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ABSTRACT Tuberculosis, a contagious bacterial infection caused by Mycobacterium tu-
berculosis, is a substantial global health problem, impacting millions of lives annually.
Exhausted T-cell signatures are critical for predicting clinical responses to tuberculosis
infection. To obtain a panoramic transcriptional profile of T cells, we performed single-
cell RNA-sequencing analysis of CD41 T and CD81 T cells isolated from peripheral blood
mononuclear cells of healthy individuals and patients with tuberculosis. We identified
seven subsets in CD81 T cells and eight subsets in CD41 T cells and elucidated the
transcriptomic landscape changes and characteristics of each subset. We further investi-
gated the cell-to-cell relationship of each subgroup of the two cell types. Different sig-
nature genes and pathways of exhausted CD41 and CD81 T cells were examined. We
identified 12 genes with potential associations of T-cell exhaustion after tuberculosis
infection. We also identified five genes as potential exhaustion marker genes. The CD8-
EX3 subcluster in CD81 T-exhausted cells was identified as an exhaustion-specific sub-
cluster. The identified gene module further clarified the key factors influencing CD81 T
cell exhaustion. These data provide new insights into T-cell signatures in tuberculosis-
exhausted populations.

IMPORTANCE Identifying the changes in immune cells in response to infection can pro-
vide a better understanding of the effects of Mycobacterium tuberculosis on the host
immune system. We performed single-cell RNA-sequencing analysis of CD41 T and CD81

T cells isolated from peripheral blood mononuclear cells of healthy individuals and
patients with tuberculosis to reveal the cellular characteristics. Different signature genes
and pathways of exhausted CD41 and CD81 T cells were examined. These will facilitate a
more comprehensive understanding of the onset and underlying mechanism of T-cell
exhaustion during active Mtb infection.

KEYWORDS single-cell sequencing, tuberculosis, exhausted T cells, transcriptome
signature

Tuberculosis (TB) has erupted as a severe global health problem, claiming millions
of lives annually (1). Adaptive immune responses mediated by T cells are important

for the controlling of Mycobacterium tuberculosis (Mtb) infection (2). In continuous Mtb
infection, prolonged overexposure to antigens can cause T cells to gradually lose their
effector functions and exhibit an exhausted phenotype, called T-cell exhaustion, which
cannot easily be recovered (3). T-cell exhaustion manifests as inactivated T-cell prolifer-
ation, secretion of inhibitory cytokines, and reduced interferon (IFN)-c production (4 to
6). This cell exhaustion state may affect the clinical manifestations of TB infection, such
as disease severity and prognosis. Exhausted T cells also have specific effectiveness
and reversibility characteristics. Therefore, a detailed investigation of T-cell exhaustion
in TB infection can provide new targets and treatment strategies.

Although transcriptome sequencing can reveal differences in gene expression pro-
files (7), it cannot explain the characteristics of specific subpopulations in cells. With
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the progress in RNA sequencing, single-cell RNA sequencing (scRNA-seq) can be used
to analyze the transcriptomic profiles of individual cells, revealing cellular identity and
spatial organization in complex heterogeneous immune populations (8 to 10). There-
fore, it is feasible to use scRNA-seq to determine the dynamic changes in T-cell subsets
during TB infection. Previous studies revealed that anti-T-cell exhaustion therapy may
reduce the recurrence rate of the disease, thereby offering a new treatment strategy
(11, 12). Certain proportions of T cell subsets are considered to control the host
immune response to disease (13). Some T-cell subsets have been suggested as markers
for different disease states (14). However, the mechanisms of functional regulation and
the efficacy of immune cell responses are heterogeneous and complex. The nature and
function of cellular exhaustion patterns in patients with TB remain unclear.

In this study, we used scRNA-seq to comprehensively characterize the transcrip-
tome profile of cellular subpopulations of CD41 and CD81 T cells isolated from the pe-
ripheral blood of patients during TB infection. We also calculated the connectivity
among the cell subsets. In particular, we elaborated on the composition and gene
expression pattern heterogeneity of exhausted cell subsets. Our study revealed the
exhaustion characteristics and key factors of the two exhausted cell subsets, which can
facilitate a more comprehensive understanding of the onset and underlying mecha-
nism of T-cell exhaustion during active Mtb infection.

