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ABSTRACT Severe manifestations of coronavirus disease 2019 (COVID-19) and mortal-
ity have been associated with physiological alterations that provide insights into the
pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can
be explored to identify correlates of protection. The cellular metabolism represents a
potential target to improve survival upon severe disease, but the associations between
the metabolism and the inflammatory response during COVID-19 are not well defined.
We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individ-
uals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of
20 individuals was followed up after hospital discharge and recovery from acute disease.
We used hierarchical community networks to integrate metabolomics profiles with cyto-
kines and markers of inflammation, coagulation, and tissue damage. Infection by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations
in the plasma metabolome, whose activity varies according to disease severity and corre-
lates with oxygen saturation. Differential metabolism underlying death was marked by
amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxopro-
line, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines
(lysoPCs). Individuals who recovered from severe disease displayed persistent alterations
enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis.
Recovery of mild disease was associated with vitamin E metabolism. Data integration
shows that the metabolic response is a hub connecting other biological features during
disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and
inflammatory responses that depend on disease severity and collectively predict clinical
outcomes of COVID-19.

IMPORTANCE COVID-19 is characterized by diverse clinical outcomes that include
asymptomatic to mild manifestations or severe disease and death. Infection by
SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or
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pathology. How inflammation and metabolism communicate during COVID-19 is not
well defined. We used high-resolution mass spectrometry to investigate small bio-
chemical compounds (,1,500 Da) in plasma of individuals with COVID-19 and con-
trols. Age, sex, and comorbidities have a profound effect on the plasma metabolites
of individuals with COVID-19, but we identified significant activity of pathways and
metabolites related to amino acids, lipids, nucleotides, and vitamins determined by
disease severity, survival outcome, and recovery. Furthermore, we identified metabo-
lites associated with acute-phase proteins and coagulation factors, which collectively
identify individuals with severe disease or individuals who died of severe COVID-19.
Our study suggests that manipulating specific metabolic pathways can be explored
to prevent hyperinflammation, organ dysfunction, and death.

KEYWORDS COVID-19, data integration, inflammation, metabolomics

The clinical spectrum of infection by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) ranges from an asymptomatic state to various manifestations of coro-

navirus disease 2019 (COVID-19) and death. Despite the success of vaccination in pre-
venting severe disease and mortality, a better understanding of the molecular mecha-
nisms of COVID-19 pathogenesis is required to develop precise and accessible therapy.
Factors associated with severe disease and death include age, sex, and comorbidities
that seem to amplify viral replication and inflammatory responses (1, 2).

Inflammation is a critical component of severe COVID-19, and an immunological
dysregulation is associated with unfavorable clinical outcomes (3). There is still limited
knowledge about factors driving asymptomatic infection or mild disease. At the same
time, post-COVID-19 survival and recovery have not been well characterized at the mo-
lecular level. Hematological and biochemical parameters as well as cytokines and che-
mokines, bioactive lipids, and metabolites are markedly modulated during SARS-CoV-2
infection and have been assessed for their diagnostic and prognostic potential (4–9).
Specific cytokines, such as interleukin 6 (IL-6) and IL-1b , have been evaluated as thera-
peutic targets (10, 11). However, broad suppression of the inflammatory response via
corticosteroid and JAK-STAT inhibitors has promoted better improvement than thera-
pies targeting specific cytokine signaling (12, 13). Therefore, the concerted activity of
multifactorial processes rather than signaling mediated by single candidate molecules
could better explain the complexity of the pathophysiology of COVID-19 and its
diverse clinical outcomes.

Cellular activation and function are tightly interwoven with metabolic adaptations,
which support energetic demands, provide building blocks for catabolic or anabolic ac-
tivity, and mediate cell signaling. Perturbations of homeostasis, such as infections and
inflammation, can be characterized by metabolic fingerprints, which in turn provide in-
formation on molecular mechanisms of pathogenesis (14). High-resolution tandem mass
spectrometry coupled with liquid chromatography (LC-MS/MS) is a powerful metabolo-
mics platform to measure small molecules and lipids of ,2,000 Da at large scales and
has been helpful for dissecting metabolic profiles of blood from individuals with COVID-
19 (15–17). However, metabolome-wide associations with inflammatory responses upon
severe COVID-19, but especially death and recovery, are not well defined. Here, we per-
formed an untargeted metabolomics study employing data-driven approaches to deter-
mine the metabolic profiles of individuals with COVID-19 and understand how they are
associated with inflammation under diverse circumstances.

We found a significant influence of confounding factors, such as sex, age, and comor-
bidities, on the metabolomes of individuals with COVID-19. After controlling for these
covariables, severity of disease still dictated the metabolic activity in the plasma, reveal-
ing metabolic pathways that also correlate with oxygen saturation. Modulation of gluta-
mate, tryptophan, oxoproline, progesterone, lysophosphatidylcholines (lysoPCs) and
related metabolites characterizes fatal disease, and patients who recover from acute
COVID-19 display persistent metabolic alterations in the plasma. Importantly, metabolites
are integrative hubs linking cytokines, inflammatory factors, and coagulation functions in
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multifactorial, multiscale networks that predict the severity of, fatality of, and recovery
from COVID-19.

