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REVIEW

Nitric oxide

Adrian J Farrell, David R Blake

Nitric oxide is a gas generally known by its
chemical formula NO, or NO. The dot
denotes an unpaired electron, which is the
definition of a free radical; pbssessing this, NO
is highly reactive and quite -different from the
anaesthetic agent nitrous oxide (N20), which
is extremely stable. Until recently, NO was best
known as a constituent of car exhaust fumes,
contributing to the photochemical smog of
cities such as Los Angeles. In contrast, the
work which crucially altered this perception
was performed in a leafy Kentish suburb at the
Wellcome Foundation in Beckenham, UK. In
1987, it was shown that NO was the long
sought endothelium derived relaxing factor
(EDRF).' This was a crucial discovery for
cardiovascular biology, and it soon became
evident that NO was produced by many
cell types and performed diverse functions,
including inhibition of platelet aggregation and
mediation of the cytotoxic action of activated
macrophages, and had a role in central and
peripheral neurotransmission.
NO is enzymically synthesised from

L-arginine by oxidation of one of the terminal
guanidino nitrogen atoms of L-arginine,2-
a process inhibited by L-arginine analogues
such as N0-monomethyl-L-arginine (LNMMA).
Figure 1 illustrates the mechanism by which
NO mediates vasodilatation. NO is synthesised
within the endothelial cell and released in
response to vasodilator stimuli such as acetyl-
choline and bradykinin. Released NO diffuses
to adjacent vascular smooth muscle cells
(VSMC), where it activates guanylate cyclase
(GCase) so increasing cyclic GMP (cGMP)
concentrations. Increased intracellular cGMP
concentrations cause relaxation of VSMC,
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Figure 1 Mechanism of nitric oxide (NO) mediated
vasodilatation in response to various stimuli such as
bradykinin or acetylcholine. NO diffuses into adjacent
vascular smooth muscle cells (VSMC), activating
guanylate cyclase (GCase), increasing cGMP levels,
and producing VSMC relaxation and vasodilatation.
In contrast, NO inhibits platelet adhesion and aggregation.
cNOS = Constitutive NO synthase; L-Arg = L-arginine;
L-Cit = L-citrulline.

resulting in vasodilatation. However, the key to
understanding the diverse roles of NO is that
NO synthases (NOS) generate NO by both
constitutive and cytokine/endotoxin induced
pathways.

Enzymology-constitutive and inducible
NO synthases
The original description of endothelial cell NO
generation involved the constitutive enzyme
(cNOS),' 2 which is also present in the adrenal
gland,3 platelets,4 fibroblasts,5 polymorpho-
nuclear leucocytes (PMN),6 brain,7 8 retina,9
and some non-adrenergic non-cholinergic
nerve terminals.'0 The inducible enzyme
(iNOS) is present in many cells including
endothelial cells, 1 12 VSMC 13 macro-
phages,'4 '5 PMN,'6 lymphocytes,'7 fibro-
blasts,5 hepatocytes, 8 mast cells,19 renal
mesangial cells,20 rabbit articular chondro-
cytes,2 and rabbit synovial fibroblasts.23 NO
synthesis by cells in which iNOS has been
induced is several orders of magnitude greater
than in cells producing NO via cNOS.
The NO synthases require NADPH,

tetrahydrobiopterin (BH4), flavin adenine
dinucleotide (FAD), flavin mononucleotide
(FMN), and haem as cofactors, but the consti-
tutive enzyme is Ca2+/calmodulin dependent
and the inducible enzyme is Ca2+/calmodulin
independent. The cerebellar cNOS was the
first to be isolated24 25 and cloned,26 revealing
a 1433 amino acid 160 kDa protein. The cell
membrane located endothelial cNOS (both
bovine27-29 and human 30 31 ) are about 130 kDa
and exhibit only 58% sequence homology with
rat cerebellar cNOS,27 compared with the 51%
homology between rat cerebellar cNOS and
mouse macrophage iNOS32 which, like other
cellular iNOS, is a cytoplasmic protein of about
130 kDa.32-36 The notations 'eNOS' and
'nNOS' have been used for the cNOS of
endothelial and neuronal cells, respectively,
though neither is confined to its respective cell
type. The genes for the human eNOS, nNOS,
and iNOS are located on chromosomes 7, 12,
and 17 respectively.3740 Cloning26 and other
studies4' also suggest that NOS are cytochrome
P-450-type haemoproteins. Essentially, these
function by transferring electrons via flavin
moieties to haem, and it is likely that
FAD/FMN fulfil a similar role in relation to
NOS during the oxidation of L-arginine to
NO. It is also clear that the tight binding
of calmodulin to iNOS explains its
Ca2+/calmodulin independence,42 that cNOS
phosphorylation via several protein kinases
may be an important influence on NOS
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activity,43 and that the similarity between the
NOS haem moiety and that of GCase
represents a mechanism by which NO might
achieve feedback inhibition ofNOS.44

Cytokine induction
The best recognised inducers of iNOS are
interferon gamma (IFNy), tumour necrosis
factor cx (TNFot), interleukin-1 (IL-1), and
lipopolysaccharide (LPS)/endotoxin.'2 13 20-23
Induction of iNOS is suppressed by TGFr,
IL-4 and IL-1O alone,45 46 and synergistically in
macrophages,47 whilst IL-8 inhibits iNOS
induction in PMN.48 The inducer and
suppressor cytokines noted above correspond
to those secreted by the ThI and Th2 subsets
of CD4 positive T cells (see below: Immune
system). Glucocorticoids also inhibit the
induction, but not the activity, of the inducible
enzyme. 1" The cytotoxic potential of NO
demands strict regulation of iNOS expression,
thus generation of significant quantities ofNO
requires a specific order of stimulation by at
least two agents.49 This is illustrated by the
synergy between IFN-y and LPS which,
respectively, were recognised as primer and
trigger of various macrophage functions,
including cytotoxicity, before NO was shown
to mediate the latter. Mouse macrophages
produce similar quantities of NO when
costimulated with IFNy and LPS or IFN-y
followed by LPS, but LPS followed by IFNy
yields much less NO49 in proportion to the
length of preincubation with LPS.50 NO
production is also sustained by continued
stimulation with LPS, but not IFNy.49
Regulation of iNOS expression may occur at
many levels, though the synergistic effect of
IFN-y and LPS is principally transcriptional.5'
Recent studies of the promoter region of the
mouse iNOS gene have identified putative
binding sites for several transcription factors,52
including that of an IFN-y responsive tran-
scription factor critical to the synergy between
IFN-y and LPS.53

