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ABSTRACT The gut microbiota-brain axis is suspected to contribute to the develop-
ment of Alzheimer’s disease (AD), a neurodegenerative disease characterized by amyloid-
b plaque deposition, neurofibrillary tangles, and neuroinflammation. To evaluate the role
of the gut microbiota-brain axis in AD, we characterized the gut microbiota of female
3xTg-AD mice modeling amyloidosis and tauopathy and wild-type (WT) genetic controls.
Fecal samples were collected fortnightly from 4 to 52 weeks, and the V4 region of the
16S rRNA gene was amplified and sequenced on an Illumina MiSeq. RNA was extracted
from the colon and hippocampus, converted to cDNA, and used to measure immune
gene expression using reverse transcriptase quantitative PCR (RT-qPCR). Diversity metrics
were calculated using QIIME2, and a random forest classifier was applied to predict bacte-
rial features that are important in predicting mouse genotype. Gene expression of glial
fibrillary acidic protein (GFAP; indicating astrocytosis) was elevated in the colon at
24 weeks. Markers of Th1 inflammation (il6) and microgliosis (mrc1) were elevated in the
hippocampus. Gut microbiota were compositionally distinct early in life between 3xTg-AD
mice and WT mice (permutational multivariate analysis of variance [PERMANOVA], 8 weeks,
P = 0.001, 24 weeks, P = 0.039, and 52 weeks, P = 0.058). Mouse genotypes were cor-
rectly predicted 90 to 100% of the time using fecal microbiome composition. Finally, we
show that the relative abundance of Bacteroides species increased over time in 3xTg-AD
mice. Taken together, we demonstrate that changes in bacterial gut microbiota composi-
tion at prepathology time points are predictive of the development of AD pathologies.

IMPORTANCE Recent studies have demonstrated alterations in the gut microbiota
composition in mice modeling Alzheimer’s disease (AD) pathologies; however, these
studies have only included up to 4 time points. Our study is the first of its kind to
characterize the gut microbiota of a transgenic AD mouse model, fortnightly, from
4 weeks of age to 52 weeks of age, to quantify the temporal dynamics in the micro-
bial composition that correlate with the development of disease pathologies and host
immune gene expression. In this study, we observed temporal changes in the relative
abundances of specific microbial taxa, including the genus Bacteroides, that may play
a central role in disease progression and the severity of pathologies. The ability to use
features of the microbiota to discriminate between mice modeling AD and wild-type
mice at prepathology time points indicates a potential role of the gut microbiota as a
risk or protective factor in AD.
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The human microbiota, the aggregate of all bacterial, viral, fungal, and archaeal cells
that inhabit the human body, consists of 1 to 1.5� more microbial cells than human

cells (;1014) (1). Niche-specific microbiota reside across virtually the entire human body,
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including the skin, oral cavity, respiratory tract, vaginal cavity, and GI tract (2). The gut
microbiota, which makes up approximately 70% of the total microbial burden in the
body (3), contributes to a myriad of roles, including host immune regulation (4), macro-
nutrient metabolism (5), and maintenance of overall health (6). In healthy individuals,
the gut microbiota tends to be highly diverse (7). However, perturbations to the healthy
gut microbiota caused by disease, aging, diet, or other environmental factors can lead to
alterations in the composition or function of these communities. Alterations in a healthy
gut microbiota are associated with inflammation and chronic noncommunicable dis-
eases, such as obesity (8), diabetes (9), asthma (10), and inflammatory bowel disease
(11–13). Recent studies of gut microbiota-associated effects of host health are beginning
to demonstrate effects on extragastric organs, including neurological health and disease
(14–16).

The gut microbiota-brain axis is the bidirectional communication between the gut
and brain through immune, nervous, metabolic, and endocrine signaling (17). These col-
lective mechanisms regulate a number of physiological processes, including gut motility
and permeability (18), local and systemic inflammation (19), and normal brain function
(20). Major perturbations to the gut microbiota-brain axis signaling are associated with
diseases affecting the gastrointestinal tract, including Crohn’s disease (21) and irritable
bowel syndrome (22), as well as the brain, including Parkinson’s disease (23), Alzheimer’s
disease (AD) (24), autism spectrum disorder (25), and multiple sclerosis (26).

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized
by the deposition of amyloid-b (Ab) plaques and formation of neurofibrillary tangles
in the brain, resulting in irreversible progressive memory loss. Patients with AD experi-
ence cognitive decline, often accompanied by anger, depression, and personality
changes. Unfortunately, once symptoms become apparent, the individual will continue
to decline until they are unable to perform daily tasks and communicate, and the dis-
ease is ultimately fatal (27). AD rates are rapidly increasing as our elderly population
grows, with projections that cases will more than triple in the next 30 years (28). With
no cure, and few therapies available to slow the progression, understanding disease
pathogenesis is critical in the timely development of effective therapies. Currently, the
main targets of AD therapies are neurotransmitter receptors, secretase inhibitors, mod-
ulation of amyloidosis and tauopathy, and immunotherapy (29). The Ab-cascade hy-
pothesis, which proposes that neurotoxic Ab plaques are the causative agent of AD,
leading to the formation of neurofibrillary tangles, vascular damage, and dementia,
has more recently been brought into question, with increasing evidence against the
long-standing hypothesis (30). Neuroinflammation has become a key research focus
for AD, as it contributes to an increased rate of disease progression and severity (31).

Neuroinflammation in AD is characterized by a complex set of pathways, including
dysfunctional microglia and astrocytes. Microglia are the resident macrophages of the
central nervous system, while astrocytes function to support neuronal synaptic function
and maintain the integrity of the blood brain barrier (BBB) (32, 33). Microglia clear solu-
ble amyloid-b via macropinocytosis; however, in the insoluble, fibrillary form, microglia
are unable to clear amyloid-b deposits at the rate they are forming, leading to the accu-
mulation of amyloid-b plaques (34). The chronic neuroinflammation in AD is further
characterized by proinflammatory biochemical processes, including the release of proin-
flammatory cytokines, mainly interleukin-1b (IL-1b), tumor necrosis factor alpha (TNF-a),
and IL-6 (35). With mounting evidence of the role of neuroinflammation in AD pathoge-
nesis, identifying shifts in inflammatory biomarkers during disease progression is increas-
ingly important for identifying mechanistic pathways in the gut microbiota-brain axis.

