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Histopathology images predict multi-omics
aberrations and prognoses in colorectal
cancer patients

Pei-Chen Tsai 1,2, Tsung-Hua Lee2, Kun-Chi Kuo2, Fang-Yi Su2,
Tsung-LuMichael Lee 3, ElianaMarostica 1,4, TomotakaUgai5,6, Melissa Zhao6,
Mai Chan Lau6, Juha P. Väyrynen 7, Marios Giannakis8, Yasutoshi Takashima6,
Seyed Mousavi Kahaki6, Kana Wu9, Mingyang Song5, Jeffrey A. Meyerhardt8,
Andrew T. Chan 10,11, Jung-Hsien Chiang 2 , Jonathan Nowak6,13,
Shuji Ogino 5,6,12,13 & Kun-Hsing Yu 1,6,13

Histopathologic assessment is indispensable for diagnosing colorectal can-
cer (CRC). However, manual evaluation of the diseased tissues under the
microscope cannot reliably inform patient prognosis or genomic variations
crucial for treatment selections. To address these challenges, we develop the
Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable
machine learning approach, to systematically identify and interpret the
relationship between patients’ histologic patterns, multi-omics, and clinical
profiles in three large patient cohorts (n = 1888). MOMA successfully pre-
dicts the overall survival, disease-free survival (log-rank test P-value<0.05),
and copy number alterations of CRC patients. In addition, our approaches
identify interpretable pathology patterns predictive of gene expression
profiles, microsatellite instability status, and clinically actionable genetic
alterations. We show that MOMA models are generalizable to multiple
patient populations with different demographic compositions and pathol-
ogy images collected from distinctive digitization methods. Our machine
learning approaches provide clinically actionable predictions that could
inform treatments for colorectal cancer patients.

Colorectal cancer (CRC) is the second most common cause of cancer
death in the United States, accounting for nearly 53,000 deaths
annually1. Histopathologic evaluation remains a cornerstone for diag-
nosing and staging CRC, and the histology subtypes and genetic

variations are the keys to treatment selection2. However, inter-rater
variability in histopathology diagnoses has been reported2, 3, and the
genomic profiling process requires days to weeks to complete and is
not available to every hospital in the developing world. These
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limitations have hindered CRC patients from receiving timely and
appropriate treatments.

With the recent development of reliable whole-slide pathology
scanners and high-performing computer vision techniques, quantita-
tive pathology evaluation has become increasingly feasible4. Several
studies using machine learning techniques reported remarkable
diagnostic accuracy for various cancer types, such as lung, breast,
ovarian, renal cell, and colorectal carcinomas5–11. Previous works also
demonstrated unexpected correlations between histopathology
image features and clinically actionable molecular variations, such as
microsatellite instability and PTEN gene deletion, in colorectal carci-
noma samples12, 13. These studies indicate that high-resolution pathol-
ogy images contain underutilized biomedical signals useful for
personalizing cancer care14–19.

Nonetheless, many computational challenges hinder the extrac-
tion of useful histopathology signals, and several reports expressed
concerns about the generalizability of deep learning models20. Typical
high-resolution digital pathology whole-slide images of colorectal
cancer tissues contain up to billions of pixels, making it infeasible for
standard convolutional neural networks to process the whole image at
once. In addition, deep learning models are highly complex, and it is
difficult to connect the imagepatterns discoveredby thesedata-driven
models with biological knowledge21. Furthermore, since there are a
large number of parameters that researchers need to optimize in data-
driven machine learning models, generalizability to other image
acquisition methods remains a substantial challenge to many digital

pathology models22. The lack of extensive validation in different
patient cohorts can diminish the applicability of machine learning
models in clinical settings.

In this study, we propose the Multi-omics Multi-cohort Assess-
ment (MOMA) system, an explainablemachine learning framework for
analyzing digital pathology images at scale. Our informatics methods
successfully predict the prognoses of early-stage colorectal cancer
patients and achieve state-of-the-art performance in identifying the
genomics and proteomics status of cancer samples using a weakly
supervised prediction framework. We connect high-resolution digital
pathology images with clinically actionable multi-omics aberrations,
andwe identify interpretable pathology predictors of patients’ survival
outcomes.We further validate our framework inmultiple large patient
cohorts and demonstrate its generalizability in different populations
and using different image acquisition methods. Our study provides a
robust and flexible machine learning framework for scalable histo-
pathology image analyses.