Cellular effects and mechanisms
The function of nitric oxide as an intercellular
messenger is enhanced by its low molecular
weight, high diffusibility, and lipid solubility,
whilst the cellular effects ofNO owe much to
its reactivity as a free radical. The best
described interactions are those with iron
containing proteins and the superoxide anion
(02 ). The principal action of constitutive NO
is activation of GCase by binding to the haem
group of the enzyme; this is believed to result
from breakage of the haem-protein bond
induced by NO-haem binding. The result is
an increase in intracellular cGMP, achieving
smooth muscle cell relaxation principally
by decreasing intracellular Ca2". Conversely,
cytokine induced NO production mediates
cytotoxicity in the target cells of macrophages
by inhibiting non-haem iron-sulphur centred
enzymes and releasing iron.54 Key iron-sulphur
(Fe-S) enzymes inhibited by NO synthesis
include aconitase, the rate limiting enzyme of

the citric acid cycle, complexes I and II in the
mitochondrial electron transport chain, and
ribonucleotide reductase which synthesizes
the deoxynucleosides required for cell repli-
cation.'4 5" In contrast, NO also inhibits the
glycolytic enzyme glyceraldehyde-3-phosphate
dehydrogenase by stimulating its ADP-
ribosylation.55
The above information suggests that

substantial NO induced increases in intra-
cellular free iron concentrations occur directly
as a result ofNO releasing iron from both iron
containing enzymes56 and ferritin.57 However,
this may be mediated by NO via an Fe-S
containing protein (iron regulatory factor
(IRF)) involved in cellular iron homeostasis.
IRF binds to iron responsive elements in the
mRNAs of ferritin and the transferrin receptor.
In iron replete cells, iron responsive element
binding by IRF is low, whereas in iron poor
cells such binding by IRF increases, impairing
iron storage via ferritin. NO increases iron
responsive element binding by IRF,58 5
decreasing the biosynthesis of ferritin, which
should lead to the observed increases in intra-
cellular free iron levels. The latter would also
enhance the generation of reactive oxygen
species via the Fenton and Haber-Weiss
reactions.
The interaction of NO with 02 is quite

different from that with iron, and is one of
several possible pathways for NO breakdown
in vivo. The result is the elimination of both
radicals.60 In the vasculature, this would
abrogate the vasodilator and antithrombotic
properties of NO, but also remove 02, which
is implicated in ischaemic reperfusion injury of
both the myocardium61 and the synovium.62
Under some circumstances the above mech-
anism would appear homeostatic were it not
that the reaction product, the peroxynitrite
anion (ONOO-), is a powerful oxidising agent
that may also yield the hydroxyl radical.63 64
Whilst contributing to the cytotoxicity of
activated macrophages and neutrophils, forma-
tion of peroxynitrite and the hydroxyl radical
may also mediate tissue injury in hypoxic-
reperfusion injury, acute inflammation and
other situations generating NO or 02.

In aqueous solution, NO is spontaneously
oxidised by oxygen to nitrite (N02), which in
ex vivo studies is the major metabolite ofNO
in the coronary circulation.65 However, in vivo
NO2- may be further oxidised by erythrocyte
haemoglobin to nitrate (NO3) which is also
the end product of the interaction of NO and
02-. The half life of NO is between three and
50 seconds, but may be much longer
depending on ambient NO, oxygen and 02
concentrations.' The half life may also be
extended physiologically by NO forming
nitrosoproteins with vasorelaxant properties
attributable to NO release,66 enabling NO to
exert effects at distant sites.

Below, we briefly consider actions of NO in
the cardiovascular, nervous and immune systems
that help to illuminate the pathophysiological
relevance of NO to patients with rheumatic
diseases including multisystem disorders.
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The cardiovascular system
The simplified representation of endothelium
dependent vasodilatation by NO (fig 1) shows
that NO is released by endothelial cells in
response to several agonists. NO is the major
influence on basal vascular tone in vitro and
in vivo,67 including that of the coronary
circulation.68 NOS inhibitors such asLNMMA
produce vasoconstriction in both the arterial
and venous systems including the micro-
circulation, with the most marked effects
evident in large arterial resistance vessels,69
though these effects do vary between species.
In man, NO mediates both basal and stimu-
lated arterial vasodilatation and stimulated
venodilatation.70 71 Conversion to NO or direct
release ofNO is also the mechanism by which
organic nitrates exert their beneficial cardio-
vascular effects.
Thus NO is anticipated to have a central role