RESULTS
T-cell transcriptional profiling among individuals with Mtb infection. First, 10�

genomic scRNA-seq was performed on 50,236 CD41 and CD81 T cells purified from pe-
ripheral blood mononuclear cell (PBMC) suspensions of three patients with TB and
three healthy donors (Fig. 1A, Tables S1 and S2 in the supplemental material). After quality
control, 39,444 cells were selected for subsequent analyses (Fig. S1 and S2). Among these,
13 CD81 T-cell clusters (Fig. S3A, C, E) and 12 CD41 T-cell clusters (Fig. S3B, D, F) were iden-
tified through unsupervised clustering analysis using Seurat 4.0. According to the distinct
expression patterns of canonical T-cell biomarkers, we annotated these clusters into seven
CD81 T-cell subsets (Fig. 1B, D) and eight CD41 T-cell subsets (Fig. 1C, E).

The main subsets were CD81 naive cells, which expressed high CCR7 and LEF1 levels
and CD81 effector-GNLY cells, which expressed high levels of GNLY. We identified CD81

terminal effector cells with a high expression of cytotoxic genes and a small amount of
exhaustion genes, and CD81 effector memory-GZMK cells displaying relatively high expres-
sion levels of the GZMK gene. We also identified CD81 memory and CD81 mucosa-associ-
ated invariant T cells (MAIT cells). Notably, we also identified exhaustion subsets among
CD81 T cells, which were characterized by a high expression of exhaustion markers, includ-
ing HLA-DRA, PDCD1, and TNFRSF9.

For CD41 T cells, the major T-cell subset was composed of naive cells with a high
expression of CCR7 and FHIT. We also detected regulatory T cells (Treg cells), which were
characterized by a high expression of FOXP3 and RGS1. Notably, some exhaustion markers
were also highly expressed in Treg cell subsets. We also observed memory T-cell subsets
and two T-helper (Th) cell types. CD41 effector-GNLY cells were identified based on high
expression of GZMA, NKG7, GZMB, GZMH, and GNLY. CD41 effector memory-GZMK cells
were also identified by a high expression of GZMK and a low expression of other cytotoxic
genes. We further identified an exhausted T-cell subset with high expression levels of
exhaustion markers (HLA-DRA, PDCD1, and TNFRSF9). Pearson correlation analysis was used
to evaluate the relationships between subsets of CD81 T cells (Fig. 1F) and CD41 T cells
(Fig. 1G). Naïve cells were less associated with effector cells for both CD41 and CD81 T
cells. Collectively, these results clearly defined the composition of CD41 and CD81 T-cell
subsets in patients with TB.

Single-cell profiling revealed CD8+ and CD4+ T-cell subset heterogeneity. We
evaluated the distribution of each CD41 and CD81 T-cell subset across patients with TB
and healthy donors (Fig. 2A and B). The proportions of CD81 effector memory-GZMK,
memory, and MAIT cells were increased in patients with TB (Fig. 2C), along with increased
proportions of CD41 Th2, memory, and exhausted T cells (Fig. 2D). In addition, cell cycle
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FIG 1 Single-cell transcriptomic clustering of CD41 and CD81 T cells from patients with active TB and healthy donor individuals. (A)
Schematic workflow design for scRNA-seq. CD41 and CD81 T cells were purified from PBMCs collected from three patients with active TB

(Continued on next page)
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distribution analysis showed that the number of cells in the G1 phase in the majority of
CD81 T-cell subsets in patients with TB was relatively decreased (Fig. S4A to C). In particu-
lar, after Mtb infection, the cell cycle of CD41 memory and Th2 cell subsets changed sub-
stantially (Fig. S4D to F).