RESULTS
Demographic characteristics and inflammatory profiles of individuals with

COVID-19. We recruited 150 individuals who tested positive for SARS-CoV-2 by reverse
transcription-quantitative PCR (RT-qPCR) or serology between June 2020 and February
2021. Twenty-seven individuals with negative RT-qPCR and serology for SARS-CoV-2
were enrolled as control donors. Individuals with COVID-19 were stratified into mild,
moderate, and severe disease based on clinical parameters, including oxygen saturation
and admission to an intensive care unit, in addition to those progressing to a fatal out-
come (see Table S1 in the supplemental material). Longitudinal follow-up of a subset of
individuals (n = 20) allowed paired sampling after recovery from COVID-19 (Table S2).
The analysis of clinical profiles considering the individuals’ sex revealed a higher propor-
tion of men with fatal COVID-19 (Table S1). The distribution of age was similar between
controls and individuals with COVID-19, except for individuals with mild disease (Table
S1). Demographic, clinical, and laboratorial data, including the description of comorbid-
ities, symptoms, and treatments, are detailed in Tables S1 and S2.

Hematological characteristics and levels of biochemical laboratory parameters
related to organ damage, acute-phase proteins, and coagulation functions were similar
to those found in other cohorts (4, 18, 19). For example, individuals with fatal COVID-
19 displayed lymphopenia, while individuals with mild disease and recovered individu-
als exhibited cell counts comparable to those of control donors (Fig. S1A). Neutrophil
counts increased in individuals with moderate, severe, and fatal disease compared to
control donors, with values in the group with fatal outcomes also differing from those
in other groups (Fig. S1A). Levels of C-reactive protein (CRP), creatinine, and ferritin
also increased in the plasma of individuals with fatal disease in comparison to almost
all other groups (Fig. S1B). Relative abundance of most cytokines was elevated in the
plasma of individuals with moderate, severe, and fatal COVID-19, with IL-6 reaching
the highest levels among them (Fig. S1C). Compared to control donors, individuals
who recovered from acute COVID-19 displayed small but significant alterations in the
abundance of plasma cytokines (Fig. S1D).

The metabolomes of individuals with COVID-19 are influenced by confounding
factors. To investigate the metabolic responses to SARS-CoV-2 infection, we per-
formed an untargeted metabolomics analysis of plasma samples from individuals with
COVID-19 and compared them to those from control donors. There were 578 up- and
425 downregulated metabolite features (false discovery rate [FDR] , 0.0001) in the
plasma samples from individuals with COVID-19 (Fig. 1A). Hierarchical clustering based
on significant features revealed two major clusters of individuals with positive or nega-
tive SARS-CoV-2 infection, except for a few outliers (Fig. 1B). Mummichog software
analysis, which was designed to evaluated untargeted metabolomics data (20), pre-
dicted the activity of diverse metabolic pathways, including arachidonic acid metabo-
lism and arginine and proline metabolism, among others that have been observed in
independent cohorts of individuals with COVID-19 (Fig. 1C) (21). Among the significant
metabolites, infection was associated with increased abundance of plasma carnitine,
acetylcarnitine, butyrylcarnitine, methylglutarylcarnitine, octenoylcarnitine, and dece-
noylcarnitine (Fig. 1D).

The high heterogeneity of metabolomic signatures among individuals with COVID-19
suggests that intrinsic factors such as age or sex could affect levels of circulating metabo-
lites and thus confound the results. To test whether these covariables could be confound-
ing factors, we first performed logistic regressions to identify statistical associations
between metabolite features and age, sex, heart disease, hypertension, diabetes, obesity,
dyslipidemia, chronic renal disease (CRD), and chronic obstructive pulmonary disease
(COPD) in our study cohort. All the tested variables were associated significantly (P, 0.05)
with many metabolite features (Fig. 1E), while several metabolite features affected by
SARS-CoV-2 infection were the same as those associated with covariables (Fig. S2).

Metabolic and Inflammatory Phenotypes of COVID-19 Microbiology Spectrum

March/April 2023 Volume 11 Issue 2 10.1128/spectrum.02194-22 3

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.02194-22


FIG 1 Plasma metabolomic signatures of SARS-CoV-2 infection. (A) Manhattan plot depicting significant metabolite features in plasma of individuals with COVID-19
compared to control donors. The dashed line indicates an FDR-adjusted P value of ,0.0001. Upregulated features are in red and downregulated features in blue.
(B) Two-way hierarchical clustering based on significant metabolite features. (C) Mummichog pathway analysis of significant features. (D) Differential abundance of
carnitine and acylcarnitines according to infection status. (E) Number of significant metabolite features associated with SARS-CoV-2 infection, or age, sex, COPD, CRD,
diabetes, dyslipidemia, heart disease, hypertension, and obesity. (F) Percentage of metabolite features whose coefficient of association with infection changes by
more than 10% with the inclusion of the covariable in the logistic regression model. Tukey’s multiple-comparison test was used in additional statistics. **, P , 0.01;
***, P , 0.001.
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Because of the unbalanced number of individuals with comorbidities in our cohort (e.g.,
different sample sizes of individuals with diabetes and those with CRD), we used a differ-
ent approach to understand the impact of covariables as confounding factors. We used
logistic regression to calculate the metabolome-wide association with infection, compar-
ing models that included the covariable of interest or not. For that, we calculated the dif-
ference in the measurement of association (regression coefficient) resulting from the two
models and considered an effect if the difference was 10% or more for all metabolite fea-
tures. We found that, to some extent, all the covariables influenced the plasma metabo-
lome, where hypertension and diabetes were the major confounding variables (Fig. 1F).
Therefore, the metabolomes of individuals with COVID-19 are influenced by factors
beyond infection that can affect data interpretation.