in the endothelial dysfunction and patho-
physiology of atherosclerosis and essential
hypertension. The former is a complex process
that may have multiple effects on coronary
endothelial NO synthesis-release and vice versa.
Vasorelaxation is impaired in early athero-
sclerosis,72 and recent studies of coronary
artery explants show that basal and stimulated
NO release are impaired in established disease,
not just at sites of atheroma but throughout the
vessel, implying generalised endothelial dys-
function.73 Cholesterol, and especially its low
density lipoprotein fraction (IDL), may be
responsible for such dysfunction, as both are
known to impair endothelium dependent vaso-
dilatation and NO release,74 whilst L-arginine
(the precursor of NO) reverses lipid induced
enothelial dysfunction in both animals75 and
man.76 Lipids may exert this effect via impair-
ment of endothelial cell NO synthesis, though
inactivation of NO by oxidised LDL77 and
LDL interactions with guanylate cyclase78 may
also be important. However, impaired vaso-
dilatation is only one consequence of the
presence of decreased amounts of NO in the
endothelial milieu. NO has the potential to
inactivate 02- which would otherwise oxidise
LDL79-a modification proposed as crucial in
atherosclerosis as it promotes the uptake of
LDL by macrophages.80 Generation of reactive
oxygen species is also presumed to be a
principal factor in NO mediated hypoxic-
reperfusion injury.8' 82
NO inhibits platelet adhesion,83 the key

step in thrombosis in addition to platelet
aggregation which results in the release of
potent vasoconstrictors and mitogens. In vivo
NO is crucial in opposing platelet induced
vasoconstriction84 caused by agents such as
thromboxane; however, other platelet products
such as serotonin and ADP/ATP also stimulate
endothelial cell NO release, opposing vaso-
constriction, and inhibit platelet function in
tandem with platelet derived NO4 and
prostacyclin.85 Platelet derived mitogens are
also the presumed cause of VSMC pro-
liferation characteristic of atheroma, whichNO
antagonises directly via an antiproliferative
effect on VSMC.86 The significance of negative
platelet regulation by organic nitrates in

clinical usage is debatable. Mediated via NO,
nitrates are, of course, potent vasodilators,
though their long term efficacy is limited by the
development of tolerance, the mechanism of
which remains controversial. Explanations
include depletion of intracellular thiols essential
for the conversion of organic nitrates to NO in
addition to the regulation of GCase87 and
desensitisation of GCase to NO88 making
VSMC less responsive to nitrates.

Impaired NO dependent vasorelaxation is
evident in both animal models of hypertension
and hypertensive patients.89 Moreover, orally
administered NOS inhibitors produced sus-
tained hypertension for the duration of studies
lasting five to eight weeks.90 9' Potential
mechanisms include a central nervous system
(CNS) action92 or alterations in renal homeo-
stasis, as there is increasing evidence that NO
has important actions in the kidney. NOS
inhibitors cause renal vasoconstriction, a
decrease in GFR, and an increase in glomerular
capillary pressure,93 whilst increased urinary
nitrite (NO2-) and nitrate (NO3-) in response
to a high salt intake implicate NO in the renal
mechanisms concerned with regulating blood
pressure.94 This is supported by data that
NO influences perfusion pressure control of
renin secretion94 and that low doses of NOS
inhibitors cause volume dependent hyper-
tension.95 Impaired NO synthesis is also
implicated in the hypertensive response of salt
sensitive Dahl/Rapp rats fed a high salt diet-
an effect both prevented and reversed by
feeding L-arginine.96

The nervous system
Research to date has focused on the con-
stitutive nNOS present in both the central and
peripheral nervous systems, although iNOS
has been described.97 NO synthesis, originally
described in the forebrain and cerebellum, is
evident throughout the brain,98 including
the cerebral cortex, corpus striatum, mid-
brain, hippocampus, and pituitary. Moreover,
immunological and in situ RNA hybridisation
studies have shown that nNOS is responsible
for the activity of neuronal NADPH dia-
phorase-a well established histochemical
stain.99 100 This is important, because NADPH
diaphorase activity (and thus nNOS) is present
in only a small percentage of neurones that
are particularly resistant to degeneration in
Huntington's chorea,'0' hypoxia,'02 and neuro-
toxicity caused by excitatory amino acid neuro-
transmitters.'03 Principal among the last of these
is glutamate, which, acting via stimulation of
the postsynaptic N-methyl-D-aspartate receptor
(NMDA), is a proven mediator of neuro-
toxicity in models of stroke and a candidate
mediator in neurodegenerative disorders.
NMDA receptor activation may achieve
different cellular effects via receptor diversity,
but the most prominent effect is a Ca2" influx,
which would be expected to increase neuronal
Ca2" concentrations sufficiently to activate the
Ca2" dependent nNOS. Experimental evidence
from several groups has confirmed that NO
mediates glutamate neurotoxicity in vitrol04
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and in vivo.9 105 106 The neuroprotective effect
of superoxide dismutase implicates peroxy-
nitrite or its decomposition products.'07 How-
ever, some NO releasing compounds are
neuroprotective,107 supporting the proposal
that the redox state of NO determines
toxicity.'08 It is suggested that while NO is
neurotoxic, NO', the nitrosonium ion, is
neuroprotective. A plausible explanation is that
NO+, by reacting with thiol groups, nitrosylates
the NMDA receptor, thus blocking NMDA
receptor neurotoxicity mediated by NO.
Clinical trials are currently evaluating NMDA
receptor antagonists in acute stroke, but
inhibition of NOS in a mouse model of acute
stroke proved more effective in limiting
neuronal damage than did NMDA receptor
antagonism.'09 The evidence above suggests
nNOS inhibition may have a therapeutic role
in stroke and neurodegenerative disorders.
CNS neurotoxicity is clearly an aberrant

pathological consequence ofNOS activity that
also has important physiological functions in
the brain. This is particularly true in the
'molecular' layer of the cerebellum, where
granule and basket cells produce NO in
response to NMDA receptor activation by
mossy fibres and parallel fibres, respectively."0
Probable targets ofNO are adjacent cells such
as astrocytes and other glia, in addition to
neurones and the GCase of the presynaptic
terminal"' (fig 2). This last possibility suggests
the potential of NO to act as a retrograde
synaptic messenger,12 presumably modulating
synaptic transmission, and stimulated the
hypothesis that NO has a role in the plasticity
of the CNS."3 This is sustained by evidence
that, in the cerebellum, NO mediates long term
synaptic depression,"'' believed to be the
cellular mechanism of cerebellar learning and
analogous to the long term potentiation in the
hippocampus that is implicated in learning and
memory."12 NO has been shown to enhance
and NOS inhibitors to impair"5 long term
potentiation in the hippocampus, whilst in vivo
NO inhibition blocks spatial learning."16 It has

