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ABSTRACT Many approved drugs are pleiotropic: for example, statins, whose main
cholesterol-lowering activity is complemented by anticancer and prodiabetogenic mech-
anisms involving poorly characterized genetic interaction networks. We investigated
these using the Saccharomyces cerevisiae genetic model, where most genetic interactions
known are limited to the statin-sensitive S288C genetic background. We therefore broad-
ened our approach by investigating gene interactions to include two statin-resistant
genetic backgrounds: UWOPS87-2421 and Y55. Networks were functionally focused by
selection of HMG1 and BTS1 mevalonate pathway genes for detection of genetic interac-
tions. Networks, multilayered by genetic background, were analyzed for key genes using
network centrality (degree, betweenness, and closeness), pathway enrichment, functional
community modules, and Gene Ontology. Specifically, we found modification genes
related to dysregulated endocytosis and autophagic cell death. To translate results to
human cells, human orthologues were searched for other drug targets, thus identifying
candidates for synergistic anticancer bioactivity.

IMPORTANCE Atorvastatin is a highly successful drug prescribed to lower cholesterol
and prevent cardiovascular disease in millions of people. Though much of its effect comes
from inhibiting a key enzyme in the cholesterol biosynthetic pathway, genes in this path-
way interact with genes in other pathways, resulting in 15% of patients suffering painful
muscular side effects and 50% having inadequate responses. Such multigenic complexity
may be unraveled using gene networks assembled from overlapping pairs of genes that
complement each other. We used the unique power of yeast genetics to construct ge-
nome-wide networks specific to atorvastatin bioactivity in three genetic backgrounds to
represent the genetic variation and varying response to atorvastatin in human individuals.
We then used algorithms to identify key genes and their associated FDA-approved drugs
in the networks, which resulted in the distinction of drugs that may synergistically
enhance the known anticancer activity of atorvastatin.

KEYWORDS chemical genetics, epistasis, network analysis, pleiotropy, statins, synthetic
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Since their discovery more than 40 years ago, statins (1) have saved millions of lives
via cholesterol reduction and prevention of cardiovascular disease by competitive inhi-

bition of the rate-limiting 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR)
enzyme in the mevalonate pathway (2, 3) (Fig. 1). However, statins, like many drugs, are
pleiotropic and affect other pathways, including those related to diabetes and tumorigene-
sis (4–8). Such pleiotropy may be exploited to investigate other useful properties of such
drugs. Pleiotropic properties of drugs are often the consequence of complex gene network
dynamics downstream of the primary target.

The yeast Saccharomyces cerevisiae is an established eukaryote model organism (9) in
which about 70% of its genes show high conservation with humans not only in sequence
but also in biological function (10). This was cleanly illustrated with humanization of yeast

Editor Robert A. Arkowitz, Université Côte
d’Azur, CNRS, Inserm

Ad Hoc Peer Reviewer Walaa Mousa, Al
Ain University

Copyright © 2023 del Rio Hernandez et al. This
is an open-access article distributed under the
terms of the Creative Commons Attribution 4.0
International license.

Address correspondence to Andrew B.
Munkacsi, andrew.munkacsi@vuw.ac.nz.

The authors declare no conflict of interest.

Received 13 October 2022
Accepted 18 February 2023
Published 22 March 2023

March/April 2023 Volume 11 Issue 2 10.1128/spectrum.04148-22 1

RESEARCH ARTICLE

https://orcid.org/0000-0003-3033-395X
https://orcid.org/0000-0003-3229-4499
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/spectrum.04148-22
https://crossmark.crossref.org/dialog/?doi=10.1128/spectrum.04148-22&domain=pdf&date_stamp=2023-3-22


(i.e., expression of human genes in yeast), where only 20% amino acid identity was
required for human genes to complement the deletion of orthologous yeast genes (11).
Relevant to this study, human HMGCR restored the viability of yeast lacking its two
paralogue genes, HMG1 and HMG2 (12). Indeed, many steps of the mevalonate pathway
were originally elucidated in yeast (13, 14). Because of its genetic tractability, it is a power-
ful aid for the study of the mevalonate pathway (13, 14), cancer cell biology (15–17) and
complex phenotypes in general (18–22).

Complexity may be investigated by genetic interactions involving epistasis (23), which
measures functionality shared by the interacting pairs of genes. In yeast, interactions may
be scored in high-throughput screens called synthetic genetic array (SGA) analysis that
measure colony size phenotype changes exerted in pairs of double gene deletion strains
(24, 25) or by a gene deletion paired with a gene product inhibitory drug (26). The tract-
ability of yeast genetics allowed genome-wide cataloguing of genetic interactions that are
called synthetic lethal when a double mutant exhibits no growth or synthetic sick when
the double mutant exhibits reduced growth (27, 28).

From these synthetic lethal and synthetic sick interactions, gene networks have been
assembled representing 5.4 million interactions in the S288C genetic background (29, 30).
Networks in turn may be analyzed for key genes using graph centrality metrics (31–34),
and here we applied such methodology to statin pleiotropy. We had at hand three libraries
of yeast genome-wide deletion strains constructed in three different genetic backgrounds
—S288C, Y55, and UWOPS87-2421 (here referred as UWOPS87) (18, 35)—allowing us to
additionally characterize statin pleiotropy by genetic background.

