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Abstract

Thermogenesis in brown adipose tissue (BAT) uses intracellular triglycerides, circulating

free fatty acids and glucose as the main substrates. The objective of the current study was

to analyse the role of CD36 fatty acid translocase in regulation of glucose and fatty acid utili-

sation in BAT. BAT isolated from spontaneously hypertensive rat (SHR) with mutant Cd36

gene and SHR-Cd36 transgenic rats with wild type variant was incubated in media contain-

ing labeled glucose and palmitate to measure substrate incorporation and oxidation. SHR-

Cd36 versus SHR rats showed significantly increased glucose incorporation into intracellu-

lar lipids associated with reduced glycogen synthase kinase 3β (GSK-3β) protein expres-

sion and phosphorylation and increased oxidation of exogenous palmitate. It can be

concluded that CD36 enhances glucose transport for lipogenesis in BAT by suppressing

GSK-3β and promotes direct palmitate oxidation.

Introduction

Brown adipose tissue (BAT) plays an important role in maintaining body temperature by pro-

ducing heat through uncoupling oxidative phosphorylation from ATP production. BAT was

detected also in adult humans and because of its important involvement in energy metabolism

potential role of BAT in the pathogenesis of obesity and type 2 diabetes are the subject of

intense interest [1–3]. Using a systems genetics analysis in BXH/HXB recombinant inbred

(RI) strains, derived from SHR (spontaneously hypertensive rat) and BN (Brown Norway) pro-

genitors, we identified a quantitative trait locus (QTL) associated with BAT relative weight on

chromosome 4 [4]. This QTL overlapped with a coexpression module eigengene QTL contain-

ing candidate genes with mRNA abudance regulated in cis and correlated with BAT relative

weight. The Cd36 (fatty acid translocase) gene was a highly connected hub gene of the coex-

pression module associated with relative BAT weight [4]. The SHR harbors a deletion variant
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of Cd36 gene [5] which predisposes this strain to insulin resistance, dyslipidemia and increased

blood pressure [6–10]. Mutated Cd36 thus represents a prominent candidate gene for QTL

associated with BAT relative weight and function.

Thermogenesis in BAT uses intracellular triglycerides, circulating free fatty acids and glu-

cose as the main substrates. Glucose that enters brown adipocytes is used mainly for lipogene-

sis and plays only a minor role in BAT thermogenesis compared to fatty acids [11]. It was

reported that fatty acids synthesised from glucose, as well as fatty acids transported into brown

adipocytes, are not directly used as fuel but instead are used to replenish intracellular triglycer-

ide stores from which fatty acids are provided by lipolysis during thermogenesis [12, 13].

Uptake of exogenous fatty acids by BAT is mediated by several transporters including CD36

fatty acid translocase. In the current study, we tested the hypothesis that Cd36 regulates fuel

utilisation in BAT in the SHR. Results of the current study provided compelling evidence for

an important role of Cd36 in enhancing glucose transport and utilisation and direct oxidation

of exogenous palmitate in BAT.

Methods

Animals

The SHR/OlaIpcv strain (referred to as SHR) and the SHR/Ola-TgN(EF1aCd36)19Ipcv trans-

genic line TG19 (referred to as SHR-Cd36) [9] were housed in an air-conditioned animal facil-

ity at 23˚C and 12 h light/12 h dark cycle and allowed free access to Sniff1 R-Z standard

laboratory chow (ssniff Spezialdiäten GmbH, Soest, Germany) and water. These strains are

genetically identical except for the expression of wild type Cd36 transgene under control of

universal EF-1α promoter in the transgenic line. Biochemical, metabolic and morphometric

phenotypes in both strains were assessed in 3-month-old non-fasted male rats (N = 8 per

strain). All experiments were performed in agreement with the Animal Protection Law of the

Czech Republic and were approved by the Ethics Committee of the Institute of Physiology of

Czech Academy of Sciences, Prague (protocol number 15-2022-P).