Adjacent Neurotoxicity
cells *

Figure 2 Modelfor the role of nitric oxide (NO) as a
CNS neurotransmitter. Glutamate (glu) is an excitatory
neurotransmitter acting on the N-methyl-D-aspartate
receptor (NMDAr). NMDAr stimulation produces a

postsynaptic calcium influx (Ca) resulting in NO synthesis
by the calcium dependent constitutive NO synthase
(NOS). NO may act as a retrograde neurotransmitter
acting on the guanylate cyclase (GCase) of the presynaptic
terminal to enhance neurotransmission. Diffusing to
adjacent cells, it may also link and enhance coordinated
local neuronal activity. There is also strong evidence that
NO mediates NMDA neurotoxicity.

been proposed that NO modulates synaptic
efficacy by acting as a local temporo-spatial
signal, strengthening synapses that fire in a co-
ordinated manner and weakening those that do
not, thus linking local neuronal activity."3 The
same authors also proposed a role for NO in
the development of the nervous system and the
coupling of neural activity to local increases in
cerebral blood flow, demonstrated by positron
emission tomography (PET). Indeed, nNOS
does mediate vasodilatation,"17 and NOS in-
hibition uncouples the increased cortical blood
flow that occurs with peripheral nerve
stimulation. 118 119
The elucidation of 'vascular evoked responses'

using PET has advanced our understanding
of pain and, specifically, its cortical appreci-
ation. NO is a candidate mediator of such
phenomenona and is implicated in pain. NO
exhibits a peripheral analgesic effect via
stimulation of GCase and increased cGMP
concentrations121122 and, when administered
systemically, L-arginine also has a central
antinociceptive action via opioidergic path-
ways.'23 124 In contrastNO also mediates hyper-
algesia at the spinal or supraspinal level125'27
and is implicated in both the development of
tolerance to morphine,'28 and thalamocortical
function.'29 The above suggests not only an
important role forNO in pain mechanisms, but
that its actions may be pro- or antinociceptive
at different sites.
Key sites of NO synthesis within the

autonomic nervous system are non-adrenergic,
non-cholinergic (NANC) nerve terminals
that generally serve to relax smooth muscle.
NO appears to be the principal NANC
neurotransmitter, and NO mediated NANC
function has been identified in the gastro-
intestinal tract,'30 131 corpus cavernosum,132 the
respiratory system,'33 and arterial vessels.'34
Evidence suggests that NO is the physiological
mediator of penile erection,135 modulates the
effects of bronchoconstrictors,136 and has a key
role in gut sphincter control:137 mice with an
nNOS gene knockout develop normally with-
out histological abnormalities of the CNS, but
with dilation of the stomach and pyloric muscle
hypertrophy similar to that of pyloric stenosis
in human infants (see below).138

The immune system
IMMUNOREGULATION, INFLAMMATION AND

RHEUMATIC DISEASES
The discovery that NO was EDRF, was soon
followed by the realisation that NO was also
responsible for the cytotoxicity of activated
macrophages12'14 and recognition of con-
stitutive and cytokine inducible NOS. How-
ever, NO has a broader and more complex role
in immune functions and inflammation, in
which both cNOS and iNOS are relevant.
Important in this respect has been the recent
focus on the role of the endothelium in inflam-
mation. At the endothelial level, the principal
actions of constitutive NO synthesis are
vasodilatation and inhibition of platelet
aggregation. These functions are particularly
relevant to both the abnormal vascular tone
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associated with many inflammatory rheumatic
diseases, evinced by Raynaud's phenomenon
and the presence in chronic inflammatory
diseases of microvascular abnormalities
including microthrombi.'39 Indeed, a primary
vascular pathogenesis has been proposed for
both Crohn's diseasel'40 and rheumatoid
arthritis,'39 whilst in the latter there is also
evidence that exercising joints causes synovial
hypoxia-reperfusion leading to further micro-
vascular injury. 141 142

In the circumstance of hypoxia-reperfusion,
NO has the potential to mediate or modulate
free radical induced injury, though another
important consequence of hypoxia-reperfusion
is an increase in leucocyte adherence to
endothelium. 142a In a cat model of myocardial
ischaemia-reperfusion, impaired basal NO
release during reperfusion accounted for the
increased leucocyte adhesion observed.'43 Per-
fusion of normal cat mesenteric venules with
NOS inhibitors produced a 15-fold increase in
leucocyte adherence, but lesser increases in
leucocyte emigration.'" Further studies showed
a marked increase in leucocyte adhesion,
emigration, and vascular permeability 30
minutes after perfusion of NG-nitro-L-arginine
methyl ester (L-NAME), which was reduced by
monoclonal antibodies to CD 18, intercellular
adhesion molecule-i, or P-selectin.145 Sub-
sequent evidence suggests that the L-NAME
induced increases in leucocyte adhesion are the
result of endothelial 02- and mast cell
mediators unopposed by endothelial NO,146
which is consistent with in vitro evidence that
NO blocks histamine and platelet activating
factor release by mast cells.'47 148This is further
persuasive evidence that the cNOS has an
important role in stabilising the endothelium
and opposing early inflammatory changes.
Conversely, in rat models of immune complex
mediated alveolitis and dermal vasculitis, NOS
inhibitors greatly reduced indices of tissue
injury.'49 150 Confirmation ofNO as a principal
effector mechanism of immune mediated
vascular injury has therapeutic implications.
Moreover, the protective effect of inhibiting
iNOS in this circumstance is entirely
compatible with the expected beneficial effects
of constitutive NO release outlined above.
NO is also an effector and regulator of white

