoid overfitting the local feature in DRRs, directing
the CNN attention to global ones would be effective.
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F IGURE 1 Workflow of the proposed method. 4DCT, four-dimensional computer tomography; CNN, convolutional neural networks; DEC,
decoder block; DRR, digitally reconstructed radiograph; ENC, encoder block; pCTV, projected-clinical-target-volume; XF, X-ray fluoroscopic image

The difference in CoOCP in the image appearance
by noise injection (NI) may control the CNN attention
because NI easily destroyed local and fine image fea-
tures while preserving the global ones. The following
expression shows the augmented DRR by NI,

IDRR → IDRR + 𝛼 Irand, (9)

where Irand is a uniform noise image with random frac-
tional values between ± 1 at each pixel. The noise
intensity coefficient α varied up to 15% in the 8-bit image
scale.

2.4 Workflow in training CNN models

The CNN model was U-Net40 because it was more
standard for segmentation than SegNet41 in our previ-
ous study.14 Loss function jacc was defined using the
Jaccard index (JI),42 a similarity coefficient calculating
intersection over union,

JI =
T ∩ L
T ∪ L

, (10)

jacc = 1 − JI, (11)

where union T and L indicates areas in training pCTV
and label pCTV (Figure 1). Each block in Figure 1 has

three set of the convolution (3 × 3), the ReLU activation,
and the batch normalization layer. The number of filters
of all convolutions was constant (32).The optimizer was
Adam (learning rate of 1.0 × 10−2). CNNs were trained
up to 10 epochs with increase in batch size from 4 to
40.43 In the DL training stage, each patient-and-angle-
specific CNN was optimized.

2.5 Workflow in acquisition and
selection of test XF image

The XF images were acquired during patient position-
ing before treatment sessions using a pair of orthogonal
XF systems with X-ray tubes and image intensifiers
(I.I.) (DAR-3000; Shimadzu Co., Kyoto, Japan) equipped
on our proton therapy system (PROBEAT; Hitachi Ltd.,
Tokyo, Japan). In this study, the typical tube voltage
for frontal and lateral XFs was 60−80 and 70−90 kV,
respectively. The tube output was 0.08 mAs/frame. The
30 fps XF imaging doses of 60−90 kV tube voltages
were measured using a glass dosimeter (GD-352M;
Chiyoda Technol Co., Tokyo, Japan). The dose rates at
the isocenter were 0.12–0.35 mGy/s in air and 0.02–
0.09 mGy/s at 100 mm depth in a water-equivalent
phantom. We developed a system that can store the
XFs as 8-bit gray-scale images at a rate of up to 30
fps via a frame grabber board (Solios aA/XA; Matrox



ATTENTION-BASED DL FOR MARKERLESS IGRT 485

F IGURE 2 Examples of the digitally reconstructed radiographs (DRRs) augmented by the proposed methods, and a clinical X-ray
fluoroscopic (XF) image. The red contours indicate projected-clinical-volume. NI, noise injection; RO, random overlay

Imaging System Ltd., Quebec, Canada) and can record
the respiratory signal detected by the laser sensor
in the monitoring system.4 Note that many stored XF
images included halation in lung region because of the
small dynamic range of I.I., as well as required manual
adjustment of the XF contrast by radiologists to ver-
ify the relationship of bone structures for positioning.
In addition, we sometimes used Pb shields to reduce
X-ray overexposure through a polyurethane patient-
immobilization device or air. By selecting the sequential
test images taken without halation and the exposition
longer than one respiration cycle, the XFs acquisition
dates ranged from 4 to 26 days after CT imaging. Orig-
inal test XF images had the size of 1024 × 1024 pixels;
the center 512 × 512 pixels were resampled into 256 ×

256 pixels, which correspond to ∼0.52 mm resolution at
the isocenter.

2.6 Experiments

2.6.1 Calculation environment

The DL calculations were run on a computer with CPU
Core i7-9800X (Intel Co., CA, USA), GPU Quadro RTX
8000 (NVIDIA Co., CA, USA), OS Windows 10 Pro
(Microsoft Co., WA, USA), Framework TensorFlow 2.1.0.
(Google Inc., CA, USA), and Python 3.7.7 (opensource).