Glucose oxidation and incorporation into BAT lipids

After decapitation in the non-fasted state, interscapular BAT was dissected and 60 mg were

incubated for 2 hours in Krebs-Ringer bicarbonate buffer with 5 mmol/L glucose alone or

together with 0.5 mmol/L palmitate, 0.1 μCi [U-14C] glucose/ml and 2% bovine serum albu-

min, gaseous phase 95% O2 and 5% CO2 in the presence of 250 μU/ml insulin in the incuba-

tion media. Glucose oxidation was determined in BAT by measuring the incorporation of

[U-14C] glucose into CO2. For measurement of incorporation of radiolabeled glucose into lip-

ids, at the end of incubation, BAT was removed from media, rinsed in saline, transferred into

chloroform:methanol (2:1), lipids were extracted and radioactivity measured [14].

Palmitate oxidation and incorporation into BAT lipids

Isolated BAT (60 mg) was incubated in Krebs-Ringer bicarbonate buffer with 0.5 mmol/ml

palmitic acid alone or together with 5 mmol/L glucose, 0.5 μCi/mL of 14C-palmitic acid and

2% bovine serum albumin, gaseous phase 95% O2 and 5% CO2 in the presence of 250 μU/ml

insulin in the incubation media. Palmitate oxidation was determined in BAT by measuring the

incorporation of [U-14C] palmitate into CO2. For measurement of incorporation of radiola-

beled pamitate into lipids, at the end of incubation, BAT was removed from media, rinsed in

saline, transferred into chloroform:methanol (2:1), lipids were extracted and radioactivity

measured [14].
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SDS-PAGE and Western blotting analysis

BAT was homogenised in RIPA buffer complemented with protease and phosphatase inhibitors

(Sigma Aldrich). The tissue was lysed at 4˚C for 30 min with gentle agitation and then centrifuged

at 14000 x g for 15 min. The supernatant was collected while avoiding the layer of fat and used for

Western blotting as described previously [15]. Samples from each group were run on the same

gel. They were resolved on 10% polyacrylamide gels, electrotransferred to a nitrocellulose mem-

brane, and after blocking with 5% skim milk, incubated overnight (at 4˚C) with the following pri-

mary antibodies: GSK-3β, phospho-GSK-3β (Ser 9) and β-actin (Santa Cruz Biotechnology), IRβ,

Akt and phospho-Akt (Ser 473) (Cell Signaling Technology) and phospho-IRβ (Tyr 1361)

(Abcam). Membranes were then washed and incubated with the appropriate HRP-conjugated

secondary antibody. Blots were exposed to X-ray film, scanned with a high-resolution CCD scan-

ner (EPSON Perfection V600 Photo), and immunochemical signals were quantified by densito-

metric analysis using ImgeJ software and normalised to total protein determined by Ponceau S

staining. At least three separate experiments were performed for each determination.

Gene expression determined by real-time PCR

Total RNA was extracted from interscapular BAT using Trizol reagent (Invitrogen) and cDNA

was prepared and analysed by real-time PCR testing using QuantiTect SYBR Green reagents

(Qiagen, Inc.) on an Opticon continuous fluorescence detector (MJ Research). Gene expres-

sion levels were normalised relative to the expression of the peptidylprolyl isomerase A (Ppia)

(cyclophilin) gene, which served as the internal control. The results were determined in tripli-

cates. Primers used for the validation of differentially expressed genes selected from significant

pathways are given in S1 Table.

Histological analysis

Brown adipose tissue harvested from both SHR and SHR-Cd36 rats (n = 6 for each group) was

formalin fixed and paraffin embedded. Multiple sections were cut from each block and stained

both with Hematoxilin & Eosin for quality assessment and with immunoperoxidase stain with

mouse monoclonal [TLD-3A12] to CD31antibodies (Abcam plc, Cambridge UK) for capillary

evaluation. Stained sections were exmined by an observer blindend by the groups and ten high

power fields from each rat were aquired using a digitalized microscope camera. Images were

analysed with ImageJ 1.8.0 (NIH, Bethesda) image analysis software using a color threshold

method and automated capillary density measurement.

Statistical analysis

The data are expressed as means ± SEM. Individual groups were compared by Student t-test.

Normality of distribution was tested by Shapiro-Wilk method. Statistical significance was

defined as P<0.05. Two-way ANOVA was used to test for presence of substrates in media x

Cd36 genotype interactions. For variables showing evidence of interaction, the Holm-Sidak test

which adjusts for multiple comparisons was used to determine whether the effects of substrates

in media were significant in the SHR strain and in the SHR-Cd36 transgenic strain. Significant

difference in blood capillary number in BAT was evaluated by Student t test.