Differential metabolic activity according to COVID-19 severity. To identify meta-
bolic correlates of disease severity, we compared individuals with mild, moderate, severe,
or fatal COVID-19 to control donors, accounting for confounding factors in the linear
regression models. The number of significant metabolite features (FDR , 0.0001) varied
by severity classification, but individuals with fatal COVID-19 displayed the highest num-
bers of both up- and downregulated features (Fig. 2A). The abundance of carnitine (Fig.
S3C) and phenylalanine (Fig. 2B) increased in the plasma of individuals with COVID-19
compared to controls but was similar among categories of severity. In agreement with pre-
vious findings (8), the abundance of N1-acetylspermidine increased with COVID-19, and it
was even higher in the plasma of individuals with fatal outcomes (Fig. 2C). Fatal COVID-19
was also associated with increased abundance of glutamyl-glutamate in the plasma
(Fig. 2C). Mummichog pathway analysis predicted the activity of several metabolic path-
ways according to each clinical stratification (Fig. 2D). As expected, fatal disease was associ-
ated with more pathways than the other categories of severity. Butanoate metabolism
was significant for all groups of individuals with COVID-19 compared to control donors.
Pathways such as arginine and proline metabolism, aspartate and asparagine metabolism,
and lysine metabolism were enriched for mild and fatal disease, while prostaglandin forma-
tion from dihomo-g -linoleic acid was enriched for moderated and fatal disease (Fig. 2D).
Because of the significant effect of infection over the plasma metabolome, we then com-
pared only the metabolomes of individuals with COVID-19. For that, we used a limma-mod-
erated F test, which revealed 396 significant metabolite features (FDR , 0.0001) (Fig. S3A).
Mummichog analysis predicted the activity of most of the same pathways when each group
of individuals was compared to control donors (Fig. S3B).

Oxygen saturation (SpO2) is an important indicator of severity and has been used in
clinical prediction scores (22, 23). We performed a metabolome-wide association analy-
sis of SpO2 adjusted for confounding factors to identify metabolites predicting this clin-
ical feature. We identified 149 significantly associated metabolite features (P , 0.001),
of which 44 were negatively associated and 105 were positively associated with SpO2

in individuals with COVID-19 (Fig. 2E). Significant metabolites were predicted to be
involved with tryptophan metabolism, histidine metabolism, and arginine and proline
metabolism (Fig. 2F). At the metabolite level, an example of negative association
includes creatine, while positive associations include aminolevulinate, lysine, and uro-
canate (Fig. 2G).

Fatal COVID-19 is characterized by the modulation of lipids and amino acids.
To identify metabolites that are associated with fatal outcomes upon severe disease, we
compared the metabolic activity between individuals with fatal disease and those that sur-
vived severe COVID-19. To account for the abundance from control donors before compar-
ing the groups of COVID-19 patients, we subtracted the mean log2 intensity values of the
control donors from those of COVID-19 samples. The resulting values reflect how much
the abundance of metabolites from each individual in both groups changed relative to
the mean abundance of control donors. The analysis revealed 158 down- and 393 upregu-
lated metabolite features in the plasma of individuals with fatal disease (Fig. 3A). We
detected reduced abundance of lipids such as progesterone, phosphocholine, lysoPC
(16:0), and lysoPC(20:4) (Fig. 3B). Significant metabolite features show some heterogeneity
in abundance among individuals who survived, which is less apparent in individuals with
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FIG 2 Metabolomic phenotypes according to severity of COVID-19. (A) Significant metabolite features between individuals with COVID-19 stratified
by disease severity compared to control donors. (B) Differential abundance of phenylalanine. (C) Differential abundance of N1-acetylspermidine and

(Continued on next page)
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fatal outcome (Fig. 3C). Mummichog analysis predicted a significant metabolic network
(P , 0.05) of amino acids and derived metabolites (Fig. 3D). Mummichog analysis also
predicted activity of pathways such as glutathione metabolism, lysine metabolism, and
arginine and proline metabolism (Fig. 3E). Levels of oxoproline (involved in glutathione
metabolism) were reduced in the plasma of individuals with fatal COVID-19 (Fig. 3F).
Reanalysis of longitudinal data from an independent cohort that progressed to a fatal out-

FIG 2 Legend (Continued)
glutamyl-glutamate according to disease severity. (D) Pathway enrichment analysis of significant metabolite features. (E) Hierarchical clustering
based on significant metabolites associated with oxygen saturation (SpO2) in individuals with COVID-19. (F) Mummichog pathway analysis of
metabolite features associated with SpO2. (G) Examples of metabolites associated with SpO2 (P , 0.05). Tukey’s multiple-comparison test was used
in additional statistics. *, P , 0.05; **, P , 0. 01; ***, P , 0.001.

FIG 3 Metabolic correlates of fatal COVID-19. (A) Volcano plot demonstrating metabolite features differing in the plasma of individuals with severe or fatal
COVID-19. The dashed line indicates an FDR of ,0.05. (B) Differential abundance of progesterone, phosphocholine, lysoPC(16:0), and lysoPC(20:4)
according to survival of severe disease or fatal outcome. (C) One-way hierarchical clustering based on significant metabolite features. (D) Mummichog
modular analysis depicting a metabolic network of amino acids and derived metabolites. (E) Mummichog pathway analysis of significant metabolite
features. (F) Differential abundance of oxoproline according to survival of severe disease or fatal outcome. (G) Reanalysis of the relative abundance of
oxoproline along the course of 4 different time points before death due to COVID-19, retrieved from the study by Wu et al. (16). *, P , 0.05; **, P , 0.01;
***, P , 0.001.
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come (16) demonstrates a gradual reduction in the abundance of plasma oxoproline with
time (Fig. 3G).