In this study, we characterized the gut microbiota fortnightly through 52 weeks of
age in 3xTg-AD mice with mutations associated with familial AD [APP(Swe), PSEN1
(M146V) (bearing a change of M to V at position 146), and MAPT(P301L)], modeling amy-
loid-b plaques and hyperphosphorylated tau and their genetic background (B6129F2/J)
(wild type [WT]). The APP(Swe) mutation in the amyloid precursor protein increases total
amyloid-b , while the PSEN1(M146V) mutation of the cleavage enzyme induces abnormal
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APP processing, resulting in increased Ab plaque accumulation (36). The third mutation,
MAPT(P301L), accelerates the formation of neurofibrillary tangles (37). In this preclinical
model, cognitive deficits develop at 4 months, preceding plaque accumulation at 6 months,
gliosis at 7 months, and hyperphosphorylated tau at 12 months (38, 39). To our knowledge,
this is the first study of its kind to characterize the gut microbiota composition of a trans-
genic AD murine model at 25 time points to identify key temporal patterns in the gut bac-
terial microbiome. Additionally, we compared changes in the gut microbiota composition
to gene expression of key markers of inflammation using reverse transcriptase quantitative
PCR (RT-qPCR). We hypothesized that alterations in the gut microbiome would correspond
with key time points associated with the emergence of amyloid-b plaques, hyperphos-
phorylated tau, and neuroinflammation.

RESULTS
Longitudinal analysis of gut microbiota composition and inflammatory gene

expression in 3xTg-AD mice. To explore shifts in gut microbial communities during
disease progression, we used 16S rRNA gene sequencing to characterize fortnightly
fecal samples from 4 weeks (postweaning) to 52 weeks (amyloid-b plaques and hyper-
phosphorylated tau model) of age. Our cohort consisted of 57 3xTg-AD mice and 31
WT mice, sacrificed at 8, 24, and 52 weeks (n = 88 mice and n = 1,079 total fecal sam-
ples at 25 time points) (Fig. 1). The mean sequencing depth was 29,429, with a range
of 1,902 to 301,197 sequences per sample, with 55,911,922 total sequences generated.
All of the representative sequences generated were assigned taxonomy at a minimum
of 70% confidence. This led to a total of 3,779 amplicon sequence variants (ASVs). For
core metrics, we rarefied to 10,692 sequences/sample, and we excluded 136 samples
as a result. Gene expression of AD-associated inflammatory biomarkers was assessed at
8, 24, and 52 weeks of age.

Inflammatory gene biomarkers in the hippocampus and colon. To assess the se-
verity of the inflammatory response in the colon and hippocampus of 3xTg-AD mice,
we used a custom reverse transcriptase qPCR assay to evaluate 24 genes for AD-associ-
ated inflammatory biomarkers. Based on previous characterization of pathologies in
the brain of 3xTg-AD mice, the hippocampus was selected for neuroinflammatory
marker analysis (40). Of the 19 genes assessed, 7 were TH1/TH17 markers, 3 were astro-
gliosis markers, 8 were microgliosis markers, 1 was a lipopolysaccharide (LPS)-induced
inflammation marker, and 5 were controls/housekeeping genes (Table S1 in the sup-
plemental material). Fold change values were calculated for hippocampus and colon
samples from 8-, 24-, and 52-week-old 3xTg-AD and WT mice using the cycle threshold
(22DDCT) method. In the colon, the expression of the glial fibrillary acidic protein (GFAP;
astrogliosis marker) gene was increased in 3xTg-AD mice at 24 weeks compared to its
expression at 52 weeks (P = 0.009, Mann-Whitney test) (Fig. 2A), and IL-6 was increased
in 3xTg-AD mice at 52 weeks compared to its expression in WT mice at 52 weeks
(P = 0.049, Mann-Whitney test) (Fig. 2B). In the hippocampus, GFAP was increased in
52-week-old 3xTg-AD mice compared to the level in 52-week-old WT mice (P = 0.015,

FIG 1 Longitudinal study design. Fecal sample collections from 3xTg-AD and WT mice began at
4 weeks of age and continued fortnightly until sacrifice at 8 weeks (prepathologies), 24 weeks
(amyloidosis), and 52 weeks (amyloidosis and tauopathy). Image created using BioRender.com.
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Mann-Whitney test) (Fig. 2C). The expression of Mrc1 (microgliosis marker) was also
increased in the hippocampus of 3xTg-AD mice at 24 weeks compared to its expres-
sion at 52 weeks (P= 0.004, Mann-Whitney) (Fig. 2D).

3xTg-AD mice have a distinct gut microbiota composition prior to the develop-
ment of AD-associated pathologies. Beta diversity (between-sample) metrics were
used to identify compositional differences in the bacterial gut microbiota between
3xTg-AD and WT mice over time. We applied Jaccard and unweighted UniFrac, which
are unweighted (qualitative) beta diversity metrics, and Bray-Curtis and weighted
UniFrac, which are weighted (quantitative) beta diversity metrics, to our samples.
Volatility analysis demonstrated a distinct gut microbiota composition for the first
30 weeks of age using Jaccard diversity (Fig. 3A) and 40 weeks using unweighted
UniFrac (Fig. 3B) in 3xTg-AD mice compared to those in WT mice. As the mice aged,
the compositions of the gut microbiota became more similar between the strains of
mice (n = 88 mice and n = 1,079 total fecal samples at 25 time points) (Fig. 3). To ana-
lyze the differences in composition at 8 weeks (baseline), 24 weeks (when amyloid pla-
ques are present), and 52 weeks (amyloid plaques and hyperphosphorylated tau were
present), a principal-coordinate analysis (PCoA) of Jaccard and unweighted UniFrac dis-
tances was generated, with the first principal coordinate axis (PC1) plotted against
time, highlighting the three key time points. The gut microbiota compositions were

