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Abstract

Black spot disease (BSD) (Diplocarpon rosae) is the most common and damaging fungal disease in garden roses (Rosa sp.). Although
qualitative resistance to BSD has been extensively investigated, the research on quantitative resistance lags behind. The goal of this
research was to study the genetic basis of BSD resistance in two multi-parental populations (TX2WOB and TX2WSE) through a pedigree-
based analysis approach (PBA). Both populations were genotyped and evaluated for BSD incidence over five years in three locations in
Texas. A total of 28 QTLs, distributed over all linkage groups (LGs), were detected across both populations. Consistent minor effect QTLs
included two on LG1 and LG3 (TX2WOB and TX2WSE), two on LG4 and LG5 (TX2WSE), and one QTL on LG7 (TX2WOB). In addition, one
major QTL detected in both populations was consistently mapped on LG3. This QTL was localized to an interval ranging from 18.9 to
27.8 Mbp on the Rosa chinensis genome and explained 20 and 33% of the phenotypic variation. Furthermore, haplotype analysis showed
that this QTL had three distinct functional alleles. The parent PP-J14–3 was the common source of the LG3 BSD resistance in both
populations. Taken together, this research presents the characterization of new SNP-tagged genetic determinants of BSD resistance,
the discovery of marker-trait associations to enable parental choice based on their BSD resistance QTL haplotypes, and substrates for
the development of trait-predictive DNA tests for routine use in marker-assisted breeding for BSD resistance.

Introduction
Roses (Rosa sp.) are woody perennial plants belonging to the
Rosaceae family, which includes many economically important
fruit and ornamental crops. The production of cultivated roses
is valued at $28 billion globally [1]. In the USA, garden rose pro-
duction has decreased from $203 million in 2014 to $168 million
in 2019 [2, 3]. This decrease is, in part, due to the susceptibility
of roses to a broad range of diseases that can cause plant death
or negatively impact the ornamental and market value as the
infected plants become unattractive [4]. A survey of the rose
industry and community showed that disease resistance was
more important than ornamental traits in new cultivars [5].

Black spot disease (BSD) is the most widespread rose foliar
disease in the world. The causal agent of BSD in roses is the
hemibiotrophic ascomycete fungus Diplocarpon rosae Wolf. The
development of this disease is favored by warm, humid environ-
ments and its spread by rain-induced water splash. BSD infected
plants show dark spots with feathery margins, often followed by
chlorosis, plant weakening, and, on very susceptible genotypes,
complete defoliation, plant dieback, and possibly death [1]. Most
modern rose cultivars are susceptible to this disease.

Fungicides are frequently used to control this disease [6, 7].
Nevertheless, excessive use of fungicides leads to the devel-
opment of pesticide-resistant pathogens and restrictions on

agrochemical use due to environmental and public health
concerns [1]. This, combined with the consumers’ demand for
rose plants with natural resistance, has pushed most garden
rose breeding programs to prioritize the development of disease-
resistant cultivars [8]. At present, the phenotypic assessment of
disease resistance is slow as it relies on multi-year and multi-
location field trials to properly expose the roses to a broad range
of pathogenic races [1]. Thus, DNA-informed breeding needs to
be incorporated into traditional breeding operations to accelerate
the introgression of disease resistance genes into commercial
germplasm. However, incorporating molecular tools in rose
breeding lags behind many crops because rose is a complex, highly
heterozygous crop with multiple ploidy levels [9, 10].

Qualitative or complete (conferred by major dominant
genes) and quantitative or partial (conferred by multiple genes)
resistance to BSD has been reported in roses. Four Rdr (resistance
to D. rosae) dominant genes (Rdr1, Rdr2, Rdr3, and Rdr4) have been
described for BSD in roses [11, 12]. These are located on chromo-
somes 1 (Rdr1 and Rdr2) [12–15], 6 (Rdr3) [16], and 5 (Rdr4) [14].
Partial or horizontal resistance to BSD, which is controlled
by multiple genes and/or quantitative trait loci (QTL) [17,
18], can be effective and durable over a broad spectrum of
pathogenic races [11, 18]. BSD resistance was reported to have low
narrow-sense heritability (h2) and moderate to high broad-sense
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heritability (H2) [9, 18, 19]. A pedigree-based QTL mapping
approach using 15 interrelated diploid families with Rosa wichu-
rana Crép. background detected a major QTL associated with BSD
on LG3 which explained ∼13% of total phenotypic variance [19].
Additional QTL studies also using populations with R. wichurana
in their parentage have identified QTLs on chromosomes 3 and
5 [20–22].

The pedigree-based analysis (PBA) approach developed for
highly heterozygous crops has key advantages over the use of
bi-parental populations for QTL mapping. For one, PBA utilizes
multiple pedigree-connected families that increase the ability
to detect QTLs and alleles with major and minor effects across
various genetic backgrounds. The analysis also yields SNPs and
haplotypes associated with the QTL and the sources of a given
QTL allele. This information would enable the selection of parents
and seedlings with favorable QTL alleles.

Thus, this study is distinguished from previous work by
exploiting the joint analysis of multi-parental populations
through FlexQTL [23] to detect new and/or previously reported
QTLs for BSD, and by the use of recent tools like polymapR [24] to
construct high-density linkage maps from highly heterozygous
parents. The findings of this research will help rose breeders
by identifying SNP markers for QTL selection and tracking as
well as QTL characterized germplasm with resistance alleles for
subsequent breeding.

This study aims to 1.) construct two consensus maps for three
and five diploid rose populations; 2.) identify QTLs associated with
BSD resistance using two different multi-parental populations;
3.) determine the QTL genotype of parents; and 4.) identify pre-
dictive SNP marker(s) associated with QTL alleles that either
decrease or increase resistance.

Results
Phenotypic data analysis
The TX2WOB multi-parental population (11 populations with nine
parents) was evaluated for BSD incidence in two locations in
Texas, College Station (CS) in 2016 and Somerville (SV) in 2019 and
2021 (Table S3). In evaluations involving the TX2WOB population,
the mean BSD score (0–9 rating scale) in CS 2016 was the lowest
in Sep. (2.45) and the highest in June, Oct., and Nov. (3.60 and
3.50) (Table S3). BSD severity was skewed towards zero in Sep. and
towards higher ratings in both Oct. and Nov. It was more normally
distributed in June (Fig. S3A). BSD severity was low (1.5) in Nov.
in SV 2019 and normally distributed (Fig. S3B). The lowest mean
disease severity in SV 2021 was observed in June (2.0), and the
highest in Nov. (3.1) (Table S3). Similarly, most plants in this year
had low BSD and the data was skewed towards lower BSD ratings
(Fig. S3C).

The TX2WSE multi-parental population (six populations from
crosses of nine parents) was evaluated for BSD incidence in two
locations in Texas, Overton (OV) 2019 and Somerville (SV) in
2018 and 2020 (Table S5). Regarding evaluations of the TX2WSE
population in the SV 2018 and SV 2020 environments, the BSD
incidence means of Nov. (2.4) and July (4.4) were the highest
(Table S5), respectively. BSD data was skewed towards lower BSD
ratings in SV 2018 (Fig. S5A). However, data appeared normally
distributed in SV 2020, except for May (Fig. S5B).