cell function, as lymphocytes,'7 PMN16 and
macrophages'4 all possess NOS activity. As
with the endothelium, the effect ofNO is likely
to be determined by the concentration ofNO
in the local milieu and thus reflect local iNOS
activity, illustrated by the effect of NO on
PMN and monocyte chemotaxis.'5' 152 The key
cytotoxic effector in PMN is 2- and though
NO has an analogous role in macrophages, it
was once thought of little relevance to PMN.
In fact, phorbol myristate acetate (PMA)
stimulation of the neutrophil respiratory burst
generates both NO and 02, though increases
in NO synthesis occur at lower PMA concen-
trations, plateau earlier, and are generally less
than those of 02-. l Purification of the iNOS
in human PMN reveals an associated 22 kDa
protein that generates 02, whilst stimulation
ofthe whole fraction by PMA increases 2- and

decreases NO generation.'54 NO has also been
shown to inhibit PMN 02- production via a
direct effect on the membrane NADPH
oxidase,'55 and to inactivate the 02- generating
enzyme xanthine dehydrogenase/oxidase in
macrophages,156 suggesting negative feedback
regulation of 02- generation by NO and vice
versa. The above suggests a close regulatory
relationship between NO and 02- and the
reactive oxygen species generating potential of
this interaction.
Low levels of NO have been implicated in

lymphocyte activation and proliferation.'59 NO
donors such as sodium nitroprusside, and to a
lesser degree gaseous NO, increase lymphocyte
uptake of glucose (an early event during
lymphocyte activation), stimulate TNFa pro-
duction and nuclear transcription factor KB
(NF-KB) binding activity and enhance activity
of the tyrosine kinase, p561ck, which is
implicated in lymphocyte signalling events.157
All the above are effected via a cGMP
independent mechanism, though guanylate
cyclase activation by NO may be necessary for
optimal lymphocyte proliferation.'58 L-Arginine
depletion and NOS inhibitors also impair
phytohaemagglutinin (PHA) stimulated pro-
liferation,'58 whilst dietary L-arginine supple-
mentation in man increases lymphocyte mito-
genic responses to concanavilin A (con A) and
PHA.159 L-Arginine has also been shown both
in vitro and in vivo to enhance natural killer
and lymphokine activated killer activity.'60

Paradoxically, high concentrations of NO
which occur following macrophage activation
suppress antigen presenting cell activity'6' and
T cell proliferation. NOS inhibition produced
a striking increase in PHA induced prolifer-
ation in rat spleen cell cultures, and greatly
enhanced both the allogeneic mixed lympho-
cyte reaction and the development of lympho-
cyte cytotoxicity in both rats and mice.'62
Mills confirmed the observation that NOS
inhibitors enhanced mitogen induced pro-
liferative responses, that this was true for a
variety of mitogens that activate different
lymphocyte subsets, that macrophages were
the 'suppressor' cells producing NO, and that
differences between rat and mouse responses
were probably quantitative. 163 Concurrent
studies reinforced these findings and showed
that T cell IFN-y was required to induce the
NO mediated suppressive effects of mouse
peritoneal macrophages.164
These findings are of very direct relevance to

organ transplantation. In vivo studies of a
sponge matrix allograft model revealed much
greater concentrations of NO breakdown
products (NO2-/NO3-) in allograft fluid com-
pared with syngeneic graft fluid, whilst in vitro
allogeneic graft infiltrating cells produced more
NO than corresponding syngeneic cells, and
only developed cytotoxicity when treated with
the NOS inhibitor INMMAA.65 In rat studies,
LNMMA also promoted allospecific cyto-
toxicity166 and restored depressed mitogenic
responses to con A.'67 Thus macrophage NO
synthesis, induced by cytokines derived from
activated T cells, may effect negative feedback
by suppressing T cell proliferation.
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Direct evidence of NO production during
allograft rejection in vivo has been provided by
electron paramagnetic resonance (EPR). In rat
heart allografts, rejection corresponds with the
appearance of an NO signal on EPR in both
blood and graft tissue, which is prevented by
the immunosuppressive, FK506.168 After small
bowel transplantation, both rejection and graft
versus host disease (GVHD) were preceded by
increased serum NO2-/NO3- concentrations,
but were prevented clinically and histologically
(as was the increase in serum NO2-/NO3-
levels) by treating transplant recipients with
FK506.'69 Widening the range of allogeneic
grafts undertaken yielded similar findings,'70
confirming NO2-/NO3- concentrations as an
early marker of acute rejection or GVHD that
merit further investigation in clinical practice.
However, this proposal raises the questions
whether NO synthesis in this context is a
specific indicator of immune activation, and
whether its net effect is to inhibit or promote
rejection or GVHD. Whilst NO is cytostatic,
limiting lymphocyte proliferation, increased
NO synthesis may reflect macrophage and cyto-
toxic lymphocyte activity that is responsible for
rejection and GVHD-a notion supported by
the protective effect ofLNMMA in GVHD.'7'
More evidence is also emerging in respect of

the differential effects of cytokines on iNOS
activity, and vice versa. As noted above, IFN-y
and TNF are key inducers, and IL-4 and IL-10
key suppressors, ofiNOS activity, produced by
the Thi and Th2 subsets of CD4 T cells,
respectively. Activated Thi cells produce
large quantities of NO in comparison to
undetectable levels in Th2 cells; however, NO
synthesis by Thl cells exerts negative feedback
by suppressing their production of IFN-y and
IL-2. 172 NO does not appear to have any
significant effect in respect of Th2 cytokine
production. Given the important proliferative
effects of IL-2 on Thl and CD8 cells, it is
argued that NO prevents the over expansion of
the T cell subsets that mediate immuno-
pathology.'72 Also important in this context is
that NO exerts negative feedback by inhibiting
both iNOS and cNOS via the haem moiety of
NOS.173

Inhibiting NO also modulates carrageenin
and dextran induced acute inflammation in the
rat'74 and ADPfbradykinin induced changes in
microvascular permeability in the hamster
cheek pouch model.'75 In addition, NO
mediates neurogenic plasma exudation in the
lungs of guinea pigs,'76 oedema formation
caused by substance p'77 and, together with
sensory nerves, skin inflammation caused by
bradykinin.'78 NO inhibition also reduced
neurogenic inflammation in adult rats, which
was prevented by treatment with capsaicin
in the neonatal period. 179 These findings
suggest a central role for NO in neurogenic
inflammation.