FIG 1 Legend (Continued)
and three healthy donors. A 10� genomic scRNA-seq platform was used to perform transcriptomic profiling. (B and C) CD81 (B) and CD41 (C)
T-cell subset population features. The t-SNE projection was used to visualize the nine CD81 T cell subsets. Each dot represents a single cell
colored according to the cell clustering information. (D and E) Heatmaps showing the top marker genes across each CD81 (D) and CD41 (E) T-
cell cluster. (F and G) Heatmaps showing the pairwise Pearson correlation coefficients of T-cell subsets for CD81 T cells (F) and CD41 T cells (G).

FIG 2 Heterogenic CD41 and CD81 T-cell subset characteristics in patients with active TB. (A and B) T-SNE diagrams of single-cell profiling for each CD81

(A) and CD41 (B) T-cell subset across the TB (left) and healthy donor (right) groups. Each dot represents a single cell colored according to the cell-
clustering information. (C and D) Stacked bar plots for CD81 (C) and CD41 (D) T-cell proportions across the TB (blue) and healthy donor (red) groups. (E
and F) Hallmark gene set-based GSVA heatmaps in each CD81 (E) and CD41 (F) T-cell subset across tuberculosis and healthy donor groups.
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We further explored the functions of these subsets using gene set variation analysis
(GSVA) (Fig. 2E and F). Among the two kinds of cells, the activity of each pathway of naive
cells was quite low. After Mtb infection, CD81 effector memory-GZMK and CD81 memory
cells exhibited similarly low rates of fatty acid metabolism. CD81 MAIT cells and CD81-ex-
hausted T cells exhibited poor immune and metabolic profiles, such as a downregulated
IFN-a response. CD81 terminal effector cells did not change significantly. In CD41 T cells,
the activity of each pathway of naive and memory cells was also relatively low. After Mtb
infection, CD41 Th1 cells exhibited low expression of oxidative phosphorylation and fatty
acid metabolism. Treg cell subsets had weaker transcriptional and metabolic activities.
Notably, CD41-exhausted cells showed significantly downregulated Notch signaling and
WNT-b catenin signaling pathways. Hedgehog signaling was also significantly downregu-
lated, indicating a weaker inflammatory response and immune activity. The activity of
CD41 effector-GNLY cells and CD41 effector memory-GZMK cells changed slightly. Taken
together, these analyses demonstrated the high degree of cell subset heterogeneity in
CD41 and CD81 T cells afterMtb infection.

Communication patterns of each subset of CD8+ and CD4+ T cells. We con-
ducted CellChat analysis for the CD81 and CD41 T cells to evaluate the communication
patterns between each cell subgroup (Fig. 3A, F). In CD81 T cells, the macrophage migra-
tion inhibitory factor (MIF) signaling pathway was the most common pathway among
the subgroups, which revealed the complexity of the network (Fig. 3B). For exhausted
cell subsets, both autocrine signaling and paracrine signaling patterns were evident
(Fig. 3C). In all known ligand-receptor pairs, the MIF pathway was mainly controlled by
the MIF ligand and CD74, CXCR4, and CD44 receptors (Fig. 3D). In CD41 T cells, we
observed the VISFATIN signaling pathway (Fig. 3G), and its network analysis was not
redundant. This pathway can activate the NF-kB signaling transduction pathway and
participates in immune regulation (15). Among all known ligand-receptor pairs, this is
mainly controlled by the NAMPT ligand and the ITGA5 and ITGB1 receptors (Fig. 3H).

We further investigated how these multiple cell groups and signaling pathways
coordinate their functions. We detected four pathways in various subsets of CD81

T cells, including MIF, PARs, CCL, and VISFATIN (Fig. 3E), and four pathways in
CD41 T cell subsets, including MIF, VISFATIN, IL-16, and LIGHT (Fig. 3I). Thus, differ-
ent cell subsets or the same cell subsets in different cells can rely on the same sig-
naling network. For example, both CD41 effector-GNLY and CD81 effector-GNLY
cells showed the pattern3 afferent pattern, which is linked to the VISFATIN signal-
ing pathway.