2.6.2 Comparison of data augmentation
effects

We investigated how the same U-Net models trained
using different datasets affect the segmentation result.
The lateral angle of patient 9 was selected as the most
complex case where XF images had a large tumor
deformity, almost overlapping with the spine and par-
tially overlapping with the diaphragm. Figure 2 shows
augmented DRRs by baseline, NI, and RO, and an
XF. We trained U-Net(A) with baseline data, U-Net(B)
with NI-augmented data from baseline, U-Net(C) with
RO-augmented data from baseline, and U-Net(D) with

NI-and-RO augmented data from baseline. All training
was performed with the same number of 2000 image
pairs (10 phases of 4DCT × 200 images). After training,
the four trained U-Nets transformed a test XF image of
the expiratory phase (T50) into inferred pCTV images.
We visualized the region of CNN attention as heatmaps
using Grad-CAM44 to investigate the behavior of DLs.

2.6.3 Test for all patients

Basically, the patient-and-angle-specific datasets were
augmented up to 2000 image pairs using the proposed
RO and NI. Figure 3 shows four examples of training
DRRs. Because of insufficient slice coverage of 4DCT
imaging in patients 1−4 and 7, additional 500 image
pairs were augmented from gated 3DCTs. A total of
2500 training image pairs were used to these patients.
Because test images for patients 3 and 10 contained the
Pb shield, the image portion of the shield was copied
to the training DRRs using RO to avoid affecting tumor
tracking (Figure 3). Twenty patient-and-angle-specific
CNNs were obtained after training. In the inference
stage, the trained CNNs transformed the test XF images
in the inferred pCTV images. A total of 2430 XF images
were examined in this study.

2.7 GTs and evaluation indexes

2.7.1 GTs

We developed a 2D−3D matching method with multi-
templates and score classification to identify GTs as
segmented areas in the test XF images (Appendix A).
For each test image,we calculated the GT and standard
deviation (GT_SD) by considering the top 5% template-
matching score.The mean GT_SD in each direction over
ten patients was about 0.7 mm (1σ). A certified oncolo-
gist and two medical physicists verified the GT results
in the test 2430 XF images and later concluded that
the results were acceptable. In terms of methodology,
this GT determination process using machine learning
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F IGURE 3 Examples of digitally reconstructed radiographs (DRRs) for training. The white arrows in (b) and (d) show the Pb shield
reducing X-ray overexposure. The red contours indicate the projected-clinical-volume.

(multi-template and classification) and the manual was
similar to another study.35

2.7.2 Evaluation indices

The inferred pCTVs were compared with GTs using
mean absolute error (MAE) and the 95th percentile of
absolute error (95AE) as centroid difference, JI as the
segmentation accuracy, and Hausdorff distance (HD)45

as the maximum difference between segmented edges.
The estimated 3D tracking errors (e3D) were synthe-
sized using the root sum squares of statistical errors in
each direction.

e3D =

√
e2

LR + e2
AP +

(
e2

SI−F + e2
SI−L

)
∕2 (12)

The eLR, eSI−F, eAP, and eSI−L demonstrated the sta-
tistical errors in LR and SI directional in frontal XFs and
in AP and SI directions in lateral XFs, respectively.

3 RESULTS

3.1 Processing time

The CNN training time was 24 or 30 min for patient-and-
angle-specific dataset containing 2000 or 2500 paired
images. Typically, the loss value decreased to 0.05 after
10 epoch training. The inference processing time for
each test XF was 8 ms/frame.

3.2 Comparison of data augmentation
effects

Figure 4 shows the impact of data augmentations
on attention heatmaps and segmentation results. The
heatmaps calculated using Grad-CAM44 highlight the
attention regions at three blocks of U-Nets. The U-
Net(A) focused its attention on the bone features
(intervertebral disk and spinous process) and then

falsely tracked the pCTV. In the U-Net(B) heatmap, the
extensively distributed regions of interest indicate that
NI directed the CNN’s attention to global image features.
The U-Net(C) heatmap demonstrated that the bone RO
directed the attention on the diaphragm and soft tissue
rather than the bone. U-Net(D) with NI and RO aug-
mentation focused its attention close to the diaphragm
and target boundary, thus resulting in the best segment
performance.

3.3 Inference results for all patients

Figure 5 shows the segmentation results at the exha-
lation phase (T50) for normal tumor-deformation cases
(patients 1−8), and those at inhalation (T00), exhalation
(T50), and middle phases for large tumor-deformation
cases (patients 9 and 10) are shown in Figure 6.Figure 7
shows the pCTV centroid trajectory in the best case
of lateral XFs (patient 1), the worst case (patient 9),
the largest deformation case in JI (patient 10), and the
largest motion case (patient 3). Table 3 lists the cal-
culated tracking errors for all patients. Both JI and HD
are listed in Table 4. Figure 8 shows the dependence
of 95AE on days between CT imaging and test XF
imaging.