FIG 2 Relative levels of gene expression of GFAP and IL-6 in the colon and GFAP and MRC1 in the
hippocampus. The hippocampus and colon from 3xTg-AD and WT mice were collected at 8, 24, and
52 weeks. (A) Gene expression of GFAP (astrogliosis marker) was significantly increased at 24 weeks
in 3xTg-AD mice compared to 52 weeks in 3xTg-AD mice (P = 0.009, Mann-Whitney test) and was
increased at 52 weeks in 3xTg-AD mice compared to 52 weeks in WT mice (P = 0.0484, Mann-
Whitney test). (B) Gene expression of IL-6 was significantly increased at 52 weeks in 3xTg-AD mice
compared to 52 weeks in WT mice (P = 0.015, Mann-Whitney test). (C) Gene expression of GFAP
(astrogliosis marker) was significantly increased at 52 weeks in 3xTg-AD mice compared to 52 weeks
in WT mice (P = 0.049, Mann-Whitney test). (D) Gene expression of Mrc1 (microgliosis marker) was
significantly increased at 24 weeks in 3xTg-AD mice compared to 52 weeks (P= 0.004, Mann-Whitney
test) and 8 weeks (P= 0.0357, Mann-Whitney test) in 3xTg-AD mice. *, P , 0.05; **, P , 0.01.
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statistically distinct, using Jaccard and unweighted UniFrac metrics, between 3xTg-AD and
WT mice in early life, shown at 8 and 24 weeks. However, the gut microbiota compositions
became more similar at later time points, as demonstrated at 52 weeks of age (Fig. S3A,
[PERMANOVA, P = 0.054, F statistic = 1.33127] and Fig. S3B, [PERMANOVA, P = 0.065, F sta-
tistic = 1.45748]). Notably, when we performed a multivariate PERMANOVA with genotype
and cage as variables, we did see significant differences by genotype using both Jaccard
(P = 0.037, F statistic = 1.412) (Table S2C) and unweighted UniFrac (P = 0.034, F statis-
tic = 1.53) (Table S2F) distance metrics. This is discussed in further detail below.

Weighted beta diversity metrics showed a similar, though less robust pattern at the
baseline and 24-week time points. Volatility analysis and PCoA of the Bray-Curtis dis-
similarity metric demonstrated distinct gut microbiota compositions between 3xTg-AD
and WT mice at 8 (PERMANOVA, P = 0.001, F statistic = 10.1743) and 24 (PERMANOVA,
P = 0.016, F statistic = 1.98555) weeks of age, but not at 52 (PERMANOVA, P = 0.508,
F statistic = 0.90456) weeks of age (Fig. S3A and C). A PCoA of the weighted UniFrac dis-
tance metric also demonstrated distinct gut microbiota compositions between 3xTg-AD
and WT mice at 8 weeks (PERMANOVA, P = 0.03, F statistic = 3.10426) but not at 24
(PERMANOVA, P = 0.566, F statistic = 0.717805) or 52 (PERMANOVA, P = 0.066) weeks of
age (Fig. S3B and D). Since weighted metrics did not demonstrate the strongest differen-
ces between genotypes, whereas unweighted metrics were highly significant, we inter-
preted the results as showing that the strongest drivers of different microbial communities
were the lower-abundance taxa in the murine gut microbiota. This was supported by our
volatility plots, where low-abundance taxa, such as Akkermansia (present at ,10% relative
abundance on average), Bacteroides (also present at an average of ,10% relative abun-
dance), Turicibacter (also present at average of ,10% relative abundance), and Prevotella
(present at,4% relative abundance), were among the most important features in the vol-
atility analysis over time (Fig. 4).

In order to address differences in the gut microbiome due to cage and genotype,
we performed multivariate PERMANOVA using the adonis function in QIIME2, which
uses the adonis function in vegan-R (41). Not unexpectedly, larger percentages of vari-
ation in the gut microbiome at the three time points were due to cage effects; how-
ever, we still demonstrated that genotype contributed significantly to differences in
the gut microbiome at each time point. Interestingly, using a univariate PERMANOVA,
we did not observe significant differences in the unweighted metrics at 52 weeks of

FIG 3 Volatility analysis of 3xTg-AD and WT mice from 4 to 52 weeks demonstrates distinct gut microbiota compositions in early life in 3xTg-AD mice
compared to those in WT mice. (A) Volatility plot of PCoA axis 1 (PC1) of the Jaccard dissimilarity index. This demonstrates differences in the gut
microbiota until 32 weeks of age by strain. Thick lines represent the average changes in the gut microbiota on PC1 over time in 3xTg-AD and WT mice,
and thin lines represent changes in the gut microbiota on PC1 over time in individual mice. (B) Volatility plot of PCoA axis 1 (PC1) of unweighted UniFrac
distance metric. This demonstrates differences in the gut microbiota until 42 weeks of age by strain. Thick lines represent the average changes in the gut
microbiota on PC1 over time in 3xTg-AD and WT mice, and thin lines represent changes in the gut microbiota on PC1 over time in individual mice. Error
bars show standard error.
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age. However, when we incorporated cage into the statistical model, we observed that
there were significant differences in the gut microbiomes at 52 weeks (Jaccard, multi-
variate PERMANOVA, P = 0.037, r2 = 0.049, F statistic = 1.412; unweighted UniFrac,
P = 0.034, r2 = 0.052, F statistic = 1.528) (Tables S2C and F). Overall, we demonstrated
that, while cage accounted for an average of 37.7% of the variation (range = 32.3 to
42.0%) (Table S2), genotype remained significant at each time point and accounted for
an average of 7% of the variation (range = 4.50 to 12.8%) (Table S2). We also performed
volatility analysis on PC1, PC2, and PC3 based on Jaccard and unweighted UniFrac

FIG 4 Feature volatility at species level. (A) Feature volatility chart of Akkermansia muciniphila demonstrates presence early in life in 3xTg-AD mice while
being depleted in WT mice. (B) Feature volatility chart of Turicibacter species demonstrates an increase in relative abundance early in life in 3xTg-AD mice
compared to WT mice and decreases over time in both mouse strains. (C) Feature volatility chart of Prevotella species demonstrates increasing abundance
in 3xTg-AD mice after 20 weeks of age while being relatively stable in WT mice. (D) Feature volatility chart of Bacteroides acidifaciens demonstrates a stable
increase in relative abundance in 3xTg-AD mice after 25 weeks of age. (E) Feature volatility chart of Lactobacillus salivarius shows depletion in 3xTg-AD
mice compared to WT mice. Error bars show standard error.
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distance matrices. The goal was to determine which axes described clustering of the
gut microbiota due to cage and genotype. We found that PC1, which described the
greatest amount of variation (6%, Jaccard PC1; 11%, unweighted UniFrac PC1) (Fig. S4),
described changes in genotype but not cage. Only PC3 seemed to show slight cluster-
ing by cage, and by definition, this principal coordinate described smaller variations in
the gut microbiota (3%, Jaccard PC3; 4%, Unweighted UniFrac PC3) (Fig. S4). This sup-
ported our findings that genotype was a strong contributor to the gut microbiome
composition. Furthermore, the contribution of genotype to variations in the gut micro-
biomes was akin to the findings of studies of the microbiome in chronic and progres-
sive human disease, including the gut microbiome in neurological disorders (42–45).