Identification of genes affecting T cell exhaustion. We analyzed the function of
each cell subset of CD81 and CD41 T cells. We crossed the top 20 pathways of CD81

and CD41 T cell subsets (Fig. 4A, C). In addition, we focused on the function of the ex-
hausted subgroup. In CD81 T-exhausted cells, the most significantly enriched pathway
was the response to metal ions (Fig. 4B). However, these same pathways were also
reflected in other subgroups. Because there were two cell subsets with fewer cells in
the healthy group, only six CD41 T-cell subsets were analyzed for enrichment. The
main enrichment pathways of the CD41 T-exhausted cell subsets were related to regu-
lating the activation and differentiation of various immune cells (Fig. 4D). In summary,
the functions of CD81 and CD41 T-exhausted cell subsets were notably different.

We compared the differential genes of CD81 and CD41 T-cell exhaustion subsets,
and found 12 genes that may be related to T-cell exhaustion after TB infection (Fig. 4E,
Table S3). We then expanded the screening scope and calculated the number of differ-
entially expressed genes using the default parameters of the “FindMarker” function.
CD81 and CD41 T-exhausted cell subsets had 28 identical genes (Fig. 4F, Table S3). By
calculating the expression levels of these genes in each subgroup, we deduced that
ITM2C might serve as an exhaustion marker gene in CD81 T cells (Fig. 4G), whereas
H1FX, ZFP36L2, VIM, and PPP1R15A might serve as exhaustion marker genes in CD41 T
cells (Fig. 4H).

Identification of specific subsets of CD8+ T exhausted cells. Furthermore, we
observed distinct genetic signatures in exhausted cell subpopulations and identified four
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FIG 3 CellChat analysis of the communications between each cell subset of CD81 and CD41 T cells. (A) Cell communication among subsets of CD81 T
cells. (B) Hierarchical plot showing the inferred intercellular communication network for the MIF signaling pathway. (C) Heatmap showing the relative

(Continued on next page)
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subclusters of CD81 exhausted T cells (Fig. 5A). Some subclusters also changed in number
before and after infection. Notably, in contrast to CD41-exhausted T cells, we observed
that the cell proportions of samples from patients with TB were significantly exhausted,
and each subcluster exhibited relatively individual features. The marker genes were also
different for each subcluster, with a high number of unique genes among the differential
genes (Fig. 5B).

Furthermore, we analyzed the function of each cell subcluster (Fig. 5C and D). The
main enrichment pathway of the CD8-EX0 and CD8-EX1 cell clusters was the response
to metal ions, including copper, cadmium, and zinc ions. CD8-EX3 cell subsets enriched
the activation and regulation of various immune cells. In a previous study, we found
that CD81 T-exhausted cells were responsible for cell activation and differentiation (16),
which may be more related to this subgroup. In addition, compared with other pathways,
CD8-EX3 was more strongly associated with immune-related pathways and genes, indicat-
ing a higher immune-related function. We speculated that CD8-EX3 could serve as a spe-
cific marker subset of CD81 T-exhausted cells. In addition, three gene modules were
extracted from CD8-EX3 using protein–protein interaction (PPI) networks based on the
expression level (Fig. 5E). These modules may play an important role in cell exhaustion
caused by TB infection.

DISCUSSION

Our understanding of the human immune response mechanisms in TB infection
remains limited because of a lack of information on the overall immune response.
Identifying the changes in immune cells in response to infection can provide a better
understanding of the effects of Mtb on the host immune system. With the development
of sequencing technology, single-cell technology can achieve a more accurate grouping
of cells by obtaining and analyzing the gene expression profile of each cell type (17, 18).
This method has been applied to study the heterogeneity of pathogen infections and
pathogen–host interactions (19 to 21). In this study, we characterized the transcriptome
of CD41 and CD81 T-cell subsets isolated from PBMCs of patients with TB and healthy
donors using single-cell sequencing. Because there are great differences in gene expres-
sion and immunity between males and females (22, 23), we only analyzed samples from
individuals of the same sex. Furthermore, we analyzed each sample and found that the
infection caused changes in cell subsets. Our study provides a panoramic analysis of the
effects of Mtb infection on two distinct subsets of the most critical immune cells with a
specific profile of exhausted T cells. These results will facilitate future studies in elucidat-
ing the impact of TB infection on the host.