Integrated molecular networks associated with severity and fatality of COVID-19.
Many studies demonstrate metabolites as key components of the host response to
infection and vaccines (24–26), suggesting concerted activity of the metabolic and
inflammatory responses during COVID-19. We used a hierarchical community network
approach (24) to integrate hematological, acute-phase/coagulation, cytokine, and
metabolomics data from 53 individuals with COVID-19 (Fig. S4). This method accounts
for dimension reduction with meaningful grouping of features and different variance
structures of distinct data types, because associations are tested via partial least-square
(PLS) regression and significance is assessed by permutation, and therefore, only ro-
bust signals reach statistical significance (25). The leading network is composed of 27
nodes and 130 connections (edges at P , 0.05; 44 edges at P , 0.001) with 1 hemato-
logical cluster, 3 biochemical clusters, 2 cytokine clusters, and 21 metabolite clusters
(Fig. 4A). Associations between a few nodes are highlighted in purple in Fig. 4A and
enlarged in Fig. 4B, which shows that cytokine cluster 2 is composed of tumor necrosis
factor alpha (TNF-a), IL-2 and IL-4; biochemical cluster 4 is composed of prothrombin
activity time (PAT), activated partial thromboplastin time (aPTT), and international nor-
malized ratio (INR); hematological cluster 2 is composed of neutrophils, monocytes,
and total leukocytes; and metabolite cluster 11, which connects the different data types, is
related to mitochondrial pathways, including electron transport chain, fatty acid oxidation,
and tricarboxylic acid (TCA) cycle. The most significant association (P , 2.2E217) was
between hematological cluster 2 and metabolite cluster 11 (Fig. 4C), supporting our previous
findings of increased mitochondrial activity in leukocytes of individuals with COVID-19 (27).

We queried the main network in search of subnetworks that could explain differen-
ces in disease severity and fatality of COVID-19. For that, we used the rank-based
method GSEA (gene set enrichment analysis) using the network nodes as gene sets
and permutation to test the significances. Comparison between individuals with mild
or moderate and severe COVID-19 revealed biochemical cluster 2 and several metabo-
lite clusters differentially associated with disease severity (Fig. 4D). Metabolite cluster
19 displayed many upregulated metabolites in plasma of individuals with severe dis-
ease (Fig. 4E), which are related to carbohydrate metabolism pathways such as galac-
tose metabolism, amino sugar metabolism, and hexose phosphorylation (Fig. 4F). We
also queried the leading network to identify clusters associated with fatal outcomes of
COVID-19 (Fig. 4G). Biochemical cluster 2 (Fig. 4H) displayed increased activity in indi-
viduals with fatal disease (Fig. 4I). Furthermore, metabolite cluster 21 also exhibited
increased activity in individuals with fatal COVID-19 (Fig. 4J) and is related to inflamma-
tory lipid pathways, including linoleate metabolism and arachidonic acid metabolism,
among others (Fig. 4K).

COVID-19 induces persistent metabolic alterations in the blood. To identify met-
abolic correlates of recovery from COVID-19, we followed up a subset of 20 individuals
with varying clinical severity after recovery of acute disease. Compared to control
donors, there were 493 significant metabolite features (FDR , 0.0001) in the plasma of
recovered individuals (Fig. S5A). Predicted activity was related to pathways such as
aspartate and asparagine metabolism, arginine and proline metabolism, and others
(Fig. S5B). Of note, levels of adenine and guanine were higher in the plasma of recov-
ered individuals, while the abundance of cytosine and spermidine decreased after re-
covery of acute COVID-19 (Fig. S5C).

Analysis of paired samples of the same group of individuals demonstrated 143
down- and 309 upregulated metabolite features (Fig. 5A), with significant increases in
the abundance of metabolites such as adenine and theobromine after recovery from
COVID-19 (Fig. 5B). Mummichog analysis predicted the activity of a few pathways,
including phosphatidylinositol phosphate metabolism, glycolysis and gluconeogenesis,
and vitamin E metabolism (Fig. 5C). Stratification by disease severity showed many sig-
nificant features in the plasma of individuals who recovered from severe COVID-19 but
not in those who recovered from mild or moderate disease (Fig. 5D). Pathway analysis
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FIG 4 Integrative hierarchical community network underlying COVID-19. (A) The main network is composed of subnetworks
(communities) of hematological data (hematological cluster), laboratory data (biochemical clusters), cytokine data (cytokine clusters)

(Continued on next page)
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predicted that activity of vitamin E metabolism is driven by recovery of mild disease
(Fig. 5E, green bar), while other pathways such as purine metabolism, phosphatidylino-
sitol phosphate metabolism, and glycolysis and gluconeogenesis are related to recov-
ery of severe disease (Fig. 5E, orange bars). The abundance of the feature annotated as
carboxy-tocotrienol increased in the plasma of individuals recovering from mild dis-
ease, while the feature annotated as phosphohydroxypyruvate increased in the plasma
of individuals recovering from severe disease (Fig. 5F).