4 DISCUSSIONS

4.1 Novelty of this study

This study was the first attempt to visualize the CNN
attention heatmap and explain the DL behavior in IGRT.
The application of DL to radiotherapy requires high
reliability, and its behavior should not be a black box.
Therefore, it is meaningful that our method utilizing the
difference of CoOCP enabled to focus CNN on the
desired image features while ignoring the unimportant
ones, thus improving the explanation and control of
DL.

To our knowledge, this was the first feasibility study
of real-time markerless lung tumor segmentation using
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F IGURE 4 Impact of data augmentations on attention heatmaps and segmentation results. The heatmaps calculated using Grad-CAM
highlight the attention regions. The four convolutional neural networks (CNNs) had the same U-Net structure; however, trained by different
datasets (A: baseline, B: baseline + noise injection [NI], C: baseline + random overlay [RO], D: baseline + NI + RO). DEC4, decoder block next to
the bottom block; ENC4, encoder block next to the bottom block; GT, ground truth; pCTV, projected clinical-target-volume; XF, X-ray fluoroscopic
image

TABLE 3 Tracking errors in all respiration phases

Frontal Lateral Estimated 3D error

LR (mm) SI (mm) AP (mm) SI (mm)
Mean
days

MAE
(mm)

95AE
(mm)

Patient Days MAE 95AE MAE 95AE Days MAE 95AE MAE 95AE

1 12 0.52 0.96 0.58 1.15 8 0.41 0.79 0.46 0.82 10 0.85 1.60

2 19 0.75 1.08 0.70 1.21 15 0.63 1.04 0.83 1.86 17 1.24 2.17

3 20 0.72 1.52 1.00 2.50 25 0.83 2.30 0.92 2.13 23 1.46 3.60

4 9 0.18 0.34 0.44 0.72 9 0.45 0.81 0.86 1.19 9 0.84 1.32

5 26 0.21 0.54 0.56 1.21 20 0.63 1.06 0.45 1.08 23 0.84 1.65

6 22 0.57 1.55 0.60 1.19 22 0.43 1.13 0.67 1.45 22 0.96 2.33

7 14 0.26 0.55 0.31 0.70 4 0.18 0.36 0.64 1.36 9 0.59 1.27

8 14 0.77 1.51 0.51 1.37 20 0.36 0.88 0.40 0.92 17 0.97 2.10

9 23 0.95 1.96 0.72 1.73 23 1.31 2.52 1.16 2.70 23 1.88 3.92

10 22 0.43 1.30 0.80 1.85 14 0.56 1.51 0.65 1.47 18 1.02 2.60

Average 18 0.54 1.13 0.62 1.36 16 0.58 1.24 0.71 1.50 17 1.07 2.26

Abbreviations: AP, anterior-posterior; LR, left-right; MAE, mean absolute error; SI, superior-inferior; 95AE, the 95percentile absolute error.

patient-specific DL using only training DRRs generated
from planning CT data. Although this analysis had only
10 cases, the tracking accuracy within 4 mm sustain-
ing up to 23 days demonstrated the robustness of the
method and its clinical feasibility.

4.2 Attention-based augmentation as
explainable and controllable AI

Several medical AIs presume that the appropriate
dataset should be anatomically accurate and have
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F IGURE 5 Segmentation results in the exhalation phase T50. The pair images show frontal and lateral X-ray fluoroscopic images (yellow
contour: projected-clinical-target-volume by the proposed method, red contour: ground truth). The white arrow shows a Pb shield that reduces
overexposure. The image contrast was tuned to enhance the view.