The importance of T cells in controlling Mtb infection has always been under discus-
sion (24). We analyzed the function of each subgroup using different methods to
observe their heterogeneity. The biological pathway activity of many cell subsets had
decreased. In the functional study of cell subsets, we found that the metabolic activities
of many subsets changed after Mtb infection. The metabolic system plays an important
role in maintaining the homeostasis of the host. Disturbances in host metabolism may
favor the development of TB (25). Because of the biodynamic requirement for effective
immune activation, Mtb can disrupt host immune defenses by interfering with the meta-
bolic system (26). Therefore, targeting host or metabolic pathways may be an effective
way to develop novel TB treatments and slow down the rate of cellular exhaustion. To
that end, we plan on performing metabonomics analyses in our future work.

T-cell exhaustion can cause immune deficiency. CD41 T-cell exhaustion can aggra-
vate acute Mtb infection and affect CD81 T function (27). CD41 T cells help to prevent

FIG 3 Legend (Continued)
importance of each cell subset based on four network centrality measures of the MIF signaling network. (D) Relative contribution of each ligand–receptor
pair to the MIF signaling pathway. (E) Inferred incoming (right) and outgoing (left) communication patterns of target and secreting cells of CD81 T cells,
respectively. (F) Cell communication among subsets of CD41 T cells. (G) Hierarchical plot showing the inferred intercellular communication network for the
VISFATIN signaling pathway. (H) Relative contribution of each ligand–receptor pair to the VISFATIN signaling pathway. (I) Inferred incoming (right) and
outgoing (left) communication patterns of target cells and secreting cells of CD41 T cells, respectively.
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FIG 4 Common features of exhausted cells. (A) Venn diagram showing the intersection of biological processes of each CD81 T-cell subset. (B) Chordal
diagram showing the biological process enrichment of CD81 T-cell exhaustion subsets. (C) Venn diagram showing the intersection of biological processes
of each CD41 T-cell subset. (D) Chordal diagram showing the biological process enrichment of CD41 T-cell exhaustion subsets. (E) Venn diagram showing

(Continued on next page)
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CD81 T cells from being exhausted and have a synergistic effect on the control of Mtb
infection. The depletion of CD81 T was also observed in the lesions of Lepromatous
leprosy (28). In a study of subgroup changes after HIV infection, we found through sin-
gle-cell sequencing that the Treg subgroup also highly expressed some exhaustion
marker genes (29). This is consistent with the phenomenon identified in the CD41 T-
cell subsets after TB infection in our study. Therefore, it is important to analyze the
characteristics of exhausted cell subsets.

We analyzed the communication relationships between exhausted cell subsets and
other subsets. The interactions between cells are very important for many biological
processes (30). Cell-to-cell communication based on scRNA-seq can be used to reveal
the deeper mechanism of diseases (31). The MIF signaling pathway is the most relevant
pathway for importing depleted CD81 T-cell subsets. It can regulate Toll-like receptor 4
to affect innate immunity and can also promote an inflammatory environment (32, 33).
When connected with p53 and NF-kB signals, it can also affect cell senescence (34).
These may all be factors that affect exhaustion.