In OV 2019, BSD followed a different pattern as the severity
rates were highest in June (1.9) and lowest in Sep. (1.1) (Table S5).
No dataset was normally distributed, and all were skewed towards
lower BSD ratings (Fig. S5C). Similarly, in this dataset, the BSD
incidence in SV 2018 and OV 2019 was noticeably low.

Genotype by environment interactions
Understanding the genotype × environment interaction (G × E) is
important when studying complex traits. In this analysis, the SV
2019 environment was excluded from datasets from the TX2WOB
population because of insufficient disease pressure due to the lack
of either the initial inoculum and/or the appropriate environmen-
tal conditions to encourage disease development.

BSD resistance had low to moderate broad-sense heri-
tability (H2) (from 0.39 to 0.57) and high G × E variance ratio(
σ 2

g×e/σ
2
g

)
(10.76 to 6.10) (Table S6) in the TX2WOB and TX2WSE

populations, respectively. The high G × E may have resulted from
low BSD levels in SV 2021, SV 2018, and OV 2019. These findings
imply that BSD incidence is highly influenced by the environment,
which is supported by the GGE biplot that showed high PC2 scores
ranging from 9.03 to 15.19% (Fig. S6A and B) and very low negative
(r = −0.13) to moderate positive correlations (r = 0.39–0.55) among
the BSD incidence in the different environments (Table S7).

GGE biplots with data from the TX2WOB population showed
that CS 2016 had a longer environmental vector than SV 2021
(Fig. S6A), implying that CS 2016 had greater discrimination
among genotypes for BSD incidence. This could have resulted
from the difference in the progeny numbers (297 vs. 721) tested
(Table S1), plant age (Fig. S4), rainfall from May through Nov.
(∼549 vs.736 mm), or humidity (Table S4) in these years. However,
in data from the TX2WSE population, OV 2019 showed the
shorter vector (Fig. S6B), which suggests this environment had
less discrimination among genotypes. In contrast, SV 2018 and
SV 2020 equally discriminated genotypes for BSD incidence,
indicated by the similar length of the environmental vectors.
SV 2018 was far from the other environments, suggesting that
this environment discriminates the genotypes differently, which
is also confirmed by the lower correlation coefficient of SV 2018
with other environments (Table S7).

Consensus maps
For the TX2WOB multi-parental population, 415 individuals
from five populations were used to construct linkage maps with
14 706 to 21 055 markers per population. The final integrated
consensus map (TX2WOB ICM) contained 4467 markers with
3247 SNP markers shared between at least two populations
(1896 markers in unique positions) and with a density of 6.9
markers/cM (2.9 in unique positions), distributed over 653.1 cM
(Table S8, Fig. S7, and S8). LG2 had the most markers, whereas
LG7 had the least. LG5 was the longest, and LG3 was the shortest.
The TX2WOB ICM showed very high collinearity with the rose
genome [25] with a Spearman’s correlation coefficient of 0.99
(data not shown).

For the TX2WSE multi-parental population, 314 individuals
from three populations were used to construct linkage maps
with 5239 to 9408 markers each. An integrated consensus map
(TX2WSE ICM) was developed with 2677 markers in which 1378
were common between at least two populations. This TX2WSE
ICM had a length of 758.2 cM with a density of 3.5 markers/cM
(1.5 unique positions/cM). LG2 had the most markers and was
the longest, while LG4 had the least number of markers and
LG6 was the shortest. The maximum gap was 6.8 cM on LG7
(Table S9, Fig. S9, and S10). As collinearity with the rose genome
was an assumption of the “SE” imputation process, collinearity
was not calculated for this map. After further curation, a total of
1115 and 866 informative SNP markers were used for QTL map-
ping with the TX2WOB and TX2WSE multi-parental populations,
respectively.
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Narrow-sense heritability (h2)
Narrow-sense heritability was estimated from FlexQTL outputs
for BSD resistance. The h2 of BSD resistance ranged from low to
moderate among environments in data for the TX2WOB popu-
lation (Table S10). The lowest h2 (0.17) was observed in Nov. of
SV 2019, whereas the largest h2 (0.43) was observed in CS 2016.
Similarly, the h2 of BSD resistance in data from the TX2WSE
population ranged from low to moderate (Table S11). The lowest
h2 (0.17) was observed in May and July in SV 2018 and SV 2020,
while the largest h2 value (0.41) was observed in SV 2018 and June
of OV 2019.

Genome-wide QTL analysis
Using FlexQTL for QTL mapping, a total of 13 QTLs were mapped
on all LGs using the TX2WOB population (721 progenies and nine
parents) and ten environments across two locations and three
years (Table S10, Fig. S11, and S12). Meanwhile, 15 QTLs were
mapped across all LGs except LG7 using the TX2WSE population
(378 progenies and nine parents) and 12 environments over two
locations and three years (Table 2, Fig. S14, S15, and S16).

All mapped QTLs in this study were compared across datasets
(month, year, and location), and those consistently co-localized
were considered the same QTLs.

In the analysis of data from TX2WOB, one major QTL was
discovered consistently on LG3 (qBSD.TX2WOB-LG3.2) over five
environments in 2016 and 2019 with positive, strong, and decisive
evidence and high posterior intensity (Table S10, Fig. S11, and
S12). qBSD.TX2WOB-LG3.2 was localized to an interval between
25.4 and 35.5 cM (peaks 25, 29, 30, 32, and 35 cM), and 18.8 and
23.4 Mbp on the rose genome (Table 1 and Fig. 1). The proportion
of the variance explained (PVE) by this QTL was between 12–
20% except for June (Table 1). In this study, qBSD.TX2WOB-LG3.2
passed our inclusion criteria for further analysis. In contrast,
qBSD.TX2WOB-LG3.1, a QTL located upstream of qBSD.TX2WOB-
LG3.2, was environment-specific and detected only in three envi-
ronments in SV 2021. qBSD.TX2WOB-LG3.2 had peaks at 2, 7, and
10 cM (Table 1, Fig. 1, S11, and S12). The interval of this QTL was
between 1.8 and 12.9 cM (6.4 to 11.17 Mbp), with PVE ranging from
13 to 21%. (Table 1). Furthermore, qBSD.TX2WOB-LG7.1, at the
proximal end of LG7, had an interval of 0.0–5.6 cM (0.22–0.59 Mbp)
and a PVE of 15% (Table 1 and Fig. 1), was common between 2016
and 2021 environments. Two additional QTLs were only mapped
in data from 2016. These QTLs were qBSD.TX2WOB-LG1.1 with an
interval between 19.1–25.7 cM (12.4–22.6 Mbp) and a PVE of 7–9%
and qBSD.TX2WOB-LG2.1 with an interval of 10.0–19.9 cM (7.1–9.5
Mbp) and a PVE of 8–9%. The remaining mapped QTLs were found
only in data from one month.