Insulin dependent diabetes illustrates the
multifunctional role of NO in an autoimmune
disease that involves T cell dependent and
cytokine mediated destruction of the pancreatic
islet ,B cell.'80 NO production by human islets
is greatly enhanced by combinations of IL-1 P,

TNF, or IFN-y, while several studies suggest
inhibition of insulin secretion by IL-1,B and
other cytokines is mediated by NO.'8' 182
Both islet cells and macrophages have been
shown to kill islet cells via NO in vitro.'83
Interestingly, cyclosporin A protects islet cells
from NO cytotoxicity in vitro, but NOS
inhibitors are far more effective,'84 and partially
suppress the development of streptozotocin
induced diabetes, 85 suggesting a therapeutic
potential for NOS inhibitors such as amino-
guanidine. The latter reduces diabetic vascular
dysfunction in vivo,'86 though its effectiveness
could in part result from direct inhibition of the
formation of advanced glycosylation products
that are known to inactivate NO in vitro and
in vivo.

Despite the wealth of evidence above, there
are few published studies measuring NO
synthesis in human diseases, inflammatory or
otherwise. Our studies implied increased NO
synthesis in both rheumatoid and osteo-
arthritis,'87 whilst others have demonstrated
similar findings in response to sepsis'88 189 or
cytokine chemotherapy'90 191 and in biopsy
material from patients with ulcerative
colitis.'92 193 Using NO2- as an index of NO
synthesis, we showed increased NO2- concen-
trations in the serum of patients with rheuma-
toid arthritis (RA) compared with controls,
and in synovial fluid compared with serum
from RA patients, implying NO synthesis
within the joint.'87 This was to be expected, as
NO generating cells such as endothelial cells,
PMN, macrophages, and synoviocytes are
found within inflamed synovium. There is,
however, accumulating evidence that NOS
inhibitors modulate inflammation in animal
models, endorsing a role for NO in inflam-
matory rheumatic disorders including vascu-
litis. N02- production by synovial tissue and
peripheral blood mononuclear cells was
increased in streptococcal cell wall induced
arthritis and suppressed by LNMMA.194
Importantly, this was accompanied not only by
a marked reduction in the articular index
during the acute inflammatory phase (days
1-6), but also by a dramatic reduction during
the chronic T cell-macrophage phase of
inflammation that was also evident but less
marked ifLNMMA was started on day 12 after
induction of the arthritis. Synovial histology
confirmed a reduction in the cellular infiltrate
and erosions in the LNMMA treated animals.
In rat adjuvant arthritis, L-NAME decreased,
whilst L-arginine (the precursor of NO)
increased paw swelling throughout the course
of arthritis. 174 T cell proliferative responses and
macrophage production of NO2- and acid
phosphatase were decreased and increased in
cells harvested from L-NAME and L-arginine
treated animals, respectively. The inbred
MRL-lpr/lpr mouse is a recognised model for
human systemic lupus erythematosus that
spontaneously develops an autoimmune dis-
order characterised by DNA antibodies,
arthritis, nephritis, and vasculitis. Urinary
NO2-/NO3- concentrations were demonstrated
to be greater in MRL-lpr/lpr mice compared
with other strains, and increased with the onset
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of nephritis.'95 Administration of LNMMA
reduced not only urinary N02-/NO3- levels, but
also histological indices of both arthritis and
renal disease, including vasculitis and
proteinuria. These findings are consistent with
studies of rat models of immune complex
mediated alveolitis and dermal vasculitis in
which NOS inhibitors greatly reduced indices
of tissue injury.'49 150 The above observations
provide strong evidence for a major role ofNO
as a mediator ofinflammatory joint disease and
connective tissue disorders.

Because of its role as the regulator of basal
vascular tone and principal vasodilator, one
would anticipate an important role for NO in
the regulation of blood flow to the joint.
Indeed, inhibition of NOS by intra-arterial
infusion of L-NAME substantially reduced
basal blood flow and increased sympathetic
vasoconstriction in both normal and inflamed
rabbit knees.'96 Moreover, the reaction of
NO with O2 to form peroxynitrite makes NO
very pertinent to synovial hypoxic reperfusion
injury. Such injury occurs because, in the
presence of even a modest effusion, joint
exercise leads to intra-articular pressure
increases that exceed synovial capillary per-
fusion pressure, impairing synovial blood
flow.141 We investigated this in vivo by
measuring synovial fluid NO2- levels before
and after exercise (10 minutes walking) or rest
(controls) in 18 patients with active RA, and
found a significant decrease of 30% in mean
synovial fluid NO2- concentrations after
exercise, compared with a non-significant
increase of 13% noted for control patients who
were rested (unpublished data). The decreases
in synovial fluid NO2- were more striking and
persistent in patients with clinically and bio-
chemically very active disease. These findings
suggest synovial NOS activity may be impaired
during joint exercise. Probable explanations
include hypoxia or transmural pressure
increases during exercise that inhibit endo-
thelial NO production in some vessels,'42 and
decreased shear stress as a result of impaired
flow; shear stress generally stimulates endo-
thelial NO production. However, these factors
may only partially account for exercise induced
decreases in synovial fluid NO2-, as new
evidence suggests an alternative explanation
with quite different implications. Zweier et al
used an oxygen stable ferrous iron spin trap to
estimate NO concentrations in an ex vivo
model of cardiac ischaemia-reperfusion. 9' They
found that, during ischaemia, NO may be
generated non-enzymatically by the reduction
of NO2- to NO, and that the formation ofNO
correlates with increasing duration of ischaemia
and decreasing tissue pH, and is responsible
for impaired myocardial contractility. It is
probable that a similar phenomenon occurs in
the synovium during joint exercise and may be
responsible for the observed exercised induced
decreases in synovial fluid NO2-. Clearly, this
last possibility requires confirmation, pre-
ferably by direct measurement ofNO in vivo.
The implications for the pathogenesis and
persistence of rheumatoid synovitis are pro-
found, as increased NO formation could have