Results

Cd36 regulates fuel utilisation in BAT

BAT isolated from SHR and SHR-Cd36 rats was incubated in media containing glucose or pal-

mitate or both substrates and incorporation of radioactively labeled glucose and palmitate into
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intracellular lipids and into CO2 was measured. In BAT from SHR-Cd36 versus SHR rats that

was incubated in media with glucose alone, glucose incorporation into intracellular lipids

(lipogenesis) was significantly increased (Fig 1A) which was associated with reduced GSK-3β
protein expression and phosphorylation (Fig 2). These findings suggest that Cd36 enhances

glucose transport and lipogenesis in BAT by suppressing GSK-3β. When palmitate was added

to glucose in incubation media, incorporation of glucose into BAT lipids was reduced, most

Fig 1. Effects of Cd36 on substrate utilisation in BAT. A. Ex vivo glucose and palmitate incorporation into BAT

lipids in SHR-Cd36 transgenic versus SHR rats. B. Ex vivo glucose and palmitate oxidation in BAT from SHR-Cd36
transgenic versus SHR rats. Two-way ANOVA results: P values of statistical significance for effects strain (Cd36
genotype), type of incubation media (glucose/palmitate) and strain x substrate interaction. For pairwise multiple

comparison procedures Holm Sidak testing was used. * and *** denote P<0.05 and P<0.001, respectively.

https://doi.org/10.1371/journal.pone.0283276.g001
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likely due to the fact that triglycerides were synthesised from added palmitate and relatively

less glucose was needed for lipogenesis. In addition, added palmitate had no effects on the

expression and phosphorylation of GSK-3β (Fig 2). Palmitate incorporation into intracellular

lipids in BAT from SHR-Cd36 versus SHR rats was significantly increased only when BAT was

incubated in media containing both palmitate and glucose while no difference was observed

when BAT was incubated in media with palmitate alone (Fig 1A). Glycerol-3-phosphate neces-

sary for synthesis of intracellular triglycerides in BAT incubated in media with palmitate with-

out glucose must be provided by glyceroneogenesis. When BAT is incubated in media

containing both glucose and palmitate, glycerol is provided by both glyceroneogenesis and gly-

colysis and thus incorporation of palmitate into BAT lipids was increased (Fig 1A). These find-

ings suggest that Cd36 is needed for glycerol production for triglyceride synthesis by glycolysis

(most likely by enhancing glucose transport) but not for glyceroneogenesis.

Glucose oxidation in BAT from SHR-Cd36 versus SHR rats was significantly increased

independent on presence of palmitate in media but overall smaller when compared to palmi-

tate oxidation (Fig 1B). This observation suggests that glucose in BAT is preferentially used for

lipogenesis, not for oxidation. On the other hand, BAT from SHR-Cd36 versus SHR rats

showed significantly increased palmitate oxidation when incubated in media with palmitate

alone (Fig 1B). The fact that BAT from SHR-Cd36 rats incubated in media with palmitate

alone showed similar palmitate incorporation into intracellular lipids (Fig 1A) but significantly

increased palmitate oxidation (Fig 1B) provides evidence that in the presence of functional

Fig 2. Effect of Cd36 on expression and phosphorylation of key components of the insulin signalling pathway.

Samples of BAT isolated from SHR and SHR-Cd36were incubated in Krebs-Ringer bicarbonate buffer with glucose

alone or together with palmitate, then homogenised and subjected to gel electrophoresis and Western blotting as

described in Methods. Immunoblots shown are representative of six experiments (A). Signal intensities corresponding

to detected proteins were quantified by densitometric analysis and normalised to total protein determined by Ponceau

staining (B). *, **, and *** denote P<0.05, P<0.01, and P<0.001 significant differences.

https://doi.org/10.1371/journal.pone.0283276.g002
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CD36 exogenous palmitate is directly oxidised in BAT rather than incorporated into intracel-

lular triglycerides. When BAT was incubated in media containing both glucose and palmitate,

oxidation of palmitate was not different between SHR-Cd36 and SHR. This result suggests that

in the presence of glucose, palmitate is preferentially incorporated into triglycerides rather

than oxidised.

