Skip to main content
. 2023 Apr 13;13:6078. doi: 10.1038/s41598-023-33270-4

Table 3.

Comparison of the outcomes of different tea leaf disease detection algorithms.

Model name Diseases Results References
Deep CNN (LeNet)

1. Leaf blight

2. Blight disease

3. Red leaf spot

4. Red scab

Detection accuracy: 90.23%

MCA: 90.16%

49
CNN

1. Algae leaf spot

2. Gray Blight

3. White Spot

4. Brown Blight

5. Red Scab

6. Bud Blight

7. Leaf blight

Detection accuracy: 94.45% 50
DNN

1. Gray Blight

2. Algal spot

3. Brown Blight

4. Helopeltis

5. Red Spot

Detection accuracy: 96.56%

Precision: 96.63%

Recall: 96.49%

F1-score: 0.965

51
AX-RetinaNet

1. Algae leaf spot

2. Bud blight

3. White scab

4. Leaf blight

mAP: 93.83%

Precision: 96.75%

Recall: 94.00%

F1-score: 0.954

7
Improved DCNN

1. Bud blight

2. Leaf blight

3. Red scab

Detection accuracy: 92.50% 4
CNN (LeafNet)

1. Bird's eye spot

2. Gray Blight

3. White Spot

4. Brown Blight

5. Red leaf spot

6. Algal leaf spot

7. Anthracnose

Detection accuracy: 90.23%

MCA: 90.16%

52
Multi-objective image segmentation

1. Red Rust

2. Red Spider

3. Thrips

4. Helopeltis

5. Sunlight Scorching

Detection accuracy: 83%

Precision: 77%

Recall: 84%

F1-score: 0.780

53
Improved YOLOv5

1. Tea cell eater (Apolygus lucorum)

2. Leaf blight

Detection accuracy: 91%

Precision: 87.80%

Recall: 85.27%

mAP: 85.35%

FPS: 51

55
YOLOv7

1. Red spider

2. Tea mosquito bug

3. Black rot

4. Brown blight

5. Leaf rust

Detection accuracy: 97.30%

Precision: 96.70%

Recall: 96.40%

mAP: 98.2%

F1-score: 0.965

Present study