We used the hierarchical community network method to integrate hematological,
cytokine, and metabolomics data from individuals who recovered from COVID-19. For
this, we normalized data by subtracting measurements at time point 1 (disease) from
those at time point 2 (recovery). Following, we applied hierarchical clustering followed
by PLS regression to find associations, whose significance was tested on 1 million per-
mutations. The network contains 18 nodes with 38 connections (at P , 0.05; 10 con-
nections at P , 0.001) (Fig. 5G). Highlighted connections are displayed in Fig. 5H,
showing that metabolite cluster 12 is enriched by glycerophospholipid metabolism or
arachidonic acid metabolism and exhibits a single association with cytokine cluster 1.
Cytokine and hematological clusters connect to metabolites, such as metabolite cluster
19, involved in xenobiotic metabolism or prostaglandin formation (Fig. 5H). Comparing
the activities of cytokine and hematological clusters between individuals recovering
from mild/moderate and severe disease revealed no differences (Fig. 5I). However, indi-
viduals recovering from severe COVID-19 exhibited reduced activity of metabolite clus-
ter 1, which is related to steroid hormone biosynthesis, and metabolite cluster 4, which
is related to phytanic acid oxidation (Fig. S6). In contrast, they displayed increased ac-
tivity of metabolite cluster 7, which is related to drug metabolism, as well as metabolite
cluster 13, which is associated with linoleate metabolism (Fig. S6).

DISCUSSION

We employed an untargeted metabolomics approach to assess the molecular phe-
notypes in the plasma of individuals with mild to fatal COVID-19, and a subset that
recovered from acute disease. Furthermore, we integrated biological factors that medi-
ate and are affected by inflammation with the metabolic responses of individuals with
COVID-19. This is important, because the cellular metabolism represents a potential
target to modulate the inflammatory response, and therefore, there is great interest in
discovering how metabolites impact COVID-19 (9, 15–17, 21, 28–33).

Our study demonstrates that infection by SARS-CoV-2 induces important adapta-
tions in the metabolism that can be detected in the plasma. These alterations reflect
the activity of cells in the upper and lower respiratory tracts but can also originate
from other organs in response to inflammatory cues. Many of the detected metabolites
and pathways are involved in immune and inflammatory responses. For instance, ara-
chidonic acid metabolism and generation of eicosanoids are involved in diverse mech-
anisms of innate and adaptive immunity and have been explored during COVID-19
(34–36). In our study, arachidonic acid metabolism was mostly linked to death, sug-
gesting eicosanoids as amplifiers of the inflammatory response. Furthermore, increased
abundance of carnitine and acylcarnitines in plasma during COVID-19 suggests disrup-
tions in mitochondrial activity and fatty acid oxidation and can be related to poorer

FIG 4 Legend (Continued)
and metabolomics data (metabolite clusters), which are represented by nodes. Significant associations obtained via PLS regression
and permutation test are represented by edges between nodes. (B) Amplified visualization of nodes linked by purple highlighted
edges on the main network. (C) The most significant association in the network between metabolite cluster 11 and hematological
cluster 2. (D) Communities related to the severity of COVID-19, colored by normalized enrichment score (NES) in a comparison
between individuals with mild/moderate and severe COVID-19. Red indicates higher association with severe disease. (E) Heat map
depicting the abundance of metabolite features composing metabolite cluster 19 in individuals with mild/moderate and severe
disease. (F) Mummichog pathway analysis of metabolite cluster 19. (G) Communities related to fatality of COVID-19, colored by NES
in a comparison between individuals with severe and fatal disease. Red indicates a higher association with death. (H) Amplified
visualization of biochemical cluster 2. (I) Differential cluster activity of biochemical cluster 2 between individuals with severe and
fatal disease. (J) Differential cluster activity of metabolite cluster 21 between individuals with severe disease and fatal disease. (K)
Mummichog pathway analysis of metabolite cluster 21. *, P , 0.05; ***, P , 0.001.
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FIG 5 Metabolomic signatures of recovery from acute COVID-19. (A) Two-way hierarchical clustering of significant metabolite features
on a longitudinal follow-up of selected individuals with COVID-19. (B) Differential abundance of adenine and theobromine before and

(Continued on next page)
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clinical outcomes of overweight individuals with COVID-19 (37, 38). Other studies
reported increased abundance of carnitine and/or acylcarnitines with infection by
SARS-CoV-2, and many of them also associate this increase with disease severity
(8, 39–42). In contrast, reduced levels of acylcarnitines were also implicated in COVID-
19 severity (28, 43, 44). L-Carnitine may reduce the expression of receptors involved in
SARS-CoV-2 entry into host cells and inhibit epithelial cell infection (45), and genetic
traits inducing higher levels of L-carnitine are associated with reduced susceptibility
and severity of COVID-19 (46). Although the regulation and function of carnitine and
acylcarnitines during COVID-19 are still under debate, the current evidence points to
crucial roles of these metabolites in infection and disease progression.

The infection by SARS-CoV-2 and severity of COVID-19 are associated with the activity
of multiple metabolic pathways. However, fatal disease is associated with more perturba-
tions in the plasma metabolome. Pathways such as lysine metabolism and tryptophan me-
tabolism are also associated with levels of oxygen saturation, suggesting a role for amino
acids and their derivatives in respiratory distress. In line with these findings, an independ-
ent metabolomics study reported altered amino acid catabolism in hypoxic individuals
with COVID-19 (47). Hypoxic conditions, such as those observed in individuals with severe
COVID-19, can impair mitochondrial function and cellular bioenergetics, causing energy
deficits (48). As reported by independent studies, we observed increased abundance of
phenylalanine with SARS-CoV-2 infection (32, 49, 50). Although differences between cate-
gories of severity did not reach statistical significance, phenylalanine has been implicated
as a biomarker of COVID-19 severity (51–53).