RESULTS

The overall scheme of our study (Fig. 2) is to elucidate the mevalonate pathway-
specific genetic interactions integral to statin bioactivity. Using SGA methodology (36),
we generated 25,800 double deletion yeast strains, each lacking a gene in the statin
pathway and a second gene in the yeast genome of statin-susceptible and statin-

FIG 1 Statins inhibit the synthesis of HMGCR and downstream products in the mevalonate pathway. Statins
are competitive inhibitors of HMGCR encoded by HMG1 and HMG2 in yeast and the HMGCR gene in humans.
A critical step in the mevalonate pathway is mediated by the enzyme geranylgeranyl diphosphate synthase
(encoded by BTS1 in yeast and GGPPS1 in humans), where the main ergosterol/cholesterol-synthesis pathway
branches off to synthesize other fundamental cellular components for isoprenylation of small GTPases. Genes
in blue are yeast genes, and genes in gray are their human orthologues. Red asterisks in yeast genes indicate
oxygen-dependent steps of the pathway. Human genes in orange at the end of the cholesterol pathway are
less conserved with yeast and do not correspond to the yeast gene to the left.
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resistant genetic backgrounds since cholesterol-lowering activities of statins vary
among individuals (15, 16). The genes within the mevalonate pathway investigated
were HMG1, the predominantly active target of atorvastatin under aerobic conditions
(about 80% of the activity compared to its paralogue HMG2 [37]), and BTS1, the media-
tor of the off-branch pathway from the main ergosterol synthesis pathway to isopreny-
lation of GTPases. The double deletion mutants were treated with atorvastatin, and
hypersensitive mutants were compiled into multilayer networks. Topology centrality
metrics and functional enrichment in chemical genetic interaction networks were used
to identify key genes and cellular processes regulating statin activity, which by defini-
tion are candidate targets to use in combination with statins to enhance their anti-
cancer activity.

Screening for statin-specific epistasis in genome-wide deletion libraries in
three genetic backgrounds. In order to measure the chemical genetic effects of ator-
vastatin and the combined hmg1D xxxD and bts1D xxxD double gene deletions, it was
necessary to ensure atorvastatin was not present in excess so the statin effect and dou-
ble mutant effect could be distinguished. To achieve this, we determined the concen-
tration of atorvastatin that reduced the growth of single deletion hmg1D and bts1D
mutants to 70% of normal growth in the S288C, Y55, and UWOPS87 deletion library
strains. Accordingly, we separately deleted the HMG1 and BTS1 genes through PCR-
directed mutagenesis and homologous recombination in the three backgrounds and
then treated with atorvastatin to characterize the toxicity range of concentrations of
the drug (Fig. 3A). All three genetic backgrounds showed the same sensitivity when
HMG1 was deleted (i.e., synthetic sick at 5 mM atorvastatin, synthetic lethal at 20 mM
atorvastatin), probably because all the backgrounds are equally reliant on HMG1 to
cope with atorvastatin. Contrastingly, when BTS1 was deleted in S288C, synthetic
lethality occurred in 1 mM atorvastatin, while the same concentration exerted only a

FIG 2 Flow diagram for the methods used to identify interactions and pathways behind atorvastatin pleiotropy in three
genetic backgrounds. Single deletion mutant array libraries (A) in the S288C genetic background (depicted in blue outline)
and in the recently created UWOPS87 and Y55 genetic backgrounds (depicted in yellow and purple) through a backcross
methodology (18) were used to generate genome-wide double deletion mutants (deletion mutant genes depicted as empty
circles) as models to investigate the atorvastatin pleiotropy in three genetic backgrounds (B). About 25,800 double deletion
mutants in 1,536-colony format (384 quadruplicate colonies per agar plate) were created, treated with atorvastatin, and
screened to identify fitness defects that would reveal epistatic interactions as measured by decreased colony size. Atorvastatin-
hypersensitive double mutants were then validated in serial dilution spot assays and used as input to create genetic (GIN) and
protein-protein (PPIN) interaction networks (C). GINs and PPINs were multilayered in one network (D) per genetic background
and subjected to network topology analyses. The network centrality metrics pinpointed bottleneck and hub genes of high
biological relevance. The communities of genes identified through network modularity (E) were analyzed through a KEGG
enrichment analysis to distinguish key metabolic pathways. Human orthologues of the key yeast genes were used in a search
for drug enrichment (F) to identify potential combination therapies to enhance the anticancer activity of atorvastatin.
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mild fitness defect in UWOPS87 and Y55. This may be because the downstream BTS1
gene mediates several branches from the mevalonate pathway, possibly providing
background-specific statin resistance pathways.

We then investigated atorvastatin-specific (triple mutant) chemical genetic hyper-
sensitivity in our three different genetic background (S288C, Y55, and UWOPS87) dou-
ble deletion libraries using the hmg1D and bts1D mutants as SGA query strains. Thus,
the 70% (30% inhibitory concentration [IC30]) concentration in all libraries, including
the hmg1D xxxD, bts1D xxxD, and xxxD mutants, was chosen from the ranges 0.2 to
64 mM for the hmg1D xxxD mutants, 0.01 to 64 mM for the bts1D xxxD mutant, and 10
to 320 mM for the xxxD mutants. Using this information, hmg1D xxxD double deletion
mutants were thus screened at 0.8 mM atorvastatin, bts1D xxxD mutants with double
deletions in S288C were screened at 0.05 mM, and bts1D xxxD mutants with double
deletions in Y55 and UWOPS87 were screened at 0.5 mM. The single deletion library
xxxD control was screened at 9 mM for S288C, 10 mM for UWOPS87, and 35 mM for
Y55. Violin plots showed that the average of scored colony sizes did not differ among
the three genetic backgrounds when HMG1 was deleted (Fig. 3B), but it did differ
between S288C and the resistant genetic backgrounds when BTS1 was deleted
(Fig. 3C), thus adding evidence to our observations above that all three backgrounds
are equally reliant on HMG1, but downstream BTS1-mediated pathway branches pro-
vide background-specific resistance to atorvastatin.