Bacterial features are differentially enriched in 3xTg-AD and WT mice over
time. To identify the ASVs that were driving the differences in gut microbiota composi-
tions between 3xTg-AD and WT mice, feature volatility plots were produced using the
QIIME2 plug-in q2-longitudinal. We identified five features at the species level. The lon-
gitudinal feature analysis demonstrated a temporal trend of increasing relative abun-
dances of Akkermansia muciniphila and Turicibacter species early in life, while Prevotella
species and Bacteroides acidifaciens increased after 24 weeks of age in 3xTg-AD mice.
Furthermore, the longitudinal feature analysis identified Lactobacillus salivarius as an
ASV that was depleted in 3xTg-AD mice.

Differential-abundance analysis of ASVs using analysis of the compositions of micro-
biomes (ANCOM) revealed a differential abundance of 59 ASVs between WT and 3xTg-
AD mice at 8 weeks of age (Table S3). At 8 weeks of age, Akkermansia (W = 56, where
W is defined as a count of the number of sub-hypotheses that pass for a specific taxon)
and Turicibacter (W = 56) were differentially abundant ASVs enriched in 3xTg-AD mice,
while Bacteroides (W = 57), Sutterella (W = 53), and Anaerostipes (W = 53) were enriched
in WT mice. There were no differentially abundant taxa at 24 weeks, but at 52 weeks,
23 taxa were differentially abundant (Table S3).

Associations between bacterial microbiota and mouse genotype over time
using LME and random forest machine learning. We applied a linear mixed effects
(LME) model to determine the relationship of genotype (as a fixed effect) to gut micro-
biome diversity and Bacteroides acidifaciens abundance over time, leveraging the
repeated measures for each mouse. When we performed pairwise comparisons at each
time point, Faith’s phylogenetic diversity (Faith PD), an alpha diversity metric, was not
significantly different in 3xTg-AD mice at 8 weeks compared to WT mice at 8 weeks
(P = 0.098, Wilcoxon rank sum), 3xTg-AD mice at 24 weeks compared to WT mice at
24 weeks (P = 0.63, Wilcoxon rank sum), or 3xTg-AD mice at 52 weeks compared to WT
mice at 52 weeks (P = 0.17, Wilcoxon rank sum) (Fig. S1). However, when we leveraged
LME to analyze the effect of genotype on alpha diversity, Faith’s PD was significantly
higher in the WT mice than in the 3xTg-AD mice at baseline (P , 0.001) and was consis-
tently higher over time (P, 0.001). To evaluate the effect of genotype on microbial com-
position over time, we used LME on the first principal coordinate axis (PC1) from a PCoA
generated from the Jaccard dissimilarity metric. The gut microbial composition of 3xTg-
AD mice was significantly distinct at baseline (P , 0.001), and there were significant dif-
ferences over time (P , 0.001). Genotype did interact with time in modulating the gut
microbiome, suggesting a possible impact of genotype on microbiome development
(P , 0.001). The gut microbiome composition changed more drastically from the base-
line sample in 3xTg-AD mice compared to the gut microbiome in WT mice; the WT gut
microbiome remained relatively stable over time. Finally, we wanted to determine
whether there was a relationship between Bacteroides acidifaciens and genotype over
time, since volatility analysis and ANCOM both demonstrated that this genus was
enriched in 3xTg-AD mice. We applied LME to the relative abundances of Bacteroides
acidifaciens, using genotype as a fixed effect. We demonstrated that the B. acidifaciens
abundances at baseline were significantly different (P , 0.001) between 3xTg-AD and
WT mice. Furthermore, we demonstrated differences in B. acidifaciens abundances by ge-
notype (P = 0.049) and that there was a significant interaction between genotype and

Predicting Disease Using Prepathology Gut Microbiota Microbiology Spectrum

March/April 2023 Volume 11 Issue 2 10.1128/spectrum.03458-22 7

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.03458-22


time (P , 0.001). These results demonstrated robust genotype-dependent changes in
the gut microbiome over time.

We next used a random forest machine learning classifier to predict mouse genotype
based on the bacterial features present in fecal samples. The random forest classifier was
trained using 5-cross-fold cross validation on 80% of the samples and was then applied
to the remaining 20% of samples to determine which taxa were most important in pre-
dicting mouse strain based on features of importance it identified in the training set. The
feature tables were collapsed at the genus level and species level and combined with
the feature table of ASVs prior to running the random forest classifier. We applied the
random forest classifier to independent samples from the 8-week time point from all 57
mice to determine if gut microbiota features accurately predicted genotype, regardless
of age. This time point was selected because it was prior to the onset of AD pathologies
and because there was an adequate sample size to perform random forest analysis. At
8 weeks of age, random forest accurately predicted 3xTg-AD mice 88.9% of the time and
WT mice 100% of the time, improving accuracy over the baseline by 1.4-fold (Table 1).
Baseline accuracy was calculated by assuming every sample would be predicted as the
metadata group with the largest sample size. Critically, these results demonstrated accu-
rate prediction of genotype using a prepathology time point.

DISCUSSION

Despite numerous studies investigating how the gut microbiota is altered in AD,
both in human and murine models, few studies have extensively sampled longitudi-
nally to identify the dynamic gut microbiota signatures in 3xTg-AD mice. Previous
studies have shown that 3xTg-AD mice have a distinct bacterial signature compared to
age-matched controls (46–48). However, there are only two studies to our knowledge
that have investigated gut microbiota in 3xTg-AD mice at more than one time point;
the authors evaluated the gut microbiome at two and four (47, 49) time points. In one
study, the gut microbiota of 3xTg-AD and WT mice were assessed at 8, 12, 18, and
24 weeks (49). They too demonstrated compositional differences that were highlighted
at the 8-week time point, but the specific taxa that were depleted in the 3xTg-AD mice
differed from those in our study. In the second study, the gut microbiota of 3xTg-AD
and WT mice were assessed at 16 weeks and 24 weeks. They similarly demonstrated
alterations in the gut microbiome prior to the development of pathologies, but they
did not report taxonomic changes to the genus level (47). Here, we assessed the temporal
dynamics by dense longitudinal sampling of microbial communities in the gut of 3xTg-AD
mice over the course of a year to better understand compositional changes that correlate
with disease pathologies. Our study characterized the gut microbiota compositions at 25
time points (n = 1,079 total samples), with multiple time points corresponding to prepathol-
ogy development and plaque deposition and one time point corresponding to plaque dep-
osition and hyperphosphorylated tau. Several bacteria, including Bacteroides acidifaciens,
Prevotella species, Akkermansia muciniphila, Turicibacter species, and Lactobacillus salivarius,
differed in their relative abundances between 3xTg-AD and WT mice over time. Turicibacter
species and Akkermansia muciniphila were enriched in the gut microbiota in 3xTg-AD mice
at early time points, preceding pathology development, while Bacteroides acidifaciens and
Prevotella species were enriched in the gut microbiota of 3xTg-AD mice at later time points.
Critically, these features in the gut microbiota were used to successfully predict the strain of
mice early on in life, showing a potential for unique signatures in the gut microbiota com-
position to be used as a predictor of AD prior to the development of pathology.