The plasma metabolome of individuals with fatal COVID-19 was characterized by the
differential activity of a metabolite network hinging on the amino acids glutamate and
tryptophan. Many of the metabolites on the network have been previously associated
with infection, sex disparities, and disease severity (7, 17, 28, 29, 54). In our study, fatal dis-
ease was associated with reduced abundance of oxoproline, which declined over time in
an independent cohort of patients who also died due to COVID-19 (16). Oxoproline can be
oxidized by oxoprolinase to glutamate, whose abundance was elevated in the plasma of
individuals with fatal disease. In addition, levels of glutamyl-glutamate also increased in
the plasma of patients who died. These metabolites are involved with glutathione metabo-
lism, the most significant pathway differing between patients who survived or died after
severe COVID-19. The balance between glutamate, oxoproline and glutamyl-amino acids
can affect the synthesis of glutathione and tissue homeostasis, suggesting that failure in
the generation and/or function of glutathione underlies fatal outcomes of COVID-19.
Consistent with this hypothesis, SARS-CoV-2 infection impairs the metabolism of glutathi-
one and its antioxidative function in vitro (55).

Of interest, our study suggests altered abundance of several lipids in the plasma of
individuals with fatal disease, including progesterone, phosphocholine, and lysoPCs.
Progesterone diffuses through cell membranes and binds to the progesterone receptor
(PR) in the cytoplasm, where PR dimers form a complex that translocates to the nucleus,
dampens inflammatory-gene transcription, and promotes expression of growth factors
(56). Therefore, progesterone could regulate cellular responses of individuals with
COVID-19 (57). At the same time, reproductive steroids may underlie sex disparities in
clinical outcomes of COVID-19 (58). Importantly, a randomized, placebo-controlled trial
demonstrated enhanced antibody production, reduced production of proinflammatory
cytokines, and reduced severity in individuals with COVID-19 who were given estradiol
and progesterone early in the course of the disease (59). LysoPCs upregulate adhesion

FIG 5 Legend (Continued)
after recovery from COVID-19. (C) Mummichog pathway analysis of significant metabolite features. (D) Significant metabolite features
before and after recovery from acute COVID-19, stratified by disease severity. (E) Mummichog pathway analysis of significant
metabolite features stratified by disease severity. (F) Differential abundance of metabolite features annotated as carboxy-tocotrienol
and phosphohydroxypyruvate before and after recovery from acute COVID-19, stratified by disease severity. (G) Integrative hierarchical
community network underlying recovery of acute COVID-19. (H) Amplified visualization of nodes linked by purple-highlighted edges
on the main network. (I) Cluster activity of cytokine cluster 1 and hematological cluster 2 between patients with mild/moderate and
severe disease who recovered from acute COVID-19. ***, P , 0.001.
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molecules (60) and induce proinflammatory cytokines (61). Reduced levels of these lipids
in fatal outcomes could reflect enhanced viral replication, as viruses alter the cell mem-
brane composition during this process (62). In line with our findings, reduced levels of
lysoPCs and other phospholipids predict the severity of COVID-19 (9).

Individuals with severe and fatal COVID-19 displayed neutrophilia and lymphope-
nia, as well as increased levels of CRP, ferritin, and cytokines such as IL-6, IL-10, gamma
interferon (IFN-g ) and TNF-a, as described previously (4, 18, 19, 28). The integration of
different orthogonal data in our study revealed that metabolite clusters associated
with all other data types, but only one connection between hematological and a bio-
chemical cluster reached statistical significance. These results suggest the metabolic
response as an integrative hub for the communication between different physiological
processes involved in the response to COVID-19. In association with many metabolite
clusters, biochemical cluster 2, which includes CRP, D-dimer, and ferritin, predicted the
fatality of individuals with COVID-19. Fatal outcome was also predicted by a cluster
associated with inflammatory fatty acids (metabolite cluster 21), which emerged as crit-
ical molecules in COVID-19 pathogenesis (63, 64).

The understanding of metabolic profiles during convalescence and recovery from
acute COVID-19 might reveal mechanisms of protection or even pathology associated
with long COVID-19. There are several lines of evidence pointing for a return to base-
line levels of metabolites affected by SARS-CoV-2 infection and disease severity, includ-
ing acylcarnitines and lysoPCs (9, 41). However, metabolite abundance early (1 month)
after recovery is still altered (65) and persists 2 to 3 months after nonsevere COVID-19
(41). Other studies evaluating individuals who recovered from more severe phenotypes
also found persistent alterations in the plasma metabolome (17, 30, 32). Despite our
small sample size, individuals who recovered from acute COVID-19 in our cohort also
displayed persistent metabolic alterations. Paired samples from the same individuals
revealed that patients with severe COVID-19 are the most affected. Example of altered
metabolites include adenine, which inhibits the production of proinflammatory cyto-
kines and bioactive lipids in cellular and animal models of inflammation (66, 67). The
pathology of individuals recovering from severe COVID-19 may take longer to resolve,
which in turn could stimulate prolonged production of anti-inflammatory metabolites.
The metabolism of vitamin E was enriched in plasma of individuals who recovered
from mild COVID-19. Vitamin E regulates the immune response and confers resistance
to many viral infections (68). Furthermore, vitamin E and derived metabolites, such as
tocotrienols, are antioxidant molecules that improve the response to oxidative stress
(69) and also regulate inflammation (70). Of note, recovery of all individuals was
coupled with higher levels of theobromine in the plasma. This metabolite is found in
food and is endogenously metabolized from caffeine. Sickness behavior is character-
ized by reduced food ingestion, which affects host responses to infections (71), and
theobromine levels might indicate improved nutritional status upon recovery or even
contribute to the resolution of symptoms such as cough (72). Importantly, data inte-
gration revealed that metabolite clusters better explain differences in individuals who
recovered from mild/moderate and severe disease.