The functional pathways with higher enrichment degrees of each cell subgroup
had different purposes. The functions of the two exhausted subgroups were also quite
different. But we found that the exhausted subpopulation was still in a state of cellular
activation, consistent with the results of previous studies (16). In addition, we identified
12 genes that may affect cell exhaustion after TB infection in both CD41 and CD81 T
cells. We also identified five genes that may be used as markers of cell exhaustion (one
for CD81 T cells and four for CD41 T cells), with differential levels in the exhausted sub-
population from those in other subpopulations. These marker genes have not previ-
ously been related to cell exhaustion. For example, H1FX has mainly been highlighted
to be associated with cancer to date (35, 36), whereas ZFP36L2 was reported to induce
apoptosis and inhibit cell proliferation (37, 38). VIM is involved in cell attachment,
migration, and signal transduction (39). Here, we separated the exhausted subsets of
CD41 and CD81 T cells into distinct subclusters via further unsupervised analysis. The
exhausted T cells after Mtb infection may be composed of subclusters of cells in differ-
ent states with distinct biological functions. There was no particularly prominent sub-
cluster of CD41 T cells (Fig. S5); however, we identified CD8-EX3 as a specific marker
subcluster in CD81 T cells. We also identified some gene modules that were critical for
CD81 T cell exhaustion, including the known gene PDCD1 and our newly identified
genes. Exploring the genes and pathways in the gene module can further narrow the
screening of genes related to exhaustion. Therefore, our analyses identified some
potential biomarkers associated with exhausted T cells. Further experiments should be
conducted to validate these associations.

In the past, many studies on TB have also used single-cell sequencing technology,
for example, by mapping the lung immune landscape of nonhuman primates to reveal
the characteristics of different disease states and the correlation between the cells con-
trolling the disease (40, 41). Many studies on TB primarily focus on macrophages, while
paying less attention to the T cells in peripheral blood (42). The first scRNA-seq study
on peripheral blood in TB showed that cytotoxic natural killer cell subsets were ex-
hausted after infection and that this subset could be used as a marker to distinguish
infection status (14). However, there has been no clear analysis of exhausted CD41 and
CD81 T-cell subsets. Our study on the identification of depleted T cell subsets in
healthy controls and patients with TB provides further evidence for the role of specific
cell subsets in the progression of TB disease. In conclusion, our findings highlight the
effects and mechanisms of T lymphocyte exhaustion on the host immune response to
Mtb, which can inform the development of novel TB therapeutic methods.

FIG 4 Legend (Continued)
the intersection of genes with significant differences between CD81 and CD41 T-exhausted cells. (F) Venn diagram showing the intersection of differentially
expressed genes of CD81 and CD41 T-exhausted cells. (G and H) Dot plots showing the cell expression ratios of T-cell exhaustion genes in each subset of CD81 T
cells (G) and CD41 T cells (H).
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FIG 5 Dissection of CD81-exhausted T cells. (A) UMAP projection diagram (left) showing the distribution of CD81-exhausted T-cell subclusters. Each
dot represents a single cell colored according to the cell clustering information. T-SNE diagrams (right) showing CD81-exhausted T cell subclusters

(Continued on next page)
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MATERIALS ANDMETHODS
Ethics statement. This study was approved by the Institutional Review Board of the Jilin University.

All participants provided written informed consent. All experiments were performed in accordance with
approved ethical and biosafety protocols.

Collection of clinical samples.Whole-blood samples were collected from patients with TB admitted
to the First Hospital of Jilin University. Inclusion criteria for patients with active TB infection included
HIV-antibody negative; exclusion of autoimmune diseases, diabetes, and other chronic infections; spu-
tum acid-fast stained smear (1) and/or sputum mycobacterial culture (1); and a chest X-ray or com-
puted tomography scan with features of active pulmonary TB. Most importantly, none of the patients
had received anti-TB treatment prior to inclusion. The inclusion criteria for the healthy donors were no
clinical evidence of TB infection, a negative T-SPOT.TB test, and no anti-TB treatment. All patients signed
an informed consent form for participation.

PBMC isolation. PBMCs were obtained via gradient separation of whole-blood samples over a Ficoll-
Hypaque density gradient (Ficoll-Paque Plus; Amersham Biosciences) with shaking at 2,000 rpm for 20 min at
room temperature.

Fluorescence-activated cell sorting. Cells were labeled with fluorescein isothiocyanate-conjugated
anti-human CD3 (Biolegend, 300305), phycoerythrin/Cyanine7-conjugated anti-human CD4 (Biolegend,
317413), and allophycocyanin-conjugated anti-human CD8 (Biolegend, 344721) antibodies for 30 min in
a sorting buffer. The PBMCs were resuspended by adding 3 mL of phosphate-buffered saline (PBS) wash
solution and centrifuged at 1,650 rpm for 5 min, and then a fluorescence-activated cell sorter was added
and cell sorting was performed. The abundance of relevant cell populations was determined to be
greater than 99%. Data analysis was performed using FlowJo software.