TABLE 1 Results of random forest sample classifier performed on young, prepathology 3xTg-
AD and WT mice

Genotype Age (wk) Accuracy Baseline ratio Accuracy ratio
3xTg-AD 8 0.889 0.643 1.444
WT 8 1.00 0.643 1.444

Predicting Disease Using Prepathology Gut Microbiota Microbiology Spectrum

March/April 2023 Volume 11 Issue 2 10.1128/spectrum.03458-22 8

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.03458-22


Previous studies support the idea that perturbations in the gut microbiota composition
alter host immune responses, thereby shifting toward a proinflammatory environment in
the colon and hippocampus (50). To quantify changes in the inflammatory profile of 3xTg-
AD mice, we assessed the expression of relevant neuroinflammatory and inflammatory
genes at each body site. Significant increases in TNF-a, IL-6, IL-1b , and interferon gamma
(IFN-g ) gene expression via RT-qPCR of brain tissue have been observed in 3xTg-AD mice
at 16 months of age (51). In our study, we found significant upregulation of IL-6 gene
expression in the colon of 52-week-old 3xTg-AD mice compared to its expression in 52-
week-old WT mice, but no changes in TNF-a, IL-1b , and IFN-g expression were observed
at 52 weeks of age. We also observed significant upregulation of glial fibrillary acidic pro-
tein (GFAP), a marker of astrogliosis, in the hippocampus and colon of 3xTg-AD mice at
52 weeks compared to its expression in 52-week-old WT mice. Enteric glial cells (EGCs) are
resident in the enteric nervous system, which aids in regulation of the gastrointestinal tract
via modulation of immune and endocrine function (52). EGCs resemble astrocytes in the
brain in their morphology, ability to secrete cytokines, and expression of glial fibrillary
acidic protein. Increased gene expression of GFAP in the colon of rats 4 h after intravenous
LPS injection suggests that GFAP upregulation is a result of acute exposure to a systemic
inflammatory environment (52). Interestingly, GFAP has also been identified as a blood
biomarker in AD patients and correlates with cognitive impairment (53). Finally, MRC1
(also known as CD206) was elevated in the hippocampus at 24 weeks of age in 3xTg-AD
mice, indicating microgliosis. We hypothesize that the upregulation of MRC1 at 24 weeks
of age is associated with increased phagocytosis in response to the deposition of amyloid-
b , which is documented at 6 months of age (38).

In this study, we demonstrated distinct microbial compositions in 3xTg-AD mice prior
to the development of AD pathologies. As the mice aged, the gut microbiota of 3xTg-AD
and WT mice became more similar. Unweighted metrics (Jaccard and unweighted
UniFrac) demonstrated significant differences at 8 and 24 weeks, but not at 52 weeks of
age. We did observe significant differences using weighted beta diversity metrics (Bray-
Curtis and weighted UniFrac), which accounted for the abundances of observed features
at 8 weeks but not at 24 and 52 weeks. This indicated that lower-abundance bacterial
microbiota features were strong drivers of changes in gut microbiota composition.
Similar findings of compositional differences early in life were reported in female 3xTg-
AD mice compared to B6129SF1/J mice at 3 and 5 months of age (47). Early-life gut
microbiota composition perturbations in mice have been associated with aging-associ-
ated health and disease, including neurodegenerative diseases like AD (54). Our findings
indicate that compositional differences in microbial communities, driven by rare taxa
early in life, are present prior to amyloidosis and tauopathy development.

Alpha diversity is frequently used as a marker of disease status and is decreased in sev-
eral diseases associated with the gut-microbiota brain axis, including depression (55), au-
tism spectrum disorder (56), Parkinson’s disease (57), and in some studies, AD (16, 58). In
humans, alpha diversity was reported to be decreased in elders with AD compared to the
alpha diversity in age-matched healthy participants (16). When we analyzed alpha diversity
metrics by subsampling our data to include one mouse at each time point, we did not
find significant differences. These findings align well with other studies that have been
performed in mice. In one, no differences in alpha diversity were reported when compar-
ing 3- and 5-month-old 3xTg-AD female mice (47), and in another, no differences in alpha
diversity were reported in 8-, 12-, 18-, and 24-week-old 3xTg-AD male mice compared to
age-matched WT mice (49). However, when we leveraged dense longitudinal sampling
using LME, we demonstrated that genotype had an effect on Faith’s PD, where WT mice
had a higher alpha diversity than 3xTg-AD mice. These findings suggest that lower alpha
diversity in 3xTg-AD mice may be a predictor of disease status when assessed during the
onset and progression of AD pathologies.

To identify key features of the gut microbiota composition that differentiate 3xTg-
AD mice from WT mice, we used a random forest machine learning classifier on a fea-
ture table of the fecal microbiota. Our analysis demonstrated successful discrimination
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between 3xTg-AD and WT mice using gut microbiota compositions from 4 to 52 weeks
of age, but the prediction accuracy was improved when we included only samples
from prepathology time points. We selected samples at 2 months of age (6 and
8 weeks) and 6 months of age (22 and 24 weeks) to increase sample size due to loss of
samples during the sample classifier training. Several of the features that were most
important for predicting strain were also significant in our other analyses, including
Lactobacillus species, Lactobacillus salivarius, and Bacteroides species. The predictive
power of these models indicates unique bacterial communities early in life and
throughout life in 3xTg-AD mice modeling AD disease pathologies. Interestingly, Haran
and colleagues were able to discriminate between elders with AD and elders with dif-
ferent types of dementia using a random forest model using strain-level features of the
gut microbiome generated using shallow shotgun metagenomic sequencing (59). Both
Bacteroides fragilis and Bacteroides vulgatus were important features in classifying par-
ticipants in their study. Bacteroides species were also enriched in 3xTg-AD mice in our
study. These findings suggest that certain microbes identified in the cohort with AD in
this study, including Bacteroides species, may play a mechanistic role in the key pathol-
ogies of AD. We are performing additional studies to evaluate the role of Bacteroides in
AD progression.