The QTL genotypes at the peak of qBSD.TX2WOB-LG3.2 had
mean BSD severity rating of 3.2, 2.6, and 1.92 for offspring with
the QQ, Qq, and qq QTL genotypes, respectively (Fig. S13A). The
unfavorable allele (Q), associated with increasing BSD incidence,
was more prevalent in this dataset than the favorable allele (q).

Similarly, in data from TX2WSE, a single major QTL mapped
on LG3 (qBSD.TX2WSE-LG3.1) over nine environments from SV
2018, SV 2020, and OV 2019 (Table 2, Fig. S14, S15, and S16). The
qBSD.TX2WSE-LG3.1 interval spanned 16.31 to 18.39 cM, or 21.51–
27.80 Mbp on the rose genome in data from six environments,
however, the intervals were wider in May 2020, mean 2019, and
Oct. 2018 (Table 2 and Fig. 2). Peaks of this QTL co-localized at
18 cM across seven environments, while analysis of data from two
environments yielded peaks at either 10 or 16 cM. Therefore, in
this dataset, qBSD.TX2WSE-LG3.1 was considered for downstream

analysis as it was stable and consistently mapped over multiple
environments with strong evidence and intensity and a PVE
between 15–33% in most cases (Table 2). Three additional QTLs
on LG3 were discovered downstream of qBSD.TX2WSE-LG3.1.

Moreover, three QTLs were identified in TX2WSE across two
environments (years). One QTL on LG4 (qBSD.TX2WSE-LG4.1)
clustered at 22.14 to 27.27 cM (11.80–20.23 Mbp) with PVE from
7–13%. The other two QTLs were on LG5. qBSD.TX2WSE-LG5.1
was detected between 60.51 and 66.26 cM (20.93–24.82 Mbp)
with a PVE up to 9% in two different years and locations. The
other QTL on LG5, qBSD.TX2WSE-LG5.2, was detected twice in
2018 and once in 2020 with wide intervals (74.36–88.70 cM, 35.12–
63.28 Mbp) and peaks at 78 and 81 cM with PVE from 9–12%. Two
additional QTLs (qBSD.TX2WSE-LG1.2 and qBSD.TX2WSE-LG4.2)
were environment-specific and only detected in one year, whereas
the rest of the mapped QTLs appeared only in one month (Table 2
and Fig. 2).

The QTL genotypes at the peak of qBSD.TX2WSE-LG3.1 had BSD
incidence of 2.93, 1.43, and 0.46 for offspring with the QQ, Qq, and
qq QTL genotypes, respectively (Fig. S13B). Generally, the favorable
allele (q), associated with lower BSD incidence, was less frequent
than the unfavorable allele (Q) in the germplasm.

Haplotype, predictive markers, and their sources
for important QTLs on LG3
Haplotype analysis was conducted on qBSD.TX2WOB-LG3.2 and
qBSD.TX2WSE-LG3.1. Regarding the TX2WOB population, nine
SNP markers between 25.4 and 35.5 cM spanning ∼10 cM (∼4.6
Mbp) in the qBSD.TX2WOB-LG3.2 were selected for haplotype
analysis using PediHaplotyper (Fig. 3A). Four distinct SNP haplo-
types were identified, of which A1, A2, and A4 were associated
with increasing BSD incidence and assigned to the Q-allele. A3,
the haplotype linked to decreasing the disease incidence, was des-
ignated as the q-allele (Fig. 3A). A2 was the most prevalent hap-
lotype (Fig. 4A). The non-parametric multiple comparison Steel-
Dwass test was used to assess the haplotype/diplotype effect
differences. A4 had a greater effect than A2 when comparing
the A2A4 to A2A2 diplotypes (Fig. 4A), A1 and A2 had a similar
effect based on a comparison of the A2A2 and A1A2 diplotypes.
A2 had a greater effect on BSD incidence than A3 by comparing
A2A4 to A3A4. Therefore, the haplotype effect size order was
A4 > A2 = A1 > A3 corresponding to QTL alleles by Q1, Q2, Q2, and
q, respectively. So, this analysis suggests the presence of multiple
QTL alleles with different effects. Generally, lower and higher BSD
incidence was observed in individuals with the A3A4 (∼25% of
leaves infected) and A2A4 (∼40% of leaves infected) diplotypes,
respectively.

A3 (q-allele) was differentiated from the other haplotypes
(Q-alleles) by a pair of adjacent SNP markers, AG-alleles for
chr03_18884374 and chr03_21408083 at 25.4 and 28.8 cM (Fig. 3A).
Some cultivars and breeding lines in this germplasm shared
haplotypes that traced back to various sources. For instance,
Q2 (A2) of five parents was identical-by-state but not identical
by descent based on pedigree information since A2 originated
from “OB”, PP-M4–2, “Violette”, or “LC”. Likewise, q (A3) came
from three different sources (PP-J14–3, “Ducher”, or “R-Wich”).
On the other hand, Q1 (A4) of M4–4 and J4–6 originated from a
recombination event between their founder haplotypes (“R-Wich”
and “OB”), whereas “OB” was the only source for A1 (Q2).

Regarding the TX2WSE population, six SNP markers between
16.31 and 18.39 cM spanning ∼2 cM (∼6.3 Mbp) were selected
in the qBSD.TX2WSE-LG3.1 interval for haplotype analysis. Five
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Table 1. QTL name, linkage group (LG), interval, mode peak (Mode), posterior intensity (QTL intensity), phenotypic variance explained
(PVE), and Bayes factor (BF) for black spot disease (BSD) evaluated in Texas on 11 rose diploid populations (TX2WOB) across multiple
months and overall mean in 2016 in College Station (CS) and on a ten-population subset in 2019 and 2021 in Somerville (SV)

QTL name Month Year LG Mode Interval QTL PVE BFa

(cM) (cM) (Mbp) intensity (%)