many adverse consequences, either directly or
as a result of greater NO concentrations
increasing radical generation via the reaction
with 02-

Studies in primary knee osteoarthritis (OA)
showed increased NO2- concentrations in OA
synovial fluid compared with OA serum, and
in OA serum compared with that of age and
gender matched controls.'87 Explaining the
latter observation challenges current concepts
ofOA, whilst the former suggests generation of
NO within the osteoarthritic joint, but to a
lesser degree than in RA. Although synovium
may be responsible, chondrocytes are an alter-
native source of NO.2' 22 The most effective
inducers of NOS in rabbit articular chondro-
cytes were IL-1 and LPS, which also demon-
strated pronounced synergy compared with the
small increases in NOS activity attributable to
IL-1 in combination with TNFa or IFN-y.2'
Recent evidence thatNO mediates suppression
of proteoglycan synthesis by IL-1 suggests
that NO is relevant to cartilage degradation
in vivo."' The same study showed that
cytokine-stimulated increases in NO pro-
duction and decreased proteoglycan synthesis
by rabbit articular slices in vitro were reversed
by the NOS inhibitor, LNMMA. NOS activity
has also recently been demonstrated in human
chondrocytes in response to IL-1i, TNFa, or
LPS alone,'99 which contrasts with the multiple
cytokines required to induce NOS in other
cells, including rabbit chondrocytes.
The potential for NO to modulate

chondrocyte metabolism and perhaps cartilage
degradation in RA and OA is complemented
by the effect of NO on bone. Both mouse and
human osteoblasts produce NO,200202 with the
human studies showing that osteoblast NOS
expression is of the inducible, not the con-
stitutive, type and that NO production greatly
impairs osteoblast proliferation.202 Some
reports have suggested that NO inhibits
osteoclast function and bone resorption,20' 203
but other studies have shown that NO
stimulates bone resorption.204 The latter is
crucial, as it raises the possibility that NO
mediates articular erosions in RA and offers the
therapeutic promise that NOS inhibitors might
prevent joint damage in RA. NO is clearly
also relevant to other conditions exhibiting
excessive osteoclastic bone resorption, such as
Paget's disease and osteoporosis.

INFECTION AND CANCER

Cytotoxicity against microbes and tumour cells
was one of the first recognised and most
studied actions of NO. NO mediates the non-
specific component of the T cell immune
response and is particularly targeted against
intracellular microbes and protozoa. NO
mediated microbial killing can occur indepen-
dently of T cells, as shown by the resistance
of immunodeficient mice to Listeria.205 NO
is also implicated in the response against
or killing of leishmania, schistosoma, try-
panosomes, Plasmodium falciparum, Myco-
bacterium leprae and M tuberculosis, Legionella
pneumophilia, and several viruses.20$212 The
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latter exclude some of the most important
bacterial pathogens that are extracellular
targets of the oxygen dependent cytotoxic
mechanisms ofPMN, though PMN can utilise
NO in killing Staphylococcus aureus.213

Candidate mechanisms by which NO effects
cytostasis or cytotoxicity are via inhibition of
iron centred enzymes and the formation of
peroxynitrite, respectively. The former might
explain the long recognised positive association
between iron and infection. Indeed, excess iron
reverses the cytostatic effects of NO on
Trypanosoma sp.214 However, another feature of
trypanosomal infection, immunosuppression
of the host, is also mediated by NO. In a
manner analogous to the allogeneic mixed
lymphocyte reaction, NO synthesis by host
macrophages suppresses T cell proliferation.215
Despite these findings, the evidence strongly
favours a net antimicrobial effect for NO.
There are, however, circumstances in which

NO may be detrimental. It has been hypoth-
esised that excessive NO synthesis accounts for
CNS dysfunction in cerebral malaria,216 and
there is definitive evidence that NO is the final
cqmmon pathway leading to septic shock. The
latter remains an important cause of mortality,
especially in patients with underlying disease or
the immunosuppressed-categories into which
many rheumatic disease sufferers fall. Septic
shock is initiated by endotoxins derived from
bacterial cell walls which activate several
humoral pathways and, most importantly,
stimulate excessive cytokine release. Most
interest has focused on TNFa as the principal
mediator, though other cytokines are involved,
as outcome correlates with the levels of IL-1,
IFNy and TNFa.217 LPS, IL-1, IFNy and
TNFa are also the principal mediators of
inducible NO synthesis in endothelial cells and
VSMC, which are the probable cellular source
of excessive intravascular NO release in septic
shock.'88 189 In man, increased NO production
occurs in sepsis and greater concentrations are
associated with decreased systemic vascular
resistance and greater circulating concen-
trations of endotoxin.'88 In animal models of
septic shock, hypotension is reversed by NOS
inhibitors;218 219 however, high doses of the
inhibitors may accelerate hypotension,220
resulting in underperfusion of vital organs and
other potentially detrimental effects. Initial
reports were that LNMMA reversed hypo-
tension221 222 in patients with septic shock. A
small randomised double blind placebo con-
trolled study has shown that LNMMA
increases blood pressure, systemic and pul-
monary vascular resistance, and central venous
pressure, but decreases cardiac output.223
Further studies are clearly required to assess its
possible adverse effects and confirm its efficacy
and influence on outcome. Selective inhibition
of the inducible NOS of endothelial cells and
VSMC may improve the therapeutic benefit/
risk equation and be more successful than
inhibition of either endotoxin or TNFoL.