We observed concordance in the importance of features across our random forest
classifier, longitudinal volatility analysis, and differential abundance testing (ANCOM).
Analysis of feature volatility revealed taxa at the bacterial genus- and species-level resolu-
tion that are predictive of age within each strain. Prevotella species, associated with
reductions in short-chain fatty acid production and intestinal inflammation in mice (60),
were increased later in life in 3xTg-AD mice. Lactobacillus salivarius, a bacterium shown
to positively influence immune cell development, was present in greater relative abun-
dance in WT mice for the first 32 weeks of life (61). Akkermansia muciniphila, a mucin-
degrading bacterium associated with intestinal inflammation in mice, and Turicibacter, a
genus that can regulate intestinal serotonin production, were present in 3xTg-AD mice
early in life, but not in WT mice (62, 63). Due to its potential influence on intestinal sero-
tonin, Turicibacter is particularly interesting. This genus is also consistently identified in
mouse and human studies of AD. One study using 5xFAD mice, which model amyloidosis
at an earlier time point than 3xTg-AD mice, demonstrated increased relative abundances
of Prevotella species, Bacteroides acidifaciens, and Turicibacter species in 5xFAD mice at
10 weeks of age (64). The 10-week time point in 5xFAD mice and the 24-week time point
in 3xTg-AD mice each represent the development of amyloidosis in the respective mod-
els. This may indicate that changes in the relative abundances of certain microbes are
critical during the onset of amyloid-b exposure. Another recent study of 5xFAD mice
demonstrated that Turicibacter was depleted in 5xFAD mice at 18 months compared to
its presence in WT controls (65). This study also demonstrated that Turicibacter was the
most important feature of the gut microbiome differentiating 5xFAD and WT mice and
may point to its importance in the gut microbiome-brain axis. Similarly, studies in
humans find that Turicibacter is decreased in relative abundance in elderly patients with
AD and age-matched controls (16). This could be a reflection of sampling late in the dis-
ease progression, since Turicibacter was enriched early in life in our study and was
depleted at later time points (64, 65). Recently, Turicibacter species have been shown to
contribute to the gut microbiome-brain axis via regulation of intestinal serotonin (5-HT)
production, highlighting a potentially interesting mechanism for further study in AD,
especially considering that serotonin potentially contributes to AD (63, 66, 67). These
findings add to the exciting body of literature on the potential for specific microbial taxa
to contribute to neurological health and disease.

All three statistical approaches used in our study (ANCOM, random forest machine
learning, and volatility analysis) demonstrated increased relative abundance in Bacteroides
in 3xTg-AD mice. Notably, random forest identified Bacteroides acidifaciens as highly im-
portant in predicting mouse strain. Other species of Bacteroides have been implicated in
health status and are likely key contributors to host-microbial interactions via the gut
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microbiome-brain axis. Bacteroides fragilis and Bacteroides stercoris function ecologically as
keystone species, indicated by low relative abundance and disproportionately numerous
interactions in microbial community dynamics (68). B. fragilis can influence the gut micro-
biome-brain axis and reduce autism-like behaviors by modulating serum metabolites and
GI inflammation (69). Bacteroides was also increased in abundance in mice expressing a
variant of human APP (APPswe [Tg2576]) compared to its abundance in control mice, and
the administration of B. fragilis promoted amyloid deposition in the APP/PS1 mice (70).
These findings suggest the potential for amyloidosis to alter microbial communities in the
gut of mice modeling AD amyloid-b plaques, or vice versa.

Bacteroides species have also been observed as differentially abundant in human
studies of AD, though the associations with health or disease are conflicting. In one
study of participants with AD and age-matched human controls, Vogt et al. demon-
strated increased relative abundance of Bacteroides in patients with AD. Interestingly,
this increase was positively correlated with a greater amyloid burden in the brain and
cerebrospinal fluid (CSF) phospho-tau, indicating a greater disease burden (16). In
another study, Haran and colleagues also observed increased Bacteroides in patients
with dementia compared to age-matched controls (59). However, Zhuang et al. found
that the relative abundance of Bacteroides decreased in patients with AD (71). Taken
together, these findings in humans support our findings in a mouse model and sug-
gest a role for gut-associated Bacteroides in the progression of AD pathologies.

Mechanistically, species in the genus Bacteroides might influence neuroinflamma-
tory processes in the brain. Bacteroides fragilis produces an endotoxin, lipopolysaccha-
ride, that is unique to this species of Gram-negative bacteria (BF-LPS). BF-LPS may cross
the gut epithelium and enter the bloodstream, inducing systemic inflammation and
upregulation of proinflammatory cytokines via the NF-kB pathway (72). BF-LPS is rec-
ognized by Toll-like receptor 2 (TLR-2), TLR-4, and CD41 microglial cells, potentially
inciting microgliosis in the brain. We are currently investigating the role of B. acidifa-
ciens in the ecology of the gut microbiota and hypothesize that it may also function as
a keystone species and influence neurological health status through the gut micro-
biome-brain axis.

The complexity of the host-microbe interactions in 3xTg-AD mice was demon-
strated in this study by the dynamic microbial communities and immune profiles. Our
study characterized the gut microbiota temporally in 3xTg-AD mice modeling amyloid-
b plaques and hyperphosphorylated tau to identify key changes in composition corre-
lated with disease pathogenesis. The present study shows upregulation of biomarkers
for microgliosis, astrogliosis, and intestinal inflammation. Analysis of the gut micro-
biome demonstrated an altered gut microbiota composition associated with 3xTg-AD
early in life, including prior to pathology development, that was predictive of disease
state. This is the first study of its kind to characterize the gut microbiota at 25 time
points, ranging from prepathology to modeling of both amyloidosis and tauopathy.
Additionally, it will provide a reference for future studies to determine the frequency of
fecal sampling in longitudinal gut microbiota analysis based on the well-characterized
evolving gut microbiota composition in the present study. It is critical for future studies
on the role of the gut microbiota-brain axis and AD to investigate multiple time points
throughout disease progression due to changes in the gut microbiome and inflamma-
tory profile, as exemplified in the current study. Furthermore, a focus on the functional
microbiome through a multiomics approach is essential in better understanding host-
microbe interactions via the gut microbiota-brain axis in AD.