qBSD.TX2WOB-LG1.1 Oct. 2016 1 24 20.0 14.10 0.32 7 2.7
25.7 22.65

Mean 2016 1 21 19.1 12.46 0.58 9 3.4
21.7 16.28

qBSD.TX2WOB-LG1.2 Nov. 2016 1 50 49.9 46.64 0.72 11 7.6
50.8 47.18

qBSD.TX2WOB-LG2.1 Oct. 2016 2 14 10.0 7.14 0.40 9 2.2
19.9 9.51

Mean 2016 2 14 13.2 9.02 0.84 8 7.0
19.9 9.51

qBSD.TX2WOB-LG2.2 Sep. 2016 2 72 69.1 63.67 0.94 20 6.2
72.4 67.41

qBSD.TX2WOB-LG3.1 May 2021 3 2 1.8 6.45 0.88 13 6.0
9.4 9.81

Nov. 2021 3 10 6.4 9.46 0.76 17 4.3
12.9 11.17

Mean 2021 3 7 1.8 6.45 0.87 21 5.3
12.9 11.17

qBSD.TX2WOB-LG3.2 June 2016 3 35 31.7 22.10 0.67 5 3.2
35.5 23.49

Oct. 2016 3 32 25.4 18.88 1.00 15 12.4
35.5 23.49

Nov. 2016 3 25 25.4 18.88 1.07 12 13.5
28.8 21.40

Mean 2016 3 30 28.8 21.40 1.05 12 29.1
35.5 23.49

Nov. 2019 3 29 25.4 18.88 1.18 20 10.5
35.5 23.49

qBSD.TX2WOB-LG4 Oct. 2016 4 75 75.7 56.59 0.58 15 4.2
81.2 58.20

qBSD.TX2WOB-LG5 Nov. 2016 5 11 10.1 4.55 0.89 5 4.6
13.9 6.02

qBSD.TX2WOB-LG6 May 2021 6 22 18.0 13.14 0.88 8 4.8
23.9 22.01

qBSD.TX2WOB-LG7.1 Sep. 2016 7 1 0.0 0.20 0.95 15 7.5
4.5 0.44

June 2021 7 1 0.0 0.20 0.73 15 5.6
5.6 0.59

qBSD.TX2WOB-LG7.2 June 2016 7 45 42.5 21.61 0.72 15 4.1
45.9 22.65

qBSD.TX2WOB-LG7.3 June 2016 7 72 70.2 52.09 0.53 20 3.8
73.2 53.96

qBSD.TX2WOB-LG7.4 Mean 2016 7 79 78.3 60.19 0.29 8 2.1
81.1 63.25

aBayes Factor (2lnBF), a measure quantifies the support from the data for the number of QTL(s) in the model (QTL evidence), after pair-wise model comparison
(e.g. 1/0, 2/1, and 3/2) such as “one-QTL model” vs. ‘zero-QTL model, etc. BF ≥ 2, 5, 10 indicating positive, strong, or decisive evidence for the presence of a QTL,
respectively.

distinct SNP haplotypes were identified (Fig. 3B). B1, B2, B3, and B5
were associated with increased BSD incidence and were assigned
to the Q-allele, and B4 was associated with decreased disease
incidence and was designated the q-allele (Fig. 3B).

The comparison of haplotype/diplotype effects showed that B1
had an equal effect as B5 and B3 when comparing the B5B3 to B1B3

diplotypes and the B3B4 to B1B4 diplotypes, respectively (Fig. 4B).
B3 had a greater effect than B2 and B4 by comparing B1B3 to B1B2
and B1B3 to B1B4, respectively. Lastly, B2 significantly increased
BSD incidence relative to B4. Hence, the haplotype effects order
was B5 = B1 = B3 > B2 > B4, which corresponded to the Q1, Q1, Q1,
Q2, and q QTL alleles, respectively.
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Table 2. QTL name, linkage group (LG), interval, mode peak (Mode), posterior intensity (QTL intensity), phenotypic variance explained
(PVE), and Bayes factor (BF) for black spot disease (BSD) evaluated in Texas on six diploid rose populations (TX2WSE) across multiple
months and overall mean in 2018 and 2020 Somerville (SV) and 2019 in Overton (OV)

QTL name Month Year LG Mode Interval QTL PVE BFa

(cM) (cM) (%)

qBSD.TX2WSE-LG1.1 June 2020 1 30 28.73 22.65 1.10 11 6.3
32.63 26.03

qBSD.TX2WSE-LG1.2 June 2020 1 54 52.16 46.54 0.50 8 2.0
55.52 48.46

Mean 2020 1 54 48.36 43.80 0.85 6 2.1
54.51 49.27

qBSD.TX2WSE-LG2.1 Sep. 2018 2 100 97.39 67.73 0.72 7 4.7
102.35 69.76

qBSD.TX2WSE-LG2.2 Mean 2018 2 114 113.12 70.87 0.81 8 3.3
118.89 73.56

qBSD.TX2WSE-LG2.3 Oct. 2018 2 137 129.77 74.57 1.10 7 6.0
138.68 74.95

qBSD.TX2WSE-LG3.1 May 2020 3 10 0.00 15.44 1.00 9 5.3
18.39 27.80

Mean 2019 3 16 12.11 16.81 1.11 33 27.8
18.39 27.80

June 2020 3 18 16.31 21.51 0.40 8 3.3
18.39 27.80

Sep. 2019 3 18 16.31 21.51 1.03 19 6.6
18.39 27.80

May 2018 3 18 17.21 22.90 1.19 24 24.9
18.39 27.80

Mean 2018 3 18 16.31 21.51 0.72 15 27.9
18.39 27.80

Mean 2020 3 18 16.31 21.51 1.12 21 27.7
18.39 27.80

June 2019 3 18 17.21 22.90 1.09 26 27.8
18.39 27.80

Oct. 2018 3 18 5.61 11.11 0.86 6 3.8
18.39 27.80

qBSD.TX2WSE-LG3.2 Sep. 2018 3 29 25.38 30.15 0.65 19 4.5
29.88 29.08

qBSD.TX2WSE-LG3.3 July 2020 3 34 33.53 33.83 1.20 8 27.2
38.71 34.04

qBSD.TX2WSE-LG3.4 May 2018 3 50 46.19 36.72 0.55 7 24.9
50.49 37.81

qBSD.TX2WSE-LG4.1 Nov. 2018 4 25 22.14 11.80 0.91 13 25.7
27.27 20.23

June 2019 4 26 24.47 12.90 0.44 9 9.3
27.27 20.23

Mean 2018 4 24 22.14 11.80 0.66 7 26.1
27.27 20.23

qBSD.TX2WSE-LG4.2 Oct. 2018 4 32 32.55 25.00 0.44 6 2.3
35.07 36.64

Sep. 2018 4 39 32.55 25.00 0.51 8 8.1
42.29 40.32

qBSD.TX2WSE-LG5.1 June 2019 5 62 60.51 20.93 0.89 9 8.6
62.93 24.55

July 2020 5 66 61.01 20.44 1.14 6 8.6
66.26 24.82

qBSD.TX2WSE-LG5.2 Nov. 2018 5 78 74.36 35.12 0.80 11 26.2
83.82 55.02

May 2020 5 81 78.11 44.17 1.03 9 8.1
83.82 55.02

Mean 2018 5 78 77.68 43.64 0.88 12 27.4
88.70 63.28

qBSD.TX2WSE-LG5.3 Oct. 2018 5 91 90.03 63.80 1.00 26 27.3
93.50 63.80

qBSD.TX2WSE-LG6 May 2020 6 38 35.24 28.56 1.13 15 27.1
39.98 39.63

aBayes Factor (2lnBF), a measure quantifies the support from the data for the number of QTL(s) in the model (QTL evidence), after pair-wise model comparison
(e.g. 1/0, 2/1, and 3/2) such as “one-QTL model” vs. ‘zero-QTL model, etc. BF ≥ 2, 5, 10 indicating positive, strong, or decisive evidence for the presence of a QTL,
respectively.



6 | Horticulture Research, 2022, 9: uhac183

Figure 1. Positions of putative QTLs controlling the black spot disease (BSD) severity across 11 diploid rose populations at linkage groups (LG) of the
five-population (TX2WOB) consensus map. QTL names are listed below each LG. The plot was generated using MapChart 2.32.