Effects of substrates in incubation media on expression of genes and

proteins involved in glucose metabolism and insulin signalling in BAT

Since SHR-Cd36 versus SHR rats showed significantly increased glucose incorporation into

BAT lipids (lipogenesis) in the presence of insulin, we tested whether Cd36 affects insulin sig-

nalling by analysing expression and phosphorylation of selected proteins from phosphatidyli-

nositol 3-kinase-Akt, the main signalling pathway downstream of insulin. As can be seen in

Fig 2, protein expression and phosphorylation of IRβ (insulin receptor β), PI3K (phosphoino-

sitide 3-kinase), and AKT (protein kinase B, PKB) proteins showed no significant differences

between the SHR-Cd36 versus SHR strains and substrates in media. On the other hand, the

expression of GSK-3β (glycogen synthase kinase 3β) was significantly reduced in the presence

of wild type Cd36 though independently on substrates in incubation media. The amount of

phosphorylated GSK-3β was reduced to similar extent and the ratio of phosho-GSK-3β/GSK-

3β was not changed. Images of full-length immunoblots and Ponceau staining of total proteins

bound to nitocelulose membranes used for quatification are provided in the (S1-S7 Figs in

S1 File).

As can be seen in Fig 3, the SHR showed similar mRNA expression in of Irs1 (Insulin recep-

tor substrate 1), Irs2 (Insulin receptor substrate 2), Pik3r1 (Phosphoinositide-3-kinase regula-

tory subunit 1), Foxo1 (Forkhead box O1) and Slc4a2 (Solute carrier family 4 member 2, also

Fig 3. Effect of Cd36 on expression of genes involved in insulin signalling pathway and glucose metabolism. Two-

way ANOVA results: P values of statistical significance for effects strain (Cd36 genotype), type of incubation media

(glucose/palmitate) and strain x substrate interaction. For pairwise multiple comparison procedures Holm Sidak

testing was used. *, **, and *** denote P<0.05, P<0.01, and P<0.001 significant differences.

https://doi.org/10.1371/journal.pone.0283276.g003

PLOS ONE Cd36 affects BAT function in the SHR

PLOS ONE | https://doi.org/10.1371/journal.pone.0283276 April 13, 2023 6 / 11

https://doi.org/10.1371/journal.pone.0283276.g003
https://doi.org/10.1371/journal.pone.0283276


known as Glut4) genes in BAT incubated in media with either glucose alone or glucose + pal-

mitate. On the other hand, SHR-Cd36 transgenic rats versus SHR had significantly increased

expression of these genes when BAT was incubated in media with glucose alone and this dif-

ference was even higher when palmitate was added to incubation media (Fig 3).

Effects of Cd36 on blood capillary number in BAT and weight of BAT

SHR-Cd36 transgenic rats when compared to the SHR exhibited significantly increased blood

capillary number in BAT (Fig 4). In addition, SHR-Cd36 transgenic rats showed lower relative

BAT weight but the difference was not statistically significant (0.109±0.005 vs. 0.096±0.003 g/

100 g body weight, P = 0.055).

Discussion

In the current study, we analysed the role of CD36 fatty acid translocase in regulation of glu-

cose and fatty acid utilisation in BAT using in vitro assay. It should be noted that in vitro assay

has a limitation since it does not reflect whole body metabolism. However, in vitro method has

also some advantages. Labeled glucose is used for de novo lipogenesis (DNL) not only in BAT

but also in other tissues (WAT and liver) in vivo. Labeled fatty acids produced by DNL in

WAT and liver will enter BAT. Thus labeled fatty acids in BAT will reflect both DNL and

incorporation of fatty acids produced in other tissues. On the other hand, in vitro incubation

of BAT from SHR versus SHR-Cd36 with labeled glucose will enable testing the role of Cd36 in

DNL without confounding factors such as incorporation of labeled fatty acids produced by

DNL in other tissues and differences in other systemic parameters (e.g. circulating fatty acids,

triglycerides or glucose) between SHR and SHR-Cd36 that could affect DNL. Our study was

focused on the specific role of Cd36 in glucose and palmitate transport and utilisation in BAT.

We did not plan to study the role of Cd36 in BAT on whole body metabolism.