Overall, the data indicate that metabolomic profiles of individuals with COVID-19 is
influenced by a wide range of confounding factors, which were accounted for in our
models. However, other factors were not controlled, including individual genetics,
SARS-CoV-2 strain, diet, and drug therapy. We were unable to control for treatment,
because individuals received different drugs via distinct regimens over the course of
disease, including those with mild phenotypes, many of whom self-medicated. Our
study is also limited to measurements of few cytokines and laboratorial and hemato-
logical parameters that do not reflect the entire complexity of the inflammatory
response. Moreover, the small number of individuals followed up after hospital dis-
charge may represent only individualized phenotypes. Importantly, the hypotheses
raised by our study need to be validated in independent cohorts and mechanistic
studies.
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MATERIALS ANDMETHODS
Study population and sample processing. Individuals with COVID-19 were admitted to the

Hospital das Clínicas and Hospital das Clínicas de Campanha or recruited at the Laboratório Profa

Margarida Dobler Komma at the Federal University of Goiás, Goiânia, Brazil between June 2020 and
February 2021, before vaccination rollout. Blood samples were collected in EDTA tubes from 150 individ-
uals who had SARS-CoV-2 infection confirmed by RT-qPCR test from nasopharyngeal swabs or by sero-
logical assays to detect specific IgM/IgG antibodies (Eco diagnostics) and from control donors (n = 27),
who were negative for SARS-CoV-2 infection confirmed by RT-qPCR from nasopharyngeal swabs and
serological IgM/IgG tests. Blood samples were collected an average of 13 days from symptom onset
(Table S1). Paired blood samples were collected from a subset of 20 individuals with COVID-19 who
were followed up after recovery on average of 172 days after symptom onset (Table S2). The criteria
defined in the COVID-19 treatment guidelines (National Institutes of Health, USA) and the World Health
Organization (73, 74) were used to stratify individuals with COVID-19 into mild disease (individuals pre-
senting various signs and symptoms without shortness of breath, dyspnea, or abnormal chest imaging),
moderate disease (individuals presenting radiologically confirmed pneumonitis, hospitalization, and oxy-
gen therapy), severe disease (dyspnea, respiratory frequency of $30 breaths/min, oxygen saturation
[SpO2] of #93%, and/or lung infiltrates of .50% within 24 to 48 h, including individuals who required
monitoring and treatment in an intensive care unit and mechanical ventilation), or fatal COVID-19.
Laboratory parameters of liver and kidney function, inflammatory markers and coagulation factors, red
blood cells, hemoglobin, platelets, and total and differential leukocytes were determined using auto-
mated equipment and a hematology smear, respectively. Blood samples were centrifuged at 1,800 rpm
for 10 min to obtain plasma, which was stored at 280°C. The research protocol was approved by Ethical
Appreciation (CAAE: 30804220.2.0000.5078). All participants provided informed consent according to
the regulations of the Human Ethical Committee at the Hospital das Clínicas, Faculdade de Medicina of
Universidade Federal de Goiás (UFG-GO). For individuals in the intensive care unit and those who were
unable to communicate, consent was obtained from a legally authorized representative (LAR).

RNA extraction and detection of SARS-CoV-2. Nasopharyngeal swab samples from individuals
with COVID-19 or control donors were processed and analyzed by RT-qPCR. Briefly, RNA extraction was
performed with the commercial Qiagen viral RNA minikit (Qiagen, Hilden, Germany), following the man-
ufacturer’s instructions. The RNA extracts were subjected to RT-qPCR assay using the Promega Go-Taq
Probe one-step RT-qPCR system, according to the manufacturer’s protocol. Primers, probe, and synthetic
positive control (nCoVPC) were manufactured by IDT (Integrated DNA Technologies, Iowa, USA) and tar-
geted two regions of the N gene (N1 and N2) and the endogenous control, human RNase P gene (RP).

Cytokine measurements. Plasma levels of the cytokines IL-2, IL-4, IL-6, IL-10, TNF, and IFN-g were
measured in samples using a BD cytometric bead array (CBA) human Th1/Th2 kit (BD Biosciences, San
Jose, CA, USA), according to the manufacturer’s instructions. Briefly, after sample processing, the cyto-
kine beads were counted using a flow cytometer (FACSCanto II; BD Biosciences, San Diego, CA, USA),
and analyses were performed using FCAP Array (3.0) software (BD Biosciences, San Jose, CA, USA). Log2-
transformed mean fluorescence intensities were used for statistical analyses and data integration.