high-quality images.46,47 However, the trained U-
Net(A) having such anatomical-correct dataset wrongly
focused its attention on prominent bony structures and
resulted in false tracking (Figure 4). Probably, this was
attributed to the unintentional high CoOCP of bones
with labels because of the extremely small lung motion
in expiratory phases (T40, T50, T60) as in Figure 7b.
In contrast, our attention-based dataset included the
anatomically partial-incorrect DRRs by RO.The artificial
difference in CoOCP leads to efficient feature extrac-

tion because the intentional mixing of such images
with low CoOCP relatively increases the CoOCP of
other truly important features to be extracted. Indeed,
as predicted, the U-Net(D) trained by our attention-
based augmentation successfully focused on soft
tissue and global image feature and resulted in a good
segmentation. This strategy of shifting CNN’s attention
from prominent features to truly important ones by
artificial CoOCP will be helpful in other medical AI
studies.
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F IGURE 6 Segmentation results for highly deformed targets (yellow contour: projected-clinical-target-volume by the proposed method, red
contour: ground truth, T00: Inhalation phase, T50: exhalation phase, T25 and T75: middle phases of inhalation and exhalation, respectively). The
white arrow shows a Pb shield that reduces overexposure. The image contrast was then tuned to enhance the view.

4.3 Methodological properness of the
proposed method as tumor tracking

We can discuss the reliability of the proposed method in
terms of the four difficulties mentioned in the introduc-
tion.

1. Obstacle overlapping:The RO could control the focus
of CNN attention.Similarly,we could reduce the influ-
ence of additional obstacles such as the Pb shield
in XF images. Without knowing the exact location of
obstacles in advance, we could include them in the
training images by RO and track the tumor without
being affected by them.

2. Poor visibility: The CNN nature is consistent with the
previous results that more visible surroundings can
improve tracking accuracy.19 In CNN, the more lay-
ers are stacked, the wider is the receptive field, for
example, the receptive field at the bottom layer of
our CNNs corresponds to the surrounding 186-pixel
square (53% of the image area). From this CNN fea-
ture itself, one may expect that certain latent features
correlating with the tumor motion in the receptive field
will be extracted without manual processing.

3. Anatomy and/or respiration change: The RO,
enabling more soft tissue flexibility than anatomical-
correct DRRs, makes our method robust to
underestimating tumor motion in planning 4DCT and
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F IGURE 7 Centroid motion of the projected-clinical-target-volume in lateral X-ray fluoroscopy using deep learning and ground truth and
respiration signals

irregular motion patterns in treatment sessions. This
is supported by the fact that the tracking error did
not increase in the lateral XFs of patient 2, although
approximately 10-mm change was observed in
respiratory motion ranges between planning 4DCT
(2.0 mm) and clinical XFs (11.6 mm).

4. Image quality difference: The DRR contrast was
approximately compensated by the LUT.Although the
spatial resolution was not improved, we addressed
it by the NI focusing the CNN attention on the

global image features rather than local ones. In
this study, we set the noise level up to 15% as
a tentative optimal value after several trials. Fur-
ther improvement in DRR quality48,49 may reduce
noise and focus more CNN attention on local fea-
tures. However, even in this case, it will be necessary
to prevent overlearning with local features, and
not for image quality differences but also for daily
anatomical changes that we cannot measure in
advance.
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TABLE 4 Jaccard index and Hausdorff distance

Jaccard index Hausdorff distance (mm)

Patient
Frontal
Mean ± SD

Lateral
Mean ± SD

Frontal
Mean ± SD

Lateral
Mean ± SD

1 0.84 ± 0.04 0.90 ± 0.02 2.2 ± 0.6 1.2 ± 0.4

2 0.86 ± 0.02 0.85 ± 0.03 2.4 ± 0.5 2.9 ± 0.6

3 0.88 ± 0.04 0.86 ± 0.06 1.6 ± 0.7 1.7 ± 0.8

4 0.94 ± 0.01 0.90 ± 0.03 0.6 ± 0.4 1.1 ± 0.3

5 0.91 ± 0.03 0.90 ± 0.04 1.3 ± 0.6 1.6 ± 0.8

6 0.88 ± 0.05 0.90 ± 0.06 1.1 ± 0.6 0.9 ± 0.7

7 0.94 ± 0.01 0.91 ± 0.01 1.8 ± 0.3 2.8 ± 2.0

8 0.88 ± 0.04 0.88 ± 0.02 2.9 ± 0.5 2.8 ± 1.2

9 0.87 ± 0.05 0.90 ± 0.03 4.9 ± 2.5 3.7 ± 1.8

10 0.91 ± 0.03 0.88 ± 0.05 2.4 ± 1.7 3.1 ± 2.0

Average 0.89 ± 0.03 0.89 ± 0.04 2.1 ± 0.8 2.2 ± 1.1

Abbreviation: SD, standard deviation.