FIG 3 Atorvastatin sensitivity confers similar synthetic sickness/lethality in strains with HMG1 deleted and varies in strains with BTS1 deleted in three genetic
backgrounds. (A) Haploid cells deficient of HMG1 or BTS1 and their wild types in three genetic backgrounds were pinned on increasing concentrations of
atorvastatin in serial dilution and incubated for 2 days at 30°C. (B) Violin plot distributions of average fitness of 12,900 strains as measured by colony sizes (n = 4)
of the xxxD and hmg1D xxxD mutants as well as (C) xxxD and bts1D xxxD mutants, where positive scores represent increased fitness and negative scores
represent decreased fitness. The red dashed lines indicate the score cutoff values selected for validation in independent assays for double deletions that did not
overlap the xxxD single deletions. Venn diagrams visualize the overlap in the number of genes below the cutoff lines. Statistical differences were evaluated by
Student’s t test (*, P , 0.05; **, P , 0.01; ***, P , 0.001).
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Experimental validation of atorvastatin-hypersensitive double deletion mutants.
High-throughput screening experiments in high-density formats tend to suffer from false-
positive and false-negative noisy data. To validate the atorvastatin-hypersensitive interac-
tions, first we established a cutoff for the scored colonies (pixel-based colony size scored
values assigned in SGAtools via Gitter [38]) of 3 standard deviations (SD) below the median
for hmg1D strains and of 2.5 SD below the median for bts1D strains. (Thus strains with scores
below 20.2 for S288C and below 20.3 for UWOPS87 and Y55 were considered genuine
hypersensitive mutants.) Given our specific interest in epistatic interaction effects unique to
the double deletions, strains that were sensitive in single and double deletion mutants in
the presence of statins were excluded from further analysis (Fig. 3B and C). Using these cut-
off criteria, we found atorvastatin-specific interactions in 20, 53, and 57 hmg1D xxxD strains
for S288C, UWOPS87, and Y55, respectively. Likewise, for bts1D xxxD strains, there were 61,
132, and 134 atorvastatin-specific interactions in S288C, UWOPS87 and Y55, respectively.
Atorvastatin-specific interactions were then individually validated in a second step by plating
in a 384-colony quadruplicate format to confirm atorvastatin sensitivity, followed by confir-
mation in the hmg1D xxxD mutant (6 interactions in S288C, 8 interactions in Y55, and 11
interactions for UWOPS87) and bts1D xxxD mutant (7 interactions in S288C, 12 interactions
in Y55, and 15 interactions in UWOPS87) in serial spot dilution assays (Fig. 4 and 5). Of the
40 yeast genes identified, 29 of them have human orthologues that have been previously
annotated to cancer, 21 to diabetes, 10 to myopathies, and 2 to rhabdomyolysis, and 8 are
known targets of statins (see Table S1 in the supplemental material).

Construction of multilayer gene-gene and protein-protein interaction net-
works. Network centrality analyses are often performed in single-layer networks—that is,
connections between nodes based on one type of functional relationship. Assessment of
multilayer networks has now expanded the usefulness of centrality analyses by analyzing
two or more layers of interactions of different types of data (39). Similar to a single-layer

FIG 4 Four hmg1D xxxD double deletion mutants were hypersensitive to atorvastatin treatment in three genetic backgrounds, while others depend on genetic
background. Haploid cells derived from SGA analyses and gene deletion libraries were pinned on SC with or without supplementation of atorvastatin in serial
dilution and incubated for 2 days at 30°C. Shown here are deletions of genes that enhanced sensitivity to atorvastatin treatment in the (A) S288C, (B) UWOPS87,
and (C) Y55 genetic backgrounds. The WT/hmg1D panel refers to either the nonmutated wild types (WT) for the xxxD strain panels or the hmg1D single deletion
mutants for the hmg1D xxxD double deletion strain panels. Gene deletions in boldface indicate interactions overlapping in three genetic backgrounds.
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network, albeit just more complex, multilayer networks are basically n-dimensional matri-
ces or tensors that can be investigated using graph mathematical methodologies.

We assembled multilayer networks from the 17 and 23 genes (Fig. 4 and 5) that
were validated to be interactive with HMG1 and BTS1, respectively, where the list of
validated genes was augmented (path length of 2) in known genetic interaction net-
works (GINs) (40) and protein-protein interaction networks (PPINs) (41–43). Thus, we
identified and visualized GINs and PPINs specific to each type of interaction and each
genetic background (Fig. 6 and 7; see Fig. S1 and S2 in the supplemental material). The
numbers of nodes and edges for GINs or PPINs were generally lower than those of the
multilayer network (Table 1; Table S2), demonstrating that the connectivity of multi-
layer networks was more robust than that of GINs and PPINs alone.

Network topology centrality analyses identify genes critical to atorvastatin
sensitivity in multilayer networks. Networks may be analyzed for informative topologi-
cal metrics called “centralities” (44), where briefly, the more central a gene is to a network,
the more biological relevance it has to the phenotype. Three centrality measurements were
thus calculated separately for each GIN and PPIN as well as for the combined GIN-PPIN mul-
tilayer network, namely, betweenness centrality (the shortest path length between two

FIG 5 Eight bts1D xxxD double deletion mutants were hypersensitive to atorvastatin treatment in at least two genetic backgrounds, while others depend
on the genetic background. Haploid cells derived from SGA analyses and gene deletion libraries were pinned on SC with or without supplementation of
atorvastatin in serial dilution and incubated for 2 days at 30°C. Shown here are deletions of genes that enhanced sensitivity to atorvastatin treatment in
the (A) S288C, (B) UWOPS87, and (C) Y55 genetic backgrounds. WT/bts1D refers to either the nonmutated wild type (WT) for the xxxD strain panels or the
bts1D single deletion for the bts1D xxxD double deletion strain panels. Gene deletions in boldface indicate interactions overlapping in three genetic
backgrounds; asterisks indicate interactions overlapping in two genetic backgrounds.
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nodes) (34), closeness centrality (the shortest path length between one node and all other
nodes) (33), and degree centrality (number of neighbors) (32). As the GINs and PPINs exhib-
ited different overall patterns of centrality (Fig. S3), the multilayer network was prioritized to
ensure consideration of both GINs and PPINs in a common analysis (Fig. 8).