Similar to the analysis of TX2WOB, three functional QTL alleles
with different effects were present in this dataset. Overall, B1B4
(∼10%) and B5B3 (∼35%) conferred more resistance and suscep-
tibility to BSD, respectively (Fig. 4B). In addition, the B4 (q-allele)
could be differentiated from other haplotypes by a pair of adjacent
SNP markers (CA-alleles) at 16.88 cM (18.0 Mb) and 17.21 cM
(22.9 Mb) (Fig. 3B).

The pedigree map showed that Q2 (B2) was inherited from R-
Wich through J14–3, SE, and SEB-ARE (Fig. 3B). The source of Q1-
allele (B1) came from either “OB” or PPM4–4, while B3 came from

R36, SEB-ARE, and “Violette”. B5 was derived from HIA. B4 was
traced back to various sources, PP-J14–3, SE, and SET-ARE.

Discussion
Narrow sense heritability and G × E interaction

The genetic control of BSD resistance in this germplasm was
quantitative and subject to G × E interactions, as has been
reported in other studies [9, 18, 19].
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Figure 2. Positions of putative QTLs controlling the black spot disease (BSD) severity across six diploid rose populations at linkage groups (LG) of the
three-population (TX2WSE) consensus map. QTL names are listed below each LG. The plot was generated using MapChart 2.32.

BSD resistance showed low to moderate narrow-sense heri-
tability (h2) (Table S10 and S11), as previously reported [9, 18].
The very high G × E interaction observed using both datasets was
primarily due to the low incidence of BSD in some environments.
For instance, GGE biplot illustrates that SV 2021 and CS 2016
discriminated the genotypes differently in the TX2WOB popula-
tion. Generally, the disease pressure was lower in SV 2019 and SV
2021 than in CS 2016, most probably due to the lower humidity
and rainfall during the growing season (460 and 549 mm versus
792 mm) (Table S4) but also due to plant age (Fig. S4) as the
inoculum level for BSD increases with the age of the field plot

[1]. The same pattern was observed in the TX2WSE population,
the high G × E may have resulted from the genotypes responding
differently in SV 2018 than in SV 2020 and OV 2019. The SV 2018
showed consistent and high rainfalls and humidity during the
evaluation period, and plants were under one year old.

Thus, the high G × E presence in datasets from TX2WOB and
TX2WSE populations was anticipated as BSD is a complex trait
and greatly influenced by the environment [18, 19, 21]. This
illustrates the need to evaluate BSD resistance across different
environments, including multiple locations and years, rather
than in a single environment. Also, our study highlights the need

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
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Figure 3. QTL genotypes for black spot on qBSD.TX2WOB-LG3.2 for eight diploid rose breeding parents (A) and on qBSD.TX2WSE-LG3.1 for nine diploid
rose breeding parents (B), with haplotype names, haplotype’s SNP sequences, and origin sources. Alleles for predictive SNP markers associated with Q-
or q-alleles for increasing or decreasing a given trait, respectively, are shaded.

Figure 4. Diplotype effect of the most common haplotypes associated with black spot disease QTL qBSD.TX2WOB-LG3.2 (A) and qBSD.TX2WSE-LG3.1
(B) in 11 and six diploid rose populations, respectively. Means not connected by the same letter are significantly different (P < 0.05) within each
population using the nonparametric multiple comparison Steel-Dwass test N = Diplotype sample size

to account for plant age in field-grown roses. Despite having
sensitivity to G × E interactions, quantitative resistance is of
interest since it is effective across all pathogenic races and can be
more durable than qualitative resistance [11, 18].

QTL detection
By using PBA under a Bayesian framework, new QTLs and
QTLs previously reported for BSD resistance were identified in
germplasm from the TAMU rose breeding program. The data
analyzed came from two different multi-parental population
datasets, planted in three locations and evaluated over 5 years.
QTLs were mapped and distributed over all LGs in both
populations, except LG7 in the TX2WSE population, indicating
the polygenic nature of the resistance to this disease, consistent
with previous reports [18–21].

qBSD.TX2WOB-LG3.2 (25.4–35.5 cM, 18.8 to 23.4 Mbp) consis-
tently mapped in the same genomic region across five data sets
(four in CS 2016 and one in SV 2019) from the TX2WOB population
(Table 1 and Fig. 1). This QTL exhibited a PVE of up to 20% and was
stable based on the visual inspection of the trace plot. Similarly, in
analyses of the TX2WSE population, qBSD.TX2WSE-LG3.1 (16.31–
18.39 cM, 21.5 to 27.8 Mbp) was also stable and detected across
nine environments (three months in each SV 2018, OV 2019, and
SV 2020) with PVE of up to 33%. (Table 2 and Fig. 2). This QTL was
co-localized with qBSD.TX2WOB-LG3.2, however, qBSD.TX2WSE-
LG3.1 had a wider confidence interval. This may have resulted
from the differences in marker density between the two consen-
sus maps used. The TX2WSE ICM had a lower number of markers
and less density in LG3 than the TX2WOB ICM (345 vs. 518 markers
and 3.7 vs. 6.5 marker/cM) (Table S8 and S9). Furthermore, a region

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
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on LG3 with high segregation distortion was noted in this map,
which likely corresponds to known self-incompatibility related
genes [25]. This result is consistent with earlier findings of the first
rose consensus map [15].

These QTLs overlapped with the QTL Meta_1_3 (21.6–24.5 Mbp)
[21] and the other QTL on LG3 [22] using diploid rose populations
derived from the R-Wich genetic background and multi-year tri-
als. Also, the locations of qBSD.TX2WOB-LG3.2 and qBSD.TX2WSE-
LG3.1 coincide with a partial resistance QTL on LG3 reported by
Yan, et al. [19]. This result was expected as this research was
conducted on similar genetic materials.

In this work, nine minor QTLs were associated with BSD of
which seven of them were novel. The intervals for these QTLs
overlapped across data from two environments (years/locations)
in this study and/or other earlier studies. Two minor QTLs
were identified at different regions on LG1 in analyses of the
TX2WOB and TX2WSE populations with PVE up to 11%. The
first QTL, qBSD.TX2WOB-LG1.1, spanned 12.4 to 22.6 Mbp, was
detected in CS 2016 and overlapped with qBSD.TX2WSE-LG1.1
(22.6–26.03 Mbp) in SV 2020. However, qBSD.TX2WOB-LG1.1 was
localized closer to an Rdr1 homolog in that region [13, 26] than
qBSD.TX2WSE-LG1.1. The second LG1 QTL was discovered in
CS 2016 (qBSD.TX2WOB-LG1.2) and SV 2020 (qBSD.TX2WSE-
LG1.2), spanned 43.80–49.27 Mbp, and was also close to another
region with Rdr1 homologs. Rdr1 belongs to a large TIR-NBS-LRR
(Toll/interleukin-1 receptor-nucleotide binding site-leucine rich
repeat) (TNL) gene family that confers resistance to black spot.
Rdr1 homologs have been found in three to four locations in LG 1
with two major clusters at the distal end of LG1 [26].