LC-MS/MS. For metabolomics analyses, cold acetonitrile was added to plasma samples (2:1 [vol/vol])
and subjected to vortex mixing and centrifugation (10 min, 10,000 rpm at 4°C) for protein precipitation.
The stable isotopes [13C3]caffeine, [15N]tyrosine, and progesterone-d9 were used as internal standards,
and samples were transferred to injecting vials for LC-MS/MS analysis, which was performed with a
high-performance liquid chromatograph (HPLC-UV; 1220 Infinity; Agilent Technologies) coupled with a
Q Exactive hybrid quadrupole-Orbitrap high-resolution mass spectrometer (Thermo Fisher). Reverse-
phase C18 chromatography was performed with Zorbax Eclipse Plus C18 columns (4.6 by 150 mm;
3.5 mm; Agilent) and positive electrospray ionization. All samples were analyzed using a gradient elution
program. The binary mobile phases were water–0.5% formic acid with 5 mM ammonium formate (A)
and acetonitrile (B). Their gradient elution started with 20% B for 5 min, linearly increased to 100% B in
30 min, and was kept constant for 8 min at 100% B. The eluent was restored to the initial conditions in 4
min to re-equilibrate the column and held for the remaining 8 min. The flow rate was kept at 0.5 mL
min21. The injection volume for analysis was 3 mL, and the column temperature was set at 35°C. The
electrospray ionization was operated with the following settings: spray voltage, 3.5 kV; capillary temper-
ature, 269°C; S-lens RF level, 50 V; sheath gas flow rate, 53 L min21; auxiliary gas flow rate, 14 L min21;
sweep gas flow rate, 3 L min21. The high-resolution mass spectrometry was carried out in full MS/dd-
MS2 mode. The mass range in the full MS scanning experiments was m/z 80 to 1,200. The max IT was set
at 200 ms, and AGC target was set at 1 � 106. For fragmentation acquisition, the top 5 (TopN, 5; loop
count, 5) most abundant precursors were sequentially transferred into the C-Trap (AGC target 1 � 105;
max IT 50 ms) for collision. The collision energy for target analytes was 20, 30, and 35 eV. Resolving
power was set at 140,000 and 70,000 for full MS and dd-MS2 acquisitions, respectively.

Bioinformatics and statistical analyses. Proteowizard software was used to convert .raw files into
.mzXML format, and apLCMS R software (75) was used to perform peak deconvolution and detection, to
filter noise, to align mass-to-charge ratio (m/z) and retention time, and to quantify metabolite features,
which are defined by specific m/z, retention time, and intensity values for each sample. Pooled human
plasma samples were used for quality control (QC) and included in every batch of samples. Replicate
samples were summarized based on a Pearson correlation coefficient (r) of .0.7. Data were log2 trans-
formed, and features were filtered out by 90% presence in all samples and a coefficient of variation of
,0.2 based on QC samples, resulting in 9,893 metabolite features used in further analysis. We used the
ComBat function of the sva R package to correct for batch and technical effects. The Mummichog soft-
ware (version 2) was used to predict activity of metabolic pathways and networks (mass accuracy under
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10 ppm) (20). The R package ggplot2 was used to generate volcano, bubble, and Manhattan plots. Heat
maps were generated with gplots, and hierarchical clustering was performed with the amap package
using Pearson correlation as the distance metric and ward linkage. MZmine v 2.5 software was used to
process LC-MS/MS data, with noise set at 1E04 and 1E03 for the MS1 and MS2 levels, respectively. m/z
tolerance was set at 0.02 m/z or 10 ppm. ADAP chromatogram builder parameters included the follow-
ing: minimum group size in number of scans, 5; group intensity threshold, 5E04; and minimum highest in-
tensity, 1E05. Deconvolution parameters included the following: minimum peak height, 1E05; peak duration,
0 to 3 min; and baseline level, 1E04. Isotopic grouping parameters included the following: RT tolerance, 0.25
min; maximum charge, 2; and representative isotope, most intense. Join aligner parameters included the fol-
lowing: weight for m/z, 75; RT tolerance, 0.25 min; and RT weight, 25. MS/MS patterns were exported, and
fragment similarity searches were performed with METLIN Gen2 (https://metlincloud2.massconsortium.com/)
(76) and MyCompoundID (http://www.mycompoundid.org/) (77) (Fig. S7).

Differential abundance was evaluated with moderated t test or moderated F test (analysis of var-
iance [ANOVA]) using the limma R package, which enabled the design of models containing covariables
to account for potential confounding factors, including age, sex, and comorbidities. Additional statistics
included Tukeýs or Kruskal-Wallis multiple-comparison test. The influence of covariables including age,
sex, and comorbidities over the metabolome was evaluated with logistic regression. Multivariable linear
regression to identify association between metabolites and SpO2 included age, sex, and comorbidities
as covariables. Regressions were performed with glm function of the epicalc R package. FDR was calcu-
lated with the Benjamini-Hochberg method.

Data integration was performed using the hierarchical community network approach using python, as
described previously (25, 26). Unsupervised hierarchical clustering based on correlation metrics was used
to collapse hematological, laboratory, and cytokine data into clusters. For metabolite features, the same
hierarchical clustering was applied, but close retention time was enforced within clusters to group differ-
ent ions reflecting the same metabolite (25). PLS regression was used to calculate associations between
clusters, while the significance (P value) of such associations was computed on over 1 million permutations
for each pair of data, resampling both samples and features. Each node is a subnetwork, which enables an
overview of the leading network and subnetworks for more details at multiple zoom levels. To query the
main network, we used t-scores as a primary score in GSEA software. t-scores were obtained from limma
output comparing individuals with mild/moderate and severe disease or comparing individuals with
severe and fatal COVID-19. To integrate data from recovered individuals, we normalized the data by
subtracting values for time point 1 (disease) from those for time point 2 (recovery), whereas biochemical
clusters were not included, because many laboratory parameters were unavailable upon recovery. The net-
works of significantly associated clusters were visualized with Cytoscape v. 3.8.2. Activity of each cluster on
a per-sample basis was calculated as follows: sum(z score)/square root(number of metabolite features).

Data availability.Metabolomics data have been deposited in the Metabolomics Workbench database
with the identifier ST002291. The processed feature table used in the analyses is available at Figshare
(https://doi.org/10.6084/m9.figshare.22047761.v1). Phenotypic data and annotations are provided in Data
Set S1. Code used in the statistical analyses of metabolomics data is provided in Data Set S2.
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