RIM15, a gene encoding a protein kinase involved in cell proliferation, was ranked highly
in the three genetic backgrounds for betweenness, closeness, and degree centralities in the
hmg1D xxxD networks (Fig. 8 and Table 1; Fig. S4). Impressively, this result reflects the ator-
vastatin hypersensitivity we found for the hmg1D rim15D mutant (Fig. 4). The betweenness,
closeness, and degree centrality metrics for RIM15 were 0.12, 0.49, and 93, respectively, for
S288C, compared to 0.07, 0.42, and 66 for UWOPS87 and 0.09, 0.48 and 55 for Y55. Likewise,
the CDC28 kinase master regulator of mitotic and meiotic cell cycles, was also ranked highly
for the three centrality metrics in the three genetic backgrounds (Fig. 8; Table 1). The
involvement of kinases in statin responses points to fundamental effects of statins on
aspects of metabolism other than cholesterol metabolism.

For the bts1D xxxD networks, the t-SNARE TLG2 gene, which mediates the fusion of
endosome-derived vesicles with the late Golgi compartment, was distinct for the three
centrality metrics in Y55 and UWOPS87, while it was less distinct in S288C (Fig. 8 and
Table 1; Fig. S5). The betweenness, closeness, and degree centrality metrics for TLG2
were 0.02, 0.55 and 65, respectively, for S288C, compared to 0.02, 0.49 and 82 for
UWOPS87 and 0.04, 0.50 and 84 for Y55. The ubiquitin protease cofactor BRE5 gene,

FIG 6 Multilayer networks derived from atorvastatin-sensitive hmg1D xxxD interactions. GINs (layer 1), PPINs (layer 2), and the edges between them were
integrated in a multilayer network using TimeNexus. Edges between layers connect overlapping nodes in the two layers, and the genes linking these edges
are shown in the periphery of circular networks. Darker nodes in multilayer networks are validated atorvastatin-sensitive interactions.
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which coregulates, with UBP3, the anterograde and retrograde transport between the
endoplasmic reticulum (ER) and Golgi compartments, was the highest-ranked gene for
the three centrality metrics in S288C (the betweenness, closeness, and degree central-
ity metrics for BRE5 were 0.13, 0.59, and 82), which is further supported by the atorvas-
tatin hypersensitivity of the bts1D bre5D only in S288C (Fig. 5). In contrast, BRE5 was
not required for network connectivity in UWOPS87 and Y55 (i.e., was not present in the
multilayer networks for UWOPS87 and Y55). The involvement of genes mediating ve-
sicular fusion and transport provides insight into the diverse functions of the BTS1
branch in the mevalonate pathway.

Community analysis identifies functional modules in multilayer networks for
three genetic backgrounds. To gain more insight into the structural organization of
the multilayer networks in order to identify metabolic pathways mediating atorvastatin
sensitivity, community analysis was conducted to partition the networks to functional
subnetworks (modules) that are more interconnected than random (45). We detected
3 to 6 modules in each network (Fig. 9). Each module exhibited significant enrichment
for specific metabolic pathways (P , 0.05), and in most cases, pathways enriched in
these modules did not overlap in all three genetic backgrounds (Fig. 9).

For the hmg1D xxxD networks, the longevity regulation pathway and its tightly
linked processes autophagy and mitophagy were found enriched in all three genetic
backgrounds (Fig. 9). In contrast, the longevity regulation pathway was only enriched

FIG 7 Multilayer networks derived from atorvastatin-sensitive bts1D xxxD interactions. GINs (layer 1), PPINs (layer 2), and the edges between them were
integrated in a multilayer network using TimeNexus. Edges between layers connect overlapping nodes in the two layers, and the genes linking these edges
are shown in the periphery of circular networks. Darker nodes in multilayer networks are validated atorvastatin-sensitive interactions.
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in UWOPS87 and Y55 for the bts1D xxxD networks (Fig. 9). Since statins extend life
span, although it varies person to person, and the chronological life span in yeast
mimics the postmitotic state of cancer cells (46, 47), we sought to test the importance
of specific genetic interactions to statin-mediated longevity. Consequently, we meas-
ured the chronological life span of BTS1 epistatic strains (bts1D rpd3D, bts1D ras2D,
bts1D rfm1D, bts1D sum1D, bts1D hst1D, and bts1D sir1D mutants) representative of
modules in UWOPS87 and Y55 that were enriched for the longevity regulation path-
way. The survival integral, the area underneath the survival curve, for each single dele-
tion strain as well as the bts1D xxxD strains was calculated in the presence and absence
of atorvastatin over a period of 13 days (Fig. 10). For S288C, the survival area remained
relatively consistent across double mutants with or without atorvastatin (Fig. 10A), sug-
gesting treatment did not impact the survival in this genetic background. In contrast,
survival was significantly increased with treatment in UWOPS87 and was more pro-
nounced in bts1D xxxD double deletion mutants than single deletion mutants for the
sum1D, hst1D, and sir1D strains (Fig. 10B), suggesting these specific chromatin-histone
interactions with atorvastatin increase the chronological life span of UWOPS87 strains.
For Y55, survival was significantly increased with treatment in the bts1D rpd3D double
mutant compared to bts1D and rpd3D strains (Fig. 10C), revealing the importance of
the histone deacetylase RPD3 gene only in this background. These results experimen-
tally validate the in silico community analyses that vary by genetic background and
confirm the importance of specific chromatin-histone interactions mediating the life span
extension activity of atorvastatin. As expected, metabolic pathways were enriched in the
single-layer analysis but not in the multilayer analysis, and vice versa (Fig. S6 and S7), yet
multilayer networks retrieved more relevant information since GINs could not be parti-
tioned in communities possibly due to their high connectivity.