Our results showed that wild type versus mutant Cd36 on the SHR genetic background

enhanced glucose transport and utilisation and direct oxidation of exogenous palmitate in

BAT. However, several studies reported opposite effects of Cd36 on glucose transport into tis-

sues. For instance, it was found that Cd36 knockout versus wild type mice showed reduced

uptake and oxidation of fatty acids in skeletal muscle while glucose transport into skeletal mus-

cle and glucose oxidation rates were significantly increased [16, 17]. In addition, mice with

deletion of Cd36 specifically in endothelial cells showed reduced fatty acid uptake but

increased glucose transport into BAT [18]. It is possible that these discrepant results on the

impact of Cd36 deficiency on glucose transport into tissues may be dependent on nutrient

state, tissue specificity and interspecies differences.

A recent study by Samovski et al. [19] showed that CD36 regulates insulin signalling by pro-

moting tyrosine phosphorylation of IRβ by Fyn kinase in the muscle, suggesting that the mod-

ulation of IRβ phosphorylation is a key mechanism for CD36-mediated insulin signal

transduction. In addition, Yang et al. [20] reported that CD36 deficiency is associated withled

to abnormally increased hepatic protein-tyrosine phosphatase 1B (PTP1B) expression in the

liver and thatenhanced interaction of PTP1B withand IR interactions might, which contrib-

uted to reduceddecreased insulin signalling. Contrary to these findings, we did not observe sig-

nificant changes in the expression and phosphorylation of IRβ protein but significantly

reduced expression and phosphorylation of GSK-3β protein in SHR-Cd36 transgenic rats.

GSK-3 has been implicated as a negative regulator of insulin signalling through serine phos-

phorylation of IRS-1. GSK-3 is constitutively active and downregulated by phosphorylation

mediated by AKT [21]. In addition, it has been reported that GSK-3 phosphorylation is regu-

lated by CD36 when insulin-stimulated phosphorylation of GSK-3 was significantly higher in
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Fig 4. Capillary number in BAT was significantly increased in SHR-Cd36 versus SHR rats. * denotes P<0.003.

https://doi.org/10.1371/journal.pone.0283276.g004
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myotubes with CD36 knockdown [22]. Accordingly, it is possible that CD36 modulates insulin

signalling via GSK-3. GSK-3 has been also found to also reduce the thermogenic program in

brown adipocytes and inhibition of GSK-3 also caused increased Ucp1 expression and oxygen

consumption [23].

It is widely accepted that fatty acids derived by lipogenesis from glucose in brown adipo-

cytes or transported from circulation are not directly used for UCP1 mediated thermogenesis

but preferentially stored in intracellular triglycerides from which fatty acids are provided dur-

ing thermogenesis [13, 24–26]. Contrary to these reports, our results showed that exogenously

provided palmitate can be directly oxidised in the presence of wild type Cd36. Recently, Shin

et al. [27] demonstrated in mice lacking Abhd5 (abhydrolase domain containing 5) gene (also

known as CGI-58), a lipolytic activator that is essential for the stimulated lipid droplet lipolysis,

specifically in BAT or WAT or in both adipose tissues, that BAT lipolysis in not essential for

thermogenesis. On the other hand, fasted mice lacking Abhd5 gene in both BAT and WAT

were cold sensitive which suggested an essential role of WAT lipolysis in fueling thermogenesis

during fasting. These results provided evidence that brown adipocytes may directly use fatty

acids derived from the blood as thermogenic substrates and are congruent with our finding

about direct oxidation of exogenous palmitate in BAT in the presence of wild type Cd36.

BAT is one of the most vascularised tissues in the body and vasculature has multiple func-

tions in the modulation of BAT functions [28]. For instance, higher metabolic activity in BAT

requires increased blood perfusion to supply oxygen and substrates and to export heat, which

could be provided by increased blood flow. Our results showed that expression of wild type

Cd36 in BAT was associated with increased blood capillary number despite the fact that CD36

is considered to be a negative regulator of angiogenesis [29].

It can be concluded that Cd36 in BAT plays an important role (1) in glucose transport and

utilisation for lipogenesis via reducing expression and phosphorylation of GSK-3β and (2) in

transport and direct oxidation of exogenous fatty acids.
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Data curation: Jan Silhavy, Petr Mlejnek, Miroslava Šimáková, Irena Marková, Hana Mal-
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Michal Pravenec.

Funding acquisition: Hana Malı́nská, Michal Pravenec.
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