Limitations and future directions.While our study has strengths in dense, longitu-
dinal sampling of fecal material, which allows for robust statistical analyses and model-
ing approaches, there are some limitations that warrant further discussion. First, after
careful consideration of housing strategy, we chose to house genotypes separately at
reduced density and to include multiple cages per experimental group at each time
point, as suggested by Kim et al. (73). This choice was intentional, to eliminate the possi-
bility of fecal microbiome transfer via coprophagy (and potentially transfer of disease
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phenotype or protection) between strains. Since our central hypothesis was that the gut
microbiome influences disease progression in mice, we wanted to avoid the addition of
potentially protective microbiota from WT mice to 3xTg-AD mice or the transfer of any
disease phenotype from 3xTg-AD mice to WT mice. Some studies in 3xTg-AD (48) and
5xFAD (64) mice have demonstrated that cohousing mice across genotypes causes a
shift in the gut microbiome so that the strains more closely resemble each other (expect-
edly), but this also alters the disease phenotype in transgenic and WT mice. In one study,
cohousing young 3xTg-AD mice with aged 3xTg-AD mice accelerated AD pathology in
the brain in young mice, demonstrating effective transfer of gut microbiome members
by cohousing and the potential impact on pathologies. In 5xFAD mice, cohousing of WT
and transgenic strains resulted in a shift of the WT gut microbiome to resemble the
5xFAD gut microbiome, reduced discriminatory learning, and resulted in an increase in
brain-infiltrating T cells in WT mice compared to the level in WT mice in the same facility
but caged separately (64). All this aside, we did not anticipate cage effects to be nonexis-
tent. Thus, we performed multivariate analyses and volatility analyses to evaluate cage
effects separately from genotype. These analyses support our findings that genotype is a
significant contributor to gut microbiome differences between 3xTg-AD and WT mice.
Furthermore, the contribution of genotype to variation in the gut microbiome is akin to
studies of the microbiome in chronic and progressive human disease, including studies
of the gut microbiome in neurological disorders (42–45).

There are additional factors that are challenging to control for in mouse studies.
Cage effects are also confounded by maternal identity. This variable may be partially
responsible for the larger percentage of variation accounted for by cage, since same-
sex littermates were housed together. This could be one factor accounting for the
larger variation in 3xTg-AD and WT mice at 8 weeks of age. However, it is important to
note that while whole-community metrics (beta diversity) did converge over time
(likely due to strict environmental controls, including exposure to the same bedding,
chow, staff, etc.), we did see significance in the relative abundances of specific taxa at
the 52-week time point, so key differences did remain. Furthermore, when we per-
formed a multivariate PERMANOVA including cage and genotype as variables, we did
observe significant differences in genotypes using beta diversity metrics.

We intentionally chose to use female mice in this initial study, which is the first out of
our group exploring the gut microbiome alterations in AD. Our choice of female mice for
this initial study was primarily driven by the finding that female sex is a leading risk fac-
tor for AD (74) and secondarily by the fact that female 3xTg-AD mice exhibit more con-
sistent and greater pathology burden, whereas male 3xTg-AD mice have more variability
in modeling key pathologies (75). Ongoing studies in our laboratory that build off these
findings use both male and female mice. Studies on female mice in general are underre-
presented in the literature, particularly in earlier studies of Alzheimer’s disease models
(75, 76). The limitations discussed in the context of this study highlight the broader chal-
lenges in designing a study aimed at evaluating the role of the microbiome in a murine
disease model and extend beyond AD research. There have been a few recent studies
and commentaries on the challenges of murine study design, including husbandry,
maternal effects, and diet (73, 77, 78), which were helpful in informing our study design.
However, additional research toward mitigating these confounding factors is necessary,
especially as the microbiome sciences advance toward understanding microbial mecha-
nisms underlying disease pathologies.

MATERIALS ANDMETHODS
Mouse genotypes. 3xTg-AD [with overexpression of APP(Swe), PSEN1(M146V), and MAPT(P301L)

transgenes] and wild-type (WT) (B6129F2/J) breeders were purchased from Jackson Laboratory (Bar
Harbor, Maine). All mice included in this study were bred in-house at the Biological Sciences Vivarium at
Northern Arizona University. All mouse experiments were approved by the Institutional Animal Use and
Care Committee (IACUC) of Northern Arizona University under protocol 18-016, and we adhered to the
IACUC regulations and animal housing conditions. All experiments and reporting were carried out in ac-
cordance with ARRIVE guidelines and regulations (79).
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Mouse colonies. Mice were purchased from Jackson Laboratory (3xTg-AD and WT) and allowed 7
days to acclimate to the Animal Facility at Northern Arizona University. Mice were then combined into
harems, housed in a 12-h light/dark cycle, and provided food and water ad libitum. In-house-bred mice
were weaned at 21 days of age, and female mice of the same strain were separated and housed in cages
of 2 to 5 mice (average of 4 mice/cage) for the remainder of the animal study (n = 88 total mice; n = 57
3xTg-AD and n = 31 WT). Multiple cages were used per experimental group at each time point, and cage
was included as a variable in a multivariate PERMANOVA, described below. Weaned female mice were
given 1 week to acclimate and adjust to their new food prior to the first sample collection.

Genotyping. Ear punches were collected at 4 weeks from 3xTg-AD mice for genotyping. DNA was
extracted using the Qiagen blood and tissue kit (Qiagen, Hilden, Germany). PCR was run with the KAPA
mouse genotyping kit and Jackson Laboratory-approved primers for APP(Swe) and MAPT(P301L) trans-
genes. Amplicons were run on a 3% agarose gel to confirm the presence of bands representing APP
(Swe) and MAPT(P301L) genes (ThermoFisher, Waltham, Massachusetts).