Humanization of yeast epistasis reveals anticancer drugs for statin synergy.
Combination therapies may increase efficacy of repurposed drugs (48). To see if that is
the case with statins and anticancer drugs, we identified the human orthologues of the
key centrality genes identified in our yeast genomic analyses across the three genetic
backgrounds (Table S3). Since most of them have been previously annotated to cancer
(Table S1), we evaluated these genes for enrichment in the Drug Signature Database
(49), providing greater specificity in selection of synergistic combinations (Fig. 11). This
analysis detected 205 drugs with “signature genes” integral to their bioactivity as well
as atorvastatin (P , 0.05). Of these 205 drugs, the maximum and minimum odds ratios

TABLE 1 Top betweenness centrality measurements for multilayer networks in three genetic backgrounds

Query gene Genetic background No. of nodes/edges Gene name

Betweenness Closeness Degree

Score Rank Score Rank Score Rank
HMG1 S288C 228/2,118 RIM15 0.12 2nd 0.49 4th 93 2nd

CDC28 0.03 7th 0.47 7th 31 25th
DBP7 0.11 3rd 0.45 10th 44 4th
HMG1 0.03 9th 0.45 11th 24 54th

UWOPS87 464/2,556 RIM15 0.07 2nd 0.42 15th 66 2nd
CDC28 0.04 8th 0.44 4th 53 3rd
DBP7 0.04 6th 0.40 44th 36 14th
HMG1 0.03 11th 0.43 9th 27 32nd

Y55 265/1,525 RIM15 0.09 2nd 0.48 3rd 55 2nd
CDC28 0.05 7th 0.46 8th 37 7th
DBP7 0.06 4th 0.45 12th 45 3rd
HMG1 0.04 9th 0.46 6th 33 12th

BTS1 S288C 224/2,239 TLG2 0.02 12th 0.55 3rd 65 7th
UWOPS87 428/3,743 TLG2 0.02 10th 0.49 5th 82 2nd
Y55 300/2,767 TLG2 0.04 5th 0.50 3rd 84 2nd
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were 86 and 2, respectively. To compare the chemical genetic profiles of the top-
ranked drugs, the odds ratio values for the top 20 drugs by P values and their signature
genes were visualized in a bubble plot (Fig. 11).

The 32 signature genes shown in Fig. 11 represent seven major processes targeted by
specific drugs. Four drugs (docetaxel, probenecid, verlukast, and hesperetin) were corre-
lated with ABC transporter genes involved in numerous functions, including drug efflux,
and that provoke failure of chemotherapeutics (50). Fifteen drugs (GW779439X, dinaclinib,
docetaxel, lestaurtinib, KW-2449, RO-31-8220, palbociclib, AZD5438, CGP74514A, sunitinib,
JNK-9L, staurosporine, PKR [RNA-dependent protein kinase] inhibitor, hesperetin, and AS-
59957) were correlated with kinase activity contributed by cyclin-dependent kinase (CDK)
genes, dual-specificity tyrosine-regulated kinase (DYRK) genes, and mitogen-activated pro-
tein kinase (MAPK) (HPK) genes involved in cell cycle. Four drugs (lestaurtinib, palbociclib,
sunitinib, staurosporine) were correlated with the MAST1 gene involved in survival signal-
ing pathways that confers cell resistance to the chemotherapeutic cisplatin (51). Four drugs
(lestaurtinib, KW2449, sunitinib, and staurosporine) were correlated with the PRPF4B gene,
an essential gene for triple-negative breast cancer metastasis (52). Finally, eight drugs (les-
taurtinib, KW-2449, RO-31-8220, AZD5438, GW5074, sunitinib, staurosporine, and A-
674563) were correlated with serine/arginine-rich protein-specific kinase (SRPK) genes
involved in activation of various signaling pathways that mediate cytotoxic effects of geno-
toxic agents, including cisplatin (53). The pyrazolopyridazine GW779439X ranked the high-
est of all drugs and compounds (P = 2.42E209; odds ratio = 86), which was mainly due to
key centrality genes in CDK genes identified with the HMG1 query.

Thus, the majority of the top 20 drugs (i.e., the lowest adjusted P [AdjP] value) iden-
tified here for potential synergy with atorvastatin have exhibited anticancer activity,

FIG 8 Network topology centrality analyses of multilayer networks identify key HMG1/BTS1 interactors for atorvastatin sensitivity. Centrality measurements
(degree, closeness, and betweenness) were calculated for each gene and visualized in a 3D plot. UBI4 was excluded because, due to its highly interactive
nature, it skewed all the other nodes to one corner of the plot, obscuring the relevance of other genes. High-centrality genes RIM15, CDC28, TLG2, and
BRE5 are enclosed in orange rectangles.
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FIG 9 Metabolic pathway enrichment of modules in multilayer networks for atorvastatin sensitivity. Bubble plots show enrichment
for each of the modules (named for their genetic background) identified through community analysis for HMG1 (top panel) and BTS1
(bottom panel) interactions. The size of the bubbles is relative to the enrichment score for each pathway, while the intensity of the
colors is relative to the adjusted P value. The x-axis labels show the genetic background followed by the number of modules.
Numbers missing in the sequence are modules without significantly enriched pathways.
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and only 2 have been investigated for statin synergy (Table S4). These drugs with
established anticancer activity include dinaciclib, docetaxel, lestaurtinib, vorinostat,
palbociclib, and sunitinib. Interestingly, one of the top results is docetaxel, a well-
established chemotherapeutic for the treatment of breast cancer that was previously
investigated for synergy with lovastatin, albeit the trial was terminated for lack of

FIG 10 Atorvastatin treatment in the UWOPS87 genetic background increases the survival integral of
double mutants. Cells were grown in triplicate with and without atorvastatin. Cultures were left growing
at 30°C for 2 weeks, and growth was measured every second day for a 2-week period via hourly
measurements of optical density. YODA was used to calculate the surviving cell percentage. Data are
shown as the mean 6 standard deviation (SD) (n = 3). *, P # 0.05, **, P # 0.01, and ***, P # 0.001, by
Student’s t test relative to the vehicle control.
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funding (NCT00584012). Another noteworthy candidate combination therapy is probe-
necid, which is a drug that inhibits renal excretion and would thus increase the half-life
of statin drugs. Clinical trial NCT03307252 evaluated the pharmacokinetics of probene-
cid with a number of drugs, including rosuvastatin, but this trial did not evaluate the
anticancer activity of the statin. In addition to drugs/compounds with established anti-
cancer activity, we also propose combination therapies with GW779439X with antibi-
otic properties, verlukast with bronchodilator properties, and hesperetin with a wide
variety of properties, including cholesterol-lowering, antioxidant, anti-inflammatory
and anticancer properties.