Two minor QTLs on LG3 were found in different regions in
both populations. The first QTL, qBSD.TX2WOB-LG3.1 was at the
proximal end of LG3, spanned 6.45–11.17 Mbp, and was only seen
in SV 2021. While the second LG3 QTL was between 33.83 to
37.81 Mbp was found in SV 2020 (qBSD.TX2WSE-LG3.3) and SV
2018 (qBSD.TX2WSE-LG3.4) with PVE ranging from 7 to 8%. This
finding agreed with Lopez Arias, et al. [21], who found a QTL
(Meta_3_2) for BSD at LG3 between 34.22 to 37.77 Mbp. Moreover,
five QTLs clustered in LG5 at two different regions were population
specific as they were only mapped in TX2WSE. The first LG5 QTL,
qBSD.TX2WSE-LG5.1, was found in OV 2019 and SV 2020 between
20.93 to 24.82 Mbp and PVE up to 9%. This region was associ-
ated with the QTL (Meta_2_5) reported by Lopez Arias, et al. [21]
between 18.82 to 24.88 Mbp. The second LG5 QTL, qBSD.TX2WSE-
LG5.2, was detected in SV 2018 and SV 2020 from 35.12 to 63.28
Mbp with PVE up to 12% and overlapped with the chromosomal
position associated with the Rdr4 gene for black spot resistance
(34.11–43.40 Mbp) [14]. Similarly, two minor QTLs were discovered
on LG4 between 11.80 to 20.23 Mbp and 25.00 to 40.32 Mbp in
TX2WSE. Lastly, the QTL at the proximal end of LG7 (0.20 to 0.59
Mbp) was only observed in the TX2WOB population (CS 2016 and
SV 2021) and had a PVE of 15%.

In summary, the variability in some QTL results between
the two datasets was expected due to the different consensus
maps as well as the high G × E, particularly in the TX2WOB
population (σ 2

g×e/σ
2
g = 10.76). The PBA approach discovered

several new QTLs and confirmed other previously reported QTLs
[19–22]. This study confirmed that the chromosomal region on
LG3 (qBSD.TX2WOB-LG3.2 and qBSD.TX2WSE-LG3.1) has the
largest effect on resistance to BSD compared to minor effects
of other QTLs. This region of LG3 QTL was consistently detected
over diverse populations, sample sizes, environments, linkage
maps, and QTL mapping approaches. Still, more studies are
necessary to validate the new and distinct QTLs identified for BSD

using broader and different germplasm with multi-environment
trials.

Haplotype characterization of significant QTLs on
LG3
The examination of haplotype/diplotype effects for qBSD.TX2WOB-
LG3.2 spanning ∼4.6 Mbp revealed four distinct haplotypes and
three alleles (Q1 (A4), Q2 (A1, A2), and q (A3). Only A3 was linked to
decreasing BSD in TX2WOB (Fig. 3A). This haplotype was derived
from PP-J14–3, “Ducher,” or “R-Wich”. A3 is distinguished from
other haplotypes (Q-alleles) by two pairs of adjacent SNP markers
(AG-alleles) at 25.4 and 28.8 cM (18.88 and 21.40 Mbp). A3A4 (qQ2)
was present in about half of the progenies (216) (Fig. 4A). Also,
a series of QTL alleles of different effects were discovered and
coined Q1 (A4) and Q2 (A1 and A2) at this locus.

In the genomic region of qBSD.TX2WSE-LG3.1, five haplotypes
and three alleles [Q1 (B1, B3, and B5), Q2 (B2), and q (B4)] were
detected. Only B4 was associated with decreasing BSD (q-allele)
incidence (Fig. 3B). This haplotype originated from PP-J14–3, SE,
and SET-ARE. This haplotype was differentiated from B1, B2, B3,
and B5 (Q-alleles) by two pairs of adjacent SNP markers (CA-alleles)
at 16.88 and 17.21 cM (18.0 and 22.9 Mbp). Also, multiple effects
associated with increased disease incidence (Q-allele) were found
and designated the Q1 (B1, B3, and B5) and Q2 (B2) QTL genotypes.

This multiallelism found in this study was also described in
acidity QTLs in apple and blush, ripening date, and fruit devel-
opment period in peach (Prunus persica) [27–29]. Due to missing
genotyping information within the QTL interval, PediHaplotyper
failed to identify the haplotype sequence of some individuals in
TX2WOB, e.g. one parent of J4–6 and both parents of “RF”.

Overall, the q-alleles for both LG3 QTLs in TX2WOB and
TX2WSE had one common source, PP-J14–3. Moreover, the
physical positions of the two SNP markers associated with Q/q
alleles of both LG3 loci coincided. This finding suggests that
qBSD.TX2WOB-LG3.2 and qBSD.TX2WSE-LG3.1 represent the
same QTL. Therefore, consistent expression of this QTL across
five evaluated years in three locations using different population
sets and sample size suggests that this QTL should be used in the
genetic enhancement of rose resistance to D. rosae.

Ultimately, this research should facilitate the development of
a high-throughput predictive DNA test targeting this LG3 QTL
region conferring resistance for routine use in the marker-assisted
breeding pipeline in rose breeding programs.

Candidate genes
Hundreds of potential R-genes for disease resistance distributed
throughout the Rosa chinensis reference genome25 were identified
by Lopez Arias, et al. [21]. However, the largest number of NB-
encoding genes were clustered on the distal ends of chromosomes
1, 5, and 7. Interestingly, the regions where the LG3 QTL and
other QTLs were found in this study harbored several candidate
R-genes and defense response genes. The interval of LG3 QTL
comprised two NBS-LRR genes, the largest group of plant R-
genes, and several other NBS-encoding genes. The interval also
overlapped with the defense response gene RC3G0142400, which
encodes an EMSY-LIKE 1 protein that had a role in Arabidop-
sis (Arabidopsis thaliana) downy mildew resistance [30]. Also, the
LG3 QTL interval contains two genes encoding P450 cytochrome,
such as CYP736B and CYP72A, which are involved in the defense
response against Xylella fastidiosa in grapevine (Vitis) and Fusarium
graminearum in wheat (Triticum), respectively [31, 32]. Likewise,
many NBS-encoding genes were in the interval of minor LG3 QTL
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(33.83–37.81 Mbp) and co-localized with a transcription factor
(RC3G0261500) which had a crucial role in plant immunity [33,
34]. This region also contains the pathogenesis-related thaumatin
gene (RC3G0264400) identified for its antifungal activity against
filamentous fungi [35, 36].

The region of LG5 QTL (qBSD.TX2WSE-LG5.2) encompasses a
cluster of ten genes coding for cytochrome P450 and a glucan
synthase-like gene (RC5G0249400) that is believed to be engaged
in callose formation to respond to fungal attack [37, 38]. Lastly,
the QTL on LG1 spanning 43.80 to 49.27 Mbp contains a cluster of
NBS-LRR genes and is close to BSD resistance gene Rdr122.