F IGURE 8 Dependence of the 95th percentile of absolute error
(95AE) on the interval days between computer tomographic imaging
and test X-ray fluoroscopic imaging. The dashed envelope
approximates the bounding points of the estimated 3D 95AE.

4.4 Comparison with other studies

There are no similar studies for comparison of seg-
mentation in clinical kV XF images; however, regarding
the tracking position, we can compare the DL studies
reported by Wei et al.34 and Hirai et al.35 Their lung track-
ing errors in MAE were 1.8 mm (SI)/1.0 mm (LR) for 15
cases34 and 0.76 mm (SI)/1.00 mm (LR)/1.12 mm (AP)
for five cases.35 In contrast, our MAE for 10 cases was
0.67 mm (SI)/0.54 mm (LR)/0.58 mm (AP).Moreover,our
CNN training time (30 min) and inference time (8 ms)
were over 22 and about five times faster, respectively,
compared to their reports (Wei: 20 h and 40 ms, Hirai:
11 h and 38 ms). Compared with other non-DL meth-
ods using lung kV XFs, our SI error (0.67 mm) and 3D
95AE (1.3−3.9 mm) were comparable with that of Teske
et al. (0.9 mm)11 and Shieh et al.’s (2.6−5.8 mm).50

Moreover, good correlations between SI trajectories and
respiratory signals were similar to those in the recent
reports.51,52 Note that the tracking accuracy is highly
case-dependent, thus making the direct comparison
difficult.

4.5 Limitations

Because the 10-phased 4DCT data with 2.5 mm slice
in this study were coarse in time and space, the track-
ing accuracy tended to deteriorate in large deformation
cases. Therefore, the GT accuracy in our analysis
was not perfect. While our calculation accounted for
random displacements beyond the motion range, it
only accounted for the same deformation as the dis-
crete 10-phased 4DCT, that is, we could not reflect
larger deformations in the GT. Nevertheless, our GT
calculation method will be helpful in similar studies.
More sophisticated verifications that include nonlinear
deformation would be possible if advanced methods
will provide an instantaneous 3D reconstruction with
sufficient accuracy from a kV XF image.53

Because of the mechanical limitations of our system,
the test XF images were taken in the frontal and lateral
directions only; the tracking accuracy in arbitrary angles
was unclear.As the test XF images were not taken during
treatment beam irradiation, we must verify the influence
of XF image degradation by scattered radiation from
treatment beams.54

This study was primarily performed with right lung
patients with relatively large tumors; more complicated
cases, such as left lung tumors affected by the heart-
beat, should be examined later. While the proposed
method that leverages the data-driven nature of DL is
promising, additional study is required to validate it in a
broader group of patients.

5 CONCLUSIONS

This study visualizes the CNN attention in a markerless
lung tumor segmentation method using patient-specific
DL. We confirmed that the proposed attention-based
data augmentation with RO and NI yielded explainable
and controllable CNN behavior. The tracking accuracy
demonstrated the feasibility of the proposed method as
a real-time segmentation method for markerless lung
tumors in kV XF images for IGRT.
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APPENDIX A: GROUND TRUTHS
CALCULATION
The GT segmentation in XF image was determined by
modifying the 2D−3D matching method in Tashiro et al.’s
study.55 They divided a CT data into two volumes of
interest (VOIs);however, the overlap state was discretely
calculated by replacing the larger CT value of two VOIs.
In contrast, we divided the LAC value using Equation 1
and continuously calculated the mixed state by adding
two VOIs (Figure A1). In step 1, the 3D LAC volume in
an arbitrary phase of 4DCT was divided into 𝜇soft and
𝜇bone. In step 2, two 3D LAC were shifted and rotated
using a random affine transformation. Next, the 3D
LACs were projected as DRRs, and the corresponding
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F IGURE A1 Workflow of ground truth (GT) detection. 3D, three-dimension; 4D CT, four-dimensional computer tomography; DRR, digitally
reconstructed radiograph; pCTV, projected clinical-target-volume; XF, X-ray fluoroscopy; TPM, template matching

step 3, the TPM was processed in the test XF images.
From the top 5% TPM scores, we calculated the score-
weighted mean position (SWMP) and standard devia-
tion (GT_SD).The GT segmentations for each XF frame
were determined by placing the pCTVs corresponding
to the best DRR templates on the SWMPs. The GT

positions of the tumor were calculated by the centroid
of the GT segmentation. However, the multitemplate
score-classification method was so time-consuming
that the calculation time was >1 min for each XF
frame.
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