RT-qPCR. DNA and RNA were extracted in parallel from hippocampus and colon tissue samples
using the Qiagen AllPrep kit. We performed genomic DNA (gDNA) clean ups on RNA using the Qiagen
DNase max kit. RNA was reverse transcribed using the Qiagen 2nd-strand synthesis kit (Qiagen, Hilden,
Germany). A custom qPCR assay from Qiagen including various biomarkers for Th1/Th17 (il2, il1beta, il6,
il8, ifn-gamma, tnf-alpha, and il17a), astrocyte reactivity (GFAP, STAT3, and VIM), M1/M2 macrophage acti-
vation/microgliosis (ccl2, il1b , il4, arg1, iNOS, cd206, il10, and il12) (80, 81), and LPS-induced neuroinflam-
mation (NF-kB) were used.

Sample collection. Fecal samples were collected directly from each mouse fortnightly starting at
4 weeks until sacrifice for longitudinal gut microbiota analysis. Mice were euthanized with CO2 at 8, 24,
or 52 weeks. Gastrointestinal and brain samples were collected in a sterile class II biosafety cabinet
(BSC), using tools sterilized in a Germinator 500 (CellPoint Scientific), for each body site and mouse. The
sample sizes were as follows: 3xTg-AD, n = 6 at 8 weeks, n = 15 at 24 weeks, and n = 18 at 52 weeks, and
WT, n = 10 at 8 weeks, n = 8 at 24 weeks, and n = 6 at 52 weeks. The colon and hippocampus were har-
vested, immediately placed in RNAlater, and stored at 280°C until further processing.

Nucleic acid extraction and 16S rRNA gene sequencing. DNA and RNA were extracted in parallel
from feces using the MagMax pathogen RNA/DNA kit from ThermoFisher. Extractions were performed in
a class II biosafety cabinet using protocols adopted from eukaryotic cell culture to protect the samples
from contamination (i.e., decontaminating all materials with 70% ethyl alcohol [EtOH] prior to bringing
into the BSC, double gloving while in the BSC, and donning single-use personal protection equipment
[PPE] while working in the BSC). Modifications to the protocol included the use of lysing matrix E tubes
(MP Biomedical, Irvine, California) for bacterial and fungal lysis. Both DNA and RNA were quantified using
a NanoDrop 2000. Quantified DNA from fecal samples was used for 16S rRNA gene PCR. Using Earth
Microbiome Project (EMP) primers (515F-806R), the V4 region of the 16S rRNA gene was amplified. Each
PCR mixture contained 2.5 mL of PCR buffer (10� concentration, 1� final; TaKaRa), 1 mL of the Golay bar-
code-tagged forward primer (10mM concentration, 0.4mM final), 1mL of bovine serum albumin (20 mg/mL
concentration, 0.56 mg/mL final; ThermoFisher), 2 mL of deoxynucleoside triphosphate (dNTP) mixture
(2.5 mM concentration, 200 mM final; TaKaRa), 0.125 mL of hot-start Ex Taq (5 U/mL, 0.625 U/mL final;
TaKaRa), 1 mL reverse primer (10 mM concentration, 0.4 mM final), and 1 mL of template DNA. All PCR mix-
tures were filled to a total of 25 mL with UltraPure DNase/Rnase-free water (Invitrogen) and then placed on
a thermal cycler. The thermal cycler conditions were as follows: a 98°C denaturing step for 2 min, 30 cycles
of 98°C for 20 s, 50°C for 30 s, and 72°C for 45 s, and a final step of 72°C for 10 min. PCR was performed in a
decontaminated PCR hood, and consumables were decontaminated with 70% ethanol before being
brought into the hood and then exposed to UV light to prevent sample contamination. PCR was per-
formed in triplicate, and an additional negative control was included for each barcoded primer. 16S rRNA
gene bands were visualized using a 3% agarose gel (ThermoFisher, Waltham, Massachusetts). Amplicons
were quantified using fluorometry and pooled at equimolar ratios. The quality of the pool was assessed
with the Bioanalyzer DNA 1000 chip (Agilent Technologies, Santa Clara, California), and the pool was then
combined with 1% PhiX for sequencing. A total of 4 pools were sequenced on the Illumina MiSeq using
the 600-cycle MiSeq reagent kit version 3 (Illumina, San Diego, California). Each pool contained mock com-
munities and samples that overlapped over each sequencing run to identify potential sequencing bias. All
sequencing was done on the Illumina MiSeq benchtop sequencing platform.

Bioinformatics analysis. Microbiome bioinformatics were performed with QIIME2 version 2021.2. A
manifest of all commands used can be found in the supplemental material (cli_replay.sh and python3_
replay.py). q2-DADA2 was used for sequence quality control and generation of amplicon sequence variants
(ASVs) to provide the highest taxonomic specificity (82). A phylogenetic tree was created using q2-frag-
ment-insertion, which applies the SEPP algorithm, inserting short sequences into a reliable tree generated
from a database of full-length sequences (83). Taxonomy was assigned to reads using q2-feature-classifier
and the Greengenes reference database, version 13_8 (83, 84). Alpha diversity, including Faith’s phyloge-
netic diversity (85), the Shannon diversity index (86), and observed ASVs, was computed with q2-diversity
(85). Beta diversity (community dissimilarity) metrics were computed with q2-diversity, including Bray-Curtis
dissimilarity, Jaccard dissimilarity, and weighted UniFrac (85, 87) and unweighted UniFrac (88) distances.
Longitudinal analysis was performed with q2-longitudinal to assess temporal changes in bacterial commun-
ities (89). Group comparisons of alpha diversity were performed with nonparametric Wilcoxon tests, and
group comparisons of beta diversity were performed with nonparametric PERMANOVA (90). Cage effects
were assessed using volatility analysis with PC1 of Jaccard and unweighted UniFrac distances, and a multi-
variate PERMANOVA was performed using genotype and cage as covariates using adonis in R (41). ASVs
and taxa that were differentially abundant across mouse strains were identified using ANCOM (91). All P
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values were corrected for multiple comparisons using the Benjamini-Hochberg false discovery rate correc-
tion. The random forest model sample classification was performed to predict mouse genotype using gut
microbiome ASVs with q2-sample classifier (92).

Statistical analysis. Fold change values were calculated using the cycle threshold (22DDCT) method
(93). Group comparisons of strain and age were performed with the nonparametric Mann-Whitney test.
Violin plots were created using Prism (GraphPad version 9.1.1.225).

Data availability. The data sets generated and/or analyzed during the current study are available in
the NCBI Sequence Read Archive repository under accession numbers PRJNA830518 and PRJNA830532.

SUPPLEMENTAL MATERIAL
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