DISCUSSION

Drug response involves many genes whose phenotypes may be the result of epi-
static genetic interactions, pleiotropy, and dependency on genetic background, which
can be analyzed as multidimensional networks (Fig. 2) via topological centrality metrics
and community algorithms. Here, we used yeast genome-wide deletion libraries with
two genetic probes (SGA query gene hmg1D and bts1D strains) and an inhibitory drug
(atorvastatin) to define colony growth phenotypes and networks in the mevalonate
pathway (Fig. 1). Genetic background is known to affect genetic interactions (18, 35,
54), so we investigated genetic interactions in the standard S288C strain and two addi-
tional deletion libraries in the genetic backgrounds UWOPS87 and Y55. With the net-
work topological centrality and community algorithms used here, clear pathways of
Gene Ontology (GO) cellular processes emerged in the case of the HMG1 or BTS1
probes for interactions involved in autophagy, aging, endocytosis, actin and unfolded
protein response (UPR) pathways. The following discusses specifics of these topics.

Statins are known to activate autophagy (55–57), yet the mechanism is not fully

FIG 11 Human orthologues of yeast interactions reveal drugs/compounds to test for synergy with atorvastatin.
Human orthologues of validated genes and bottleneck genes were processed via an enrichment analysis for
signature genes in the Drug Signature Database. Bubble plots represent the human orthologues (y axis) that
were enriched for drugs/compounds (x axis). The color of each bubble is determined by the adjusted P value
(AdjP), and the size of bubble reflects a score computed by running the Fisher exact test for random gene sets
to determine the deviation from the expected rank, where bigger bubbles represent greater enrichment.
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understood. Here, we distinguish RIM15 as a key statin modulator in positively regulat-
ing autophagy, since RIM15 deficiency conferred hypersensitivity in the atorvastatin-
treated HMG1 query and RIM15 was a high-betweenness gene (bottleneck) in three
genetic backgrounds. Bottlenecks are of high relevance because they tend to connect
functional clusters of genes (34, 44). We enhanced the networks derived from colony
growth by including published interactors with RIM15 of path length 2, and 75% of the
genes belonged to a single community module in all of the genetic backgrounds. This
community was enriched for functions involved in meiosis, longevity, and autophagy.
This serine/threonine kinase RIM15 gene is integral to statin-induced autophagy in
yeast and may be conserved in mammalian cells via the human orthologue, MASTL.

Functional redundancy (58) is seen for RIM15 in its role in actin-mediated processes
and endocytosis as described here. Relatedly, we show here that CDC28 is a top cen-
trality gene in the HMG1 genetic interaction networks that previously was shown to
have a suppressing interaction with RIM15 (59, 60). CDC28 and RIM15 cluster together
in a cochaperone module for “actin and morphogenesis” (61). Although CDC28 did not
belong to a statistically significant community module in our study, 86% of the genes
that interacted with CDC28 in Y55 and UWOPS87 belonged to the community module
corresponding to meiosis, cell cycle, and MAPK signaling, suggesting that networks are
functionally redundant for these processes as well as actin/endocytosis. We note that
human orthologues of RIM15 code for cytoskeleton components, such as actin and the
intermediate filament, which have shown to be part of the statin response (62).

TPM1 is a bottleneck gene for UWOPS87 and Y55 treated with atorvastatin and a
synthetic lethal genetic interaction with S288C in BTS1 query. It is a major isoform of
tropomyosin that binds and stabilizes actin cables (63). Statins have indeed been
shown to induce cytoskeletal reorganization while increasing the levels of F-actin, im-
portant in cancer cell motility (64). Pleiotropy for statins is seen where the CDC28
human orthologue CDK1 is downregulated by atorvastatin with anticancer activity in
esophageal squamous cell carcinoma (ESCC) cells (65). Likewise, simvastatin induced
G1 arrest and inhibited cell growth of colorectal cancer cell lines by a mechanism that
included downregulation of CDK4/cyclin D1 and CDK2/cyclin E1 (66). Simvastatin and
lovastatin suppressed expression of CDK1, CDK2, CDK3, CDK4, and CDK6 in prostate
cancer cells with reduced cell viability due to induced apoptosis and cell cycle arrest
(67). Tropomyosin is a cancer prophylaxis drug target, which could have caused
nuanced changes in general toxicity by synergistic combinations of statins and drugs
aimed at tropomyosin-modifying genes, prescreened for activity in the yeast models as
described here. The mechanism of action provides insight into drug synergy (68), as
shown by the example here that identified probenecid for potential synergy with ator-
vastatin. Probenecid is prescribed for the prevention of hyperuricemia-associated gout.
Given that high serum cholesterol levels have been correlated with hyperuricemia (69),
it is likely that many patients worldwide are simultaneously prescribed probenecid and
statins. Databases such as UK Biobank (70) might reveal whether simultaneous treat-
ment of probenecid with statins has been associated with reduced rates of cancer.