Cytokine induced hypotension is also crucial
in deploying immunotherapy against cancer.
Hypotension is a serious complication of IL-2
treatment which, in clinical trials, has shown

therapeutic benefit to patients with advanced
melanoma and renal cell carcinoma."' Two
separate studies provided evidence that NO
synthesis is dramatically increased after IL-2
treatment'" 191 and that NO2-/N03- concen-
trations correlate inversely with mean blood
pressure.'92 If planned clinical trials of NOS
inhibitors prove successful, it may be possible
to use larger doses of IL-2, with the prospect
of improved clinical response.225
The tumouricidal effects of macrophage NO

production are well recognised and amongst
several candidate mechanisms is the inhibition
of ribonucleotide reductase, probably via
an essential tyrosyl radical.226 Moreover, con-
version of L-arginine to ornithine/urea via
arginase, and to NO via NOS are associated
with tumour progression and rejection,
respectively.227 Antitumour treatment strategies
involving NO include stimulating macrophage
iNOS228 and selectively impairing tumour
blood flow with NOS inhibitors.229 However,
NO also has carcinogenic potential, as it alters
DNA in vitro and is mutagenic to bacteria230
and human cell lines;23' furthermore, NO
derived nitrosamines could explain the
association between malignancy and inflam-
mation. These effects are also highly relevant
to inflammation, as NO attacks pancreatic
islet cell DNA,232 impairs enzymes that repair
DNA,233 produces a pattern of DNA frag-
mentation typical of apoptosis,234 and directly
induces apoptosis in tumour cells235 and
macrophages.234 Recent evidence implicates
p53, the tumour suppressor gene, in NO
induced apoptosis, as NO and NO inhibitors
respectively stimulate and prevent p53
expression and apoptosis.236

Other actions ofNO
NO regulates basal pulmonary vascular tone,237
mediates vasodilatation, and attenuates vaso-
constriction in vitro238 and ex ViVo.239 More-
over, NO mediated responses are impaired
in animals240 and humans with chronic
hypoxia.24' 243 Because of its local delivery and
breakdown, inhaled NO is a selective pul-
monary vasodilator that reverses acute hypoxic
pulmonary vasoconstriction in vivo.237 In
human studies, inhaled NO was beneficial in
persistent pulmonary hypertension of the
newborn244 245 and adult respiratory distress
syndrome.246 NO mediated NANC nerve
bronchodilatation is also the sole neural
mechanism of airways dilatation in man.135
Inhaled NO decreases methacholine induced
bronchoconstriction in animals,'36 probably by
directly relaxing bronchial smooth muscle, and
has recently been shown to have a similar effect
in humans.247 NO can also mediate neurogenic
inflammation in the lung,'78 though histamine
modulates mast cell degranulation by a
negative feedback loop involving NO acti-
vation of GCase.248 Intriguingly, NO is also
involved in the upregulation of ciliary
beating,249 which is inhibited by pyocyanin
from Pseudomonas aeruginosa.250
NO has been investigated most extensively

in the gut, in respect of its role in NANC
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neurotransmission. NO has been directly
implicated in the control of sphincters of the
lower oesophagus,'37 ileocolonic junction,'3'
and pylorus.25' The last of these is of practical
importance in infantile hypertrophic pyloric
stenosis, in which defective pyloric relaxation
may be aetiological. The absence of NADPH
diaphorase activity in the hypertrophied circular
musculature of affected infants suggests that a

lack of NO synthase is the cause of pyloro-
spasm, and perhaps the primary cause of this
disorder;252 this concept is supported by similar
abnormalities in a mouse nNOS gene knockout
model.'38 Increased NO synthesis is implicated
in the haemodynamic consequences of cirrhosis
leading to the hepatorenal syndrome.253 It
contrasts with the contribution of decreased
blood flow to acute non-steroidal gastric
lesions in rats.254 NOS inhibitors reduce gastric
mucosal blood flow255 and attenuate increased
blood flow associated with gastric acid
secretion,256 whilst organic nitrates reduce
ethanol induced mucosal damage,257 but NOS
inhibitors only cause mucosal damage in the
presence of other factors such as the inhibition
of vasodilatory prostaglandins and neuro-

peptides.258 Whilst animal studies suggest NO
mediates the gastroprotective effects of several
agents, NO is also implicated in gut inflam-
mation-a paradox explained by the existence
of constitutive and cytokine induced NOS.
Increased NOS activity has been demonstrated
in animal models of both ileal259 and colonic
inflammation,260 whilst NOS inhibitors
alleviate inflammation in a guinea pig model of
ileitis.26' In man there is both indirect'92 and
direct evidence'93 of increased NOS activity in
ulcerative colitis, though not Crohn's disease.
The widespread actions of this simple

organic molecule are astonishing, and clearly
relevant to pathophysiological events in many
tissues, circumstances and diverse medical
fields. NO has many actions relevant to
rheumatic diseases, being implicated in inflam-
mation and immunoregulation, hypoxic-
reperfusion injury and vasculitis, cartilage and
bone physiology, peptic ulceration, and pain
mechanisms. Understanding the role ofNO in
a wider context should also help clarify the
influence ofNO on rheumatic diseases. Studies
are in progress in several clinical areas to
establish the benefits and problems of
manipulating NO synthesis and, together with
current molecular studies of NOS expression
and regulation, should improve the under-
standing of the multifarious roles ofNO.
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