Future work
Additional QTL mapping studies using multi-parental population
sets of different germplasm backgrounds with larger family sizes
could improve the representation of the three QTL genotype
classes and all their diplotype combinations to better character-
ize these mapped QTLs. Although efforts were made to identify
potential candidate genes, with the resources that were avail-
able, more studies focusing on the genetic basis of resistance
are needed, including more precise localization and fine-mapping
of QTLs, identifying and testing more sensible candidate genes,
and validating newly detected QTLs. These activities will broaden
our understanding of the genetic basis of quantitative resistance
of BSD.

Conclusion
In this study, the pedigree-based QTL mapping software, FlexQTL,
identified QTLs (novel and previously reported) distributed over
all LGs associated with BSD resistance using two multi-parental
populations of diploid rose evaluated over three locations and
five years. A total of 13 and 15 QTLs were identified in TX2WOB
and TX2WSE populations, respectively. The major QTL on LG3 of
both populations was stable and clustered at either 18.8 to 23.4
or 21.5 to 27.8 Mbp, and explained 20 and 33% of the phenotypic
variation. These were considered as the same QTL. Furthermore,
minor effect QTLs were mapped including two QTLs on LG1 and
LG3 (TX2WOB and TX2WSE), two QTLs on LG4 and LG5 (TX2WSE),
and one QTL on LG7 (TX2WOB).

The haplotype analysis revealed multiple functional LG3
QTL alleles associated with BSD resistance in the TX2WOB
and TX2WSE populations. Unique SNP markers associated with
resistance to this fungal disease were identified, and PP-J14–3
was one common source across populations. All mapped QTLs
encompassed several putative candidate R-genes and defense
response genes. The next step of this work is to convert the SNP
haplotypes of resistant alleles into DNA tests (e.g. Kompetitive
allele-specific PCR (KASP)) to track and select these factors
in a plant breeding context. Use of this knowledge and tools
should lead to more effective use of these factors in durable BSD
resistance breeding.

Methods
Plant materials
BSD field evaluations were conducted on two multi-parental
diploid rose populations (TX2WOB and TX2WSE). The 11 F1

populations of TX2WOB were generated using a partial diallel
design by crossing nine parental lines including well-adapted
and black spot resistant breeding lines derived from R. wichurana
“Basye’s Thornless” (R-Wich), the moderately BSD resistant “Old

Blush” (OB), and BSD susceptible cultivars (Fig. S1) [18, 19]. The
TX2WOB multi-parental population was evaluated in 2016 and a
subset of ten populations of the original were phenotyped in 2019
and 2021 (Table S1).

In 2012, one plant of each member of the TX2WOB popula-
tion was planted at 1 × 3.5 m spacing in the field at the Hor-
ticulture Farm at Texas A&M University in College Station, TX,
USA (30.63, −96.37). In 2018, plants of a subset of ten subpop-
ulations of the original TX2WOB population was planted in a
randomized complete block design with two replications, where
individual plants were the experimental unit. These plants were
planted at 1.2 × 1.8 m spacing at the Texas A&M University Hor-
ticulture Teaching Research and Extension Center (HortTREC) in
Somerville, TX (30.524591, −96.422479). Plants were pruned in the
winter (February/March).

The TX2WSE multi-parental population is composed of six
F1 rose populations from crosses involving nine parents. This
population is based on germplasm primarily derived from R-
Wich and “Srdce Europy” (SE) (Fig. S2), and has been used to map
QTL rose rosette disease resistance [39]. However, the version of
TX2WSE multi-parent population used in the present study has
fewer subpopulations (six vs. eight) but a larger sample size (378
vs. 248 progenies). The TX2WSE population was evaluated for BSD
in 2018, 2019, and 2020 (Table S2). Plants of this population were
planted at HortTREC in the spring of 2018 in a completely ran-
domized design with two replications, with individual plants as
the experimental units. Plants were planted at 1.2 × 1.2 m spacing.
A subset of the subpopulations was also planted in the spring of
2018 with two replications at the Texas A&M AgriLife Research &
Extension Center at Overton, TX (32.295920, −94.976125). Plants
in the field were arranged by families. The plants were pruned
annually in the winter beginning the 2nd year in the field. For
weed control, a black fabric weed barrier was used. Plants were
regularly irrigated, and no fungicides were applied during the
evaluation period.

Field disease assessment
Briefly, 721 genotypes of the TX2WOB population were evaluated
for BSD incidence in College Station (CS), Texas, during June, Sep.,
Oct., and Nov., 2016 (5th field season). In addition, 218 and 297
progenies were evaluated in Somerville (SV), TX, from June to
Nov. in 2019 (2nd field season) and May through Nov. in 2021
(3rd field season), respectively (Table S1). Regarding the TX2WSE
population, 378 progenies were evaluated for BSD incidence from
Apr. through Nov., 2018 (2nd field season) and May to Aug., 2020
(3nd field season) in SV, TX. Also, 216 progenies were assessed in
June and Sep., 2019 (2nd field season) in Overton, TX (Table S2).

Black spot incidence was evaluated by using a percentage-
based rating scale of 0 to 9 (0 = no disease symptoms, 1 = 10%
of the leaves of the plant canopy showed lesions, 2 = 20%,
3 = 30%, 4 = 40%, 5 = 50%, 6 = 60% of leaves infected, 7 = most
foliage infected, 8 = all foliage infected with some defoliation,
9 = all foliage infected, heavy defoliation). Lastly, in all data sets,
excluding 2016, least-squares means were estimated using the R
package emmeans v. 1.7.5. In turn, corrected means were used in
subsequent analyses.

Heritability and genotype by environment
interaction
The Shapiro–Wilk test was to test for normality. This analysis
showed that the data were non-normally distributed (W ranged
from 0.730 to 0.993, P < 0.003). Data transformations did not

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
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improve normality. Thus, untransformed data was used for
variance component analysis. Genetic variance components and
heritability were estimated from a linear mixed model using a
Restricted Estimated Maximum Likelihood (REML) method in JMP
Pro version 13.2 (SAS Institute Inc., Cary, NC. 2016), assuming
all effects are random to obtain a more robust analysis for this
unbalanced design [40]. The model was:

y = μ + σ 2
FP + σ 2

MP + σ 2
Progeny(FP:MP) + σ 2

Env + σ 2
FP x Env + σ 2

MP x Env

+ σ 2
Progeny x Env + σ 2

error

where μ is the BSD incidence mean; σ 2
FP and σ 2

MP are the
variances for the female (FP) and male (MP) parent, respectively;
σ 2

Progeny(FP,MP) is the variance for progenies of a given cross; σ 2
Env

is the variance due to the environment (month/year/location
combination); σ 2

FP × Env, σ 2
MP × Env, and σ 2

Progeny × Env are vari-
ances due to the interaction of female and male parents and
progenies with the year of assessment; and σ 2

error is the error
variance.