Aging is considered one of the main risk factors for cancer development (71). Here,
we show that double deletion of BTS1 with HST1 increased the chronological life span
of the UWOPS87 strain, unlike the single deletion mutants. HST1, demonstrated to be
synthetic sick with HMG1 in UWOPS87, is an NAD(1)-dependent histone deacetylase
gene paralogue to the human SIRT1 gene coding for sirtuin 1. Sirtuins are a family of
protein deacetylases that regulate aging and longevity (72, 73). SIRT1 has indeed been
described as part of the mechanism behind the antiaging effect of statins (74, 75), fo-
cusing on cell senescence. However, the role of SIRT1 in the chronological aging of
nondividing cells has not been investigated. Our results point to a genetic back-
ground-dependent role, in which the presence and potential activation of yeast HST1
by atorvastatin do not affect chronological life span. However, chronological life span
is greatly increased by its double deletion with BTS1 in the UWOPS87 background. For
the Y55 background, it was the deletion of BTS1 with RPD3 that increased the
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chronological life span. RPD3 is a histone deacetylase gene orthologue to the human
HDAC1 and HDAC2 genes, which have been linked to the mechanism of anticancer ac-
tivity of statins (76, 77), and HDAC1 is known to have an antiaging activity in brain cells
(78). We note that statins increase the life span of the model organism Caenorhabditis
elegans (79) and decreased mortality independent of cholesterol in humans 78 to
90 years old (47). Our results plausibly point to the importance of the BTS1 branch with
chromatin and histones in atorvastatin-mediated effects on life span.

Taken together, we have demonstrated the utility of using chemical genetics and multi-
layer network analyses to elucidate genetic complexity of metabolic pathway phenotypes
that may be behind drug molecular mechanisms. In this article, we discuss atorvastatin
and its anticancer properties. We note that UPR/ER stress is tightly linked to autophagy (80,
81). We have previously shown UPR activation is qualitatively genetic background depend-
ent in response to statins (18), and ER stress is also a known mechanism of the anticancer
activity of statins (82). Our model here provides more information on the link between UPR
and actin-mediated endocytosis (83), autophagy, and aging (84, 85). We propose that statin
treatment induces the UPR, dysregulates endocytosis, and causes autophagic cell death
(Fig. 12). It is plausible that all of these phenotypes have a role in the anticancer activity of
atorvastatin via induction of UPR, especially since statins inhibit and remodel actin cytoskel-
eton (86, 87), actin is necessary for endocytosis (88), and UPR is induced in yeast mutants
deficient in actin-mediated steps in endocytosis (83). The many genetic interactions involv-
ing these cellular processes described here potentially provide lists for drug targets.

MATERIALS ANDMETHODS
Yeast strains, plasmids and media. The S. cerevisiae strains used in this study are described in Table

S5 in the supplemental material. Stocks were stored at 280°C in 15% glycerol. Strains that contained the
URA3_CEN plasmid were grown on agar with 1 mg/mL of 5-fluoroorotic acid (5-FOA) (Kaixuan Chemical Co.)
to select for uracil auxotrophs before construction of the query strains. Gene deletion libraries were main-
tained in synthetic complete (SC), synthetic dropout (SD), enriched sporulation, or yeast-peptone-dextrose
agar as previously described (89). The media and solutions used included agar, amino acids, peptone, yeast
extract, yeast nitrogen base (Formedium), ampicillin, atorvastatin calcium, glucose, monosodium glutamate,
potassium acetate (Sigma-Aldrich), Geneticin sulfate, L-canavanine sulfate, S-aminoethyl-L-cysteine hydro-
chloride (thyalisine) (Carbosynth), nourseothricin sulfate (Werner BioAgents), and hygromycin B (Life
Technologies). All antibiotics and supplement stocks were filter sterilized with 22-mm-pore filters (Jet Biofil).

Synthetic genetic array analysis. Synthetic genetic array (SGA) analysis was conducted in quadru-
plicate as previously described (18, 36), using a 1,536-colony format in three genetic backgrounds
(S288C, UWOPS87, and Y55) with newly constructed query deletion strains, in which HMG1 and BTS1

FIG 12 Proposed integration of mechanisms. Atorvastatin inhibits components of the actin
cytoskeleton, which in turn inhibits actin-mediated endocytosis and induces UPR. Atorvastatin inhibits
aging pathways, which also results in the dual induction of UPR and autophagy. Hence, atorvastatin is
an indirect inhibitor of endocytosis and indirect activator of UPR and autophagy. Red blunt-headed
arrows point to pathways inhibited by atorvastatin. Blue arrows and the blue blunt-headed arrow point
to pathways that are inhibited or induced, respectively. Dashed pink arrows and the dashed blunt-
headed arrow point to inhibition or induction, respectively, of pathways via indirect mechanisms of
atorvastatin.
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were replaced with the NATMX antibiotic resistance gene via PCR-mediated disruption, using specific
primers and cycle conditions (Table S6). The plasmids used for this study were conserved in Escherichia
coli (DH5a) and stored at 280°C, including the MX4-natR switcher cassette p4339 (36). PCR products
were then transformed into a MATa SGA starter strain via homologous transformation as previously
described (90), and integration into the genome was confirmed by PCR as previously described (24).
Plates were replica plated with an automated RoToR HDA system (Singer Instruments).

Genome-wide growth analysis. The selected double deletion mutant libraries (hmg1D xxxD and
bts1D xxxD) were pinned on SC agar, incubated at 30°C overnight, and used as an inoculum source to
pin on SC agar with and without IC30 concentrations of atorvastatin that were determined for each
genetic background. These plates were incubated at 30°C for 12 and 24 h, time points when the colonies
were imaged using a digital camera (Canon). The colony sizes were quantified and scored through
SGAtools (91), where Z-scores were used to compare growth with and without atorvastatin. (Zero indi-
cates no difference between the control and treatment, negative scores indicate reduced fitness with
atorvastatin, and positive scores indicate increased fitness with atorvastatin.) All SGA scores were visual-
ized in violin plots generated in R, and based on their point of inflection, the cutoffs were selected to
identify strains for experimental validation in 384-colony format and serial dilution spot assay.