ScRNA-Seq data processing and quality control. Sorted cells were resuspended and washed with
PBS, and the cell viabilities were detected and counted. The transcriptome and immune characteristics of
CD41 and CD81 T cells were detected using a 10� genomics platform, according to the manufacturer’s
instructions. Subsequently, CellRanger version 3.0.1 was used to map the raw reads to the GRCh38 human
reference genome and extract the gene expression matrix, with default parameters. The CellRanger pipeline
processing results were plugged into the Seurat version 4.0 workflow. Quality control was performed to filter
out low-quality cells, with parameters, including mitochondrial gene-unique molecular identifier (UMI) pro-
portions of,15% and gene mapped counts of.200.

Identification of cluster markers and T-cell subsets. Based on the Seurat version 4.0 workflow, we
used the “NormalizeData” function to standardize the data and the “FindVariableFeatures” function to find
hypervariable genes. Principal-component analysis (PCA), Uniform Manifold Approximation and Projection
(UMAP), and t-distributed stochastic neighbor embedding (t-SNE) calculations were performed using the
“RunPCA,” “RunUMAP,” and “RunTSNE” functions, respectively, which calculated the marker genes using
“FindAllMarkers.” The mean expression level of the target gene set in the cell subsets was calculated
using the “Mean Expression” function. Data fusion was performed using the “SelectIntegrationFeatures,”
“FindIntegrationAnchors,” and “IntegrateData” functions.

Analysis of cell communication.We identified overexpressed ligands or receptors in cell groups using
the “identifyOverExpressedGenes” function in CellChat 1.5.0. The overexpressed ligand–receptor interaction
was identified by “identifyofexpression interactions.”We then used “projectData” to project the gene expres-
sion data. The communication probability was calculated, communication network was inferred via the
“computeCommunProb” function, and the signal level was inferred by the “computecommuninproppath”
function. The contribution of the ligand–receptor interaction to the overall signaling pathway was deter-
mined using the “netAnalysis_contribution” function. The signal roles and main contribution signals of cell
groups were identified using “net analysis _ compute centricity.” The specified communication mode was
then determined using the “identification communication patterns” command (43).

Identification of differentially expressed genes and cell cycle distribution. Differentially expressed
genes were also identified using the “FindMarkers” function with the “Wilcox” method and by setting
the logfc.threshold to log2(1.5). Genes with a fold change of $1.5 and adjusted P values of ,0.05 were
screened out. Cell cycle statements were classified using “CellCycleScoring.”

Gene functional enrichment analysis. Using GSEABase version 1.38.2 (44), ClusterProfiler version
3.18.1, and the (Metascape server [45]), we performed GSVA, and Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) annotation, with default parameters. Hallmark Gene Sets for GSVA were
obtained from msigdbr 7.5.1. The PPI network was constructed using the STRING server version 11.5 (https://
cn.string-db.org/).

Statistical analysis. An unpaired t test was used to analyze the differences between two groups. A
P value of,0.05 was considered statistically significant.

Data availability. The data of this study are openly available in the Genome Sequence Archive of
the Beijing Institute of Genomics (BIG) Data Center, Chinese Academy of Sciences, under reference num-
ber HRA002654.

FIG 5 Legend (Continued)
across the TB and healthy donor groups. (B) Circos diagrams showing the relationships of overlapping differentially expressed genes for each CD81

T-exhausted cell subset. The purple trajectory lines link common genes shared by multiple clusters. Marker genes shared by multiple clusters are
colored red, whereas orange labels are unique. (C) Venn diagram showing the intersection of biological processes of each cell subset. (D) Biological
processes corresponding to each subcluster are as follows: (a) EX-0 cell subset; (b) EX-1 cell subset; (c) EX-2 cell subset; (d) EX-3 cell subset. (E) PPI
network showing three key gene modules.
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