The sum of parental variances (σ 2
FP and σ 2

MP) was consid-
ered as additive variance (σ 2

A), progeny variance was treated as
non-additive variance (σ 2

d ), and the sum of the parental and
progeny variances was regarded as the genotypic variance (σ 2

g ).
The interaction of genotype [σ 2

FP, σ 2
MP, and σ 2

Progeny(FP,MP)] by
environment (month/year/location) was treated as the genetic-
environmental variance (σ 2

g×e). The residual variance was con-
founded with progeny × environment variance.

Broad sense heritability across the environments was calcu-
lated as:

H2 = σ 2
g

σ 2
g + σ2

g×e
E

where E indicates the number of environments

[41–44].
The ratio of the genotype by environment variance to the genetic
variance was quantified as:

σ 2
g×e/

(
σ 2

g

)
.

A genotype plus genotype-by-environment (GGE) biplot was
used to display the genotype by environment interaction (G × E)
results using the package “GGEbiplots” (version 0.1.3) of R (version
4.1.2; R Foundation for Statistical Computing, Vienna, Austria).
Pearson correlations coefficients were calculated among years.

SNP genotyping and consensus map
construction
Genomic DNA was extracted from young leaves following Doyle’s
CTAB protocol [45]. Genotyping by sequencing (GBS) was per-
formed using the restriction enzyme NgoMIV. Single-end sequenc-
ing was achieved on an Illumina HiSeq 2500 platform. After
trimming the barcodes using a custom python script, the trimmed
reads were aligned to the R. chinensis v1.0 genome [25] using
the CLC Genomics Workbench v9.0 (Qiagen, Boston, MA). After
alignment, SNPs were called following the procedures described
by Yan, et al. [46].

For the TX2WOB population, 415 individuals from five
diploid rose populations were used to construct a consensus
map (Table S8). Before map construction, markers mapped to
chromosome 0, non-biallelic markers, and markers missing >10%
were removed using Tassel version 5. A custom script was used
to convert marker calls into allele dosage (nulliplex, simplex, or
duplex). Then, the R package polymapR v1.1.1 was employed to
develop individual population maps. PolymapR was set to perform

further filtration to remove duplicated and distorted (P ≥ 0.001)
markers.

The consensus map for the TX2WOB population was devel-
oped using the R package “LPmerge” version 1.7. Further filtering
or thinning steps were performed to decrease the number of
markers to reduce the computation time. For instance, only one
or two markers at the same genetic position were kept with
the priority to keep common markers with less missing data.
The lowest root mean square error (RMSE) and the map length,
gap, and overall quality were used to determine the best maps.
The R package “LinkageMapView” version 2.1.2 and MapChart
software version 2.32 were used to visualize the consensus map.
SNP markers underwent additional curation in FlexQTL software
version 0.1.0.42 to fix or eliminate problematic markers with
double recombination or other inheritance conflict issues. Further
curation was performed when the other six families were added
to the FlexQTL dataset.

For the TX2WSE population, SNPs were called using the CLC
Genomics Workbench v11.0.1 and grouped into bins based on
their proximity to NgoMIV cut sites in the reference genome. After
genotyping, it was determined that the genotype of one parent,
“SE”, did not explain progeny genotypes well; thus, the parental
genotype was imputed via custom scripts. Population maps for
three populations (Table S9) were developed in the R package
polymapR v1.1.1. The consensus map for the TX2WSE population
was developed with the R package LPmerge and further curation
was performed before the QTL analysis as previously described
[39].

QTL mapping and characterization
The pedigree-based QTL analysis was conducted with FlexQTL for
each month and the overall mean (over months). The dataset for
the TX2WOB population includes phenotypic data collected from
three environments (CS 2016, SV 2019, and SV 2021) and 1115
SNP markers. The dataset for the TX2WSE population consists of
phenotypic data from three environments (SV 2018, SV 2020, and
OV 2019) and 866 SNP markers.

FlexQTL employs a Bayesian approach to infer the number
of QTLs by comparing models using posterior estimates through
Markov Chain Monte Carlo (MCMC) simulations. First, BSD was
analyzed with a mixed model (additive and dominant effects). As
a dominant effect was not observed, the analysis was rerun with
an additive model at least two times with different parameter
settings to ensure reproducibility [27]. MCMC simulations length
ranged from 100 000 to 800 000 iterations to store a minimum
of 1000 samples with a thinning of 100. The effective sample
size (ESS) in the FlexQTL parameter file was set to 101 to ensure
sufficient convergence [23]. Other FlexQTL outputs were used to
check the QTL stability and the position through posterior and
trace plots and the mode of a QTL. Downstream analysis was done
in FlexQTL to re-define the QTL region and recalculate additive
variances associated with the detected QTL. QTL intervals were
identified as a series of successive 2-cM bins with 2lnBF ≥ 2 (Bayes
Factor (BF) ≥ 2).

The BF was used to determine the QTL number and position
[47], with values greater than 2, 5, and 10 interpreted as
positive, strong, and decisive evidence for the presence of QTLs,
respectively. Thus, in this study, major QTLs include those
detected in two or more environments (year/location) with
strong (BF ≥ 5) or decisive evidence (BF ≥ 10), having overlap-
ping intervals, and explaining at least 10% of the phenotypic
variation.

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac183#supplementary-data
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From FlexQTL outputs, the additive variance (σ 2
A(trt)) was calcu-

lated by subtracting the residual variance
(
σ 2

e

)
from the pheno-

typic variance
(
σ 2

P

)
for a trait. The narrow-sense heritability (h2)

for a trait was calculated using the following equation:

h2 = σ 2
A(trt)

σ 2
P

The phenotypic variance explained (PVE) by a QTL is calculated
using the following equation:

PVEadditive model =
σ 2

A(qtl)

σ 2
P

× 100

where:
σ 2

A(qtl): additive variance of QTL

QTLs were named according to Genome Database for Rosaceae
guidelines [48]. Thus, in the name qBSD.TX2WOB-LG3.1, q stands
for QTL, “BSD” stands for the black spot disease, “TX2WOB” or
“TX2WSE” the name of consensus maps (based on the multi-
parental populations used to construct them), “LG3” the linkage
group number, “1” or “2” to distinguish different QTLs in case there
is more than one QTL on the same linkage group.

Haplotyping was conducted for SNPs within the interval of
a significant QTL with strong or decisive evidence and consis-
tently showed high PVE. Haplotypes were constructed across the
germplasm using FlexQTL and “PediHaplotyper” package of R [49].
Haplotype effects were analyzed manually to examine for the
presence of multi-allelic QTLs. Haplotype effects were inferred
from combinations of diplotypes. For example, by comparing the
effects of the H3|H1 and H3|H2 diplotypes, the effects of H1 and
H2 could be determined. A nonparametric multiple comparison
Steel-Dwass test (P < 0.05) using JMP Pro version 13.2 (SAS Insti-
tute Inc., Cary, NC. 2016) was used to assess diplotype effect differ-
ences. QTL allele categories (Q or q) were assigned to haplotypes
based on whether their effects increased or decreased disease. Q-
and q-alleles were distinguished by an index number if there was a
multi-allelic series. The source of alleles associated with increased
or decreased disease incidence was traced back to the furthest
ancestor using pedigree records [28, 29].
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