Validation of negative genetic interactions in the 384-colony format. The validation of negative
genetic interactions was performed in a two-step process. First, 96-colony-format plates were arrayed
containing no more than 29 atorvastatin-hypersensitive double mutants each with his3D control border
strains and also his3D control strains surrounding each candidate to ensure the colony sizes were not bi-
ased. Each plate also included a wild-type strain. The atorvastatin-hypersensitive double mutants for
S288C, Y55, and UWOPS87, the hmg1D xxxD or bts1D xxxD strains, which did not overlap the single dele-
tion xxxD mutant, were arrayed as described. Control single deletions were also arrayed to confirm that
negative interactions pertained to double deletions only. The arrayed plates were screened with the
same IC30 concentrations of atorvastatin used in the 1,536-colony format. Plates were incubated at 30°C
for 24 h and imaged using a digital camera, and growth was quantified using SGAtools (91) as described
above for the 1,536-colony format, and hypersensitive strains were then selected for an additional exper-
imental validation step through serial dilution spot assays.

Validation of negative genetic interactions in serial dilution spot assay. Overnight cultures were
prepared in 96-well plates, and four 1:10 serial dilutions were spotted using a manual pinning tool on SC
agar with and without an IC30 concentration of atorvastatin. Plates were incubated at 30°C for 48 h,
imaged using a digital camera, and evaluated visually for atorvastatin-specific growth defects. A cutoff
for growth defect was determined as one spot less of atorvastatin-treated versus nontreated strains and
of the double deletion compared to the single deletions (query gene deletion and xxxD). Those atorvas-
tatin-hypersensitive double mutants that were validated in spot assays were then submitted to another
round of spot assays, this time including the three genetic backgrounds.

Single-layer network analyses. Validated genetic interactions that enhanced the hypersensitivity to
atorvastatin were examined in the context of gene-gene and protein-protein interaction networks. The list of
validated genes was augmented with gene-gene interactions using GeneMania (40) with all available studies
with a maximum number 110 interacting genes. Using NetworkAnalyst (42, 43), the list of validated genes was
augmented with protein-protein interactions using the STRING database (41), which includes text mining, ge-
nomic information, coexpression, and orthology, with the additional requirement for experimental evidence
with a confidence score cutoff of 900. The resulting protein-protein interaction network was a first-order net-
work representing the input nodes with their direct interactors (path length 1), which was then augmented
into a second-order network to include nodes that connected the input genes as well as nodes that were
interactors (of path length 2), but which only included the minimum number of nodes necessary to main-
tain connectivity of the network (minimum network). The gene-gene interaction networks (GINs) and the
protein-protein interaction networks (PPINs) were then integrated into a single multilayer network using
TimeNexus (92) in Cytoscape (93).

Topology centrality analysis. The single-layer and multilayer networks were analyzed for various
measurements of network centrality using the NetworkAnalyzer for undirected networks application in
Cytoscape (31). Three centrality measurements were calculated: (i) degree centrality, which computes
the number of edges linked to each node so that a node with degree 5 has 5 edges associated, that is, it
is linked to 5 other nodes (32); (ii) closeness centrality, which corresponds to the average shortest path
length of one node to every other node computed by the Newman method (33), where 0 means an iso-
lated node and 1 is the highest centrality and connectivity; and (iii) betweenness centrality, which is the
probability of passing through a node when using the shortest path length between two nodes and is
computed with the highly precise algorithm developed by Brandes (34) to distinguish nodes critical to
maintain a network. The three measurements of centrality were visualized as three-dimensional (3D)
plots using R (94).

Community analysis. Functional modules (communities) in the single-layer and multilayer networks
were determined using the InfoMap algorithm (95) in NetworkAnalyst (42). Statistical significance for
each module was evaluated for their clustering significance or network connectivity as computed by a
Wilcoxon rank sum test (P, 0.05).

Pathway enrichment analysis. Modules were investigated for their function via metabolic pathway
enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database
(96) implemented in Enrichr (97, 98). Pathway enrichment was statistically evaluated using an adjusted P
value with the Benjamini-Hochberg method for correction (99), a Z-score reflecting the deviation of a
Fisher exact test from an expected rank, and a combined score that is the product of the natural

Network Analysis of Statin Pleiotropy Microbiology Spectrum

March/April 2023 Volume 11 Issue 2 10.1128/spectrum.04148-22 16

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.04148-22


logarithm of the P value multiplied by the Z-score. Fold enrichment and the P value (,0.05) for statisti-
cally significant pathways in each module were visualized in bubble plots using R (100).

Chronological life span assay. The effect of atorvastatin on the chronological life span of S. cerevisiae
was assessed as previously described (101), with alterations. A single colony from single and double deletion
strains across all three genetic backgrounds was inoculated into 5 mL of SC medium and incubated overnight
at 30°C with constant agitation. Fifty microliters of each culture was removed and added to fresh tubes with
and without atorvastatin, and then the mixture was incubated at 30°C with constant agitation over the course
of the experiment. Outgrowth assays were conducted at various time points of 1, 3, 5, 7, 9, and 11 days where
10 mL from each culture was removed and added to a Biofill 96-well plate with 140 mL SC medium. Optical
density (OD) measurements of the plate were taken using an Envision 2102 Multilabel plate reader (Perkin
Elmer) at 590 nm hourly for 48 h, while the experimental tubes were placed back in the rotator at 30°C. Data
were visualized using OD as a measure of viability over time and analyzed using the Yeast Outgrowth Data
Analysis program (YODA) as previously described (102) to calculate doubling time inflection, time shifts, and
the survival integral for each mutant and treatment over the experimental period.

Gene set enrichment for drug signatures. Human orthologues of genes that interact with HMG1/
BTS1 query strains as well as highly ranked centrality genes were determined using Yeastmine in the
Saccharomyces Genome Database (103) and examined for significant enrichment (P , 0.05) in the Drug
Signature Database (49) implemented in Enrichr (97, 98, 104).

Data availability. The data sets produced in this study are available in Tables S7 to S9 in the supple-
mental material.
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