Results
Overview and patient characteristics
We develop the Multi-omics Multi-cohort Assessment (MOMA)
machine learning framework for predicting clinically actionable var-
iations in cancer genomics, proteomics, and patient prognoses using
histopathology images. Figure 1A and 1B show an overview of our
interpretable machine learning methods. In brief, MOMA leverages
robust image pre-processing (tiling, color normalization, and feature
extraction), multiple-instance learning, and vision transformers to
connect whole-slide pathology images with clinical and molecular
profiles of interest. We further quantify the importance of each
microenvironment component in each prediction task (Fig. 1C, D). To
demonstrate the generalizability of our methods, we apply MOMA to
multiple cohorts, including TCGA colorectal cancer cohorts (TCGA-
COAD and TCGA-READ), the PLCO cohort, and the NHS and HPFS
cohorts. Table 1 summarizes the demographic, molecular, and clinical
profiles of patients in each cohort.

MOMA predicts patients’ overall survival and progression-free
survival
Early-stage colorectal cancer patients have heterogeneous survival
outcomes. Althoughmany clinical andmolecular predictors have been
proposed, they cannot fully explain the divergent prognoses. To
address this challenge, we employ MOMA to predict both overall
survival and progression-free survival outcomes of stage I-II colorectal
cancer patients. Results show that MOMA successfully identifies
patients’ overall survival outcomes in the TCGA held-out test set
(Fig. 2A), with a concordance index (c-index) of 0.67 and log-rank test
p-value of 0.01 between the two predicted prognostic groups. We
further validate our model in two independent external cohorts: NHS-
HPFS (Fig. 2B; P = 0.0495) and PLCO (Fig. 2C; P =0.046), demonstrat-
ing the generalizability of our approaches. We visualize our models
and show that dense clusters of adenocarcinoma cells are highly
indicative of worse overall survival outcomes (Fig. 2D, E). Analyses that
stratify colon cancer and rectal cancer samples show similar prediction
performance in both cancer groups (Supplementary Data 1). Quanti-
tative concept-based analyses reveal that regions of carcinoma cells,
tumor-associated stroma, and interactions of carcinoma cells with
smooth muscle cells in the cancerous regions are related to unfavor-
able overall survival (Fig. 1D).

In addition, MOMA reliably predicts the progression-free survival
outcomes of the same cohorts of patients. In the TCGA held-out test
set, our progression-free survival outcome prediction model achieves
a c-index of 0.88 and a log-rank test p-value of 0.02 in distinguishing
the prognostic groups (Fig. 3A). We further demonstrate the applic-
ability of our model in the NHS-HPFS cohorts (Fig. 3B; c-index=0.6,
P <0.005). When stratifying the datasets into colon cancer and rectal

Table 1 | Patient characteristics of our study cohorts

Patient characteristics TCGA NHS-HPFS PLCO

Number of patients N = 628 N = 927 N = 333

Age (Standard Deviation) 66.3 ± 12.8 62.4 ± 9.6 65.0 ± 4.7

Sex Male 334 (53.2%) 413 (44.6%) 213 (64.0%)

Female 294 (46.8%) 512 (55.3%) 120 (36.0%)

Race Not Available 255 (40.61%) 390 (42.07%) 175 (52.6%)

Black or African
American

65 (10.35%) 8 (0.86%) 8 (2.4%)

White 295 (46.97%) 526 (56.74%) 120 (36.0%)

Asian 12 (1.91%) 3 (0.32%) 26 (7.8%)

Native Amer-
ican or
Alaska Native

1 (0.16%) 0 (0%) 0 (0.0%)

Pacific Islander 0 (0.0%) 0 (0%) 4 (1.2%)

Tumor Location Proximal Colon 258 (42.5%) 469 (50.4%) 127 (38.1%)

Distal Colon 185 (30.5%) 280 (30.1%) 88 (26.4%)

Rectum 164 (27.0%) 181 (19.5%) 118 (35.4%)

Disease Stage Stage I 108 (17.2%) 198 (21.4%) 49 (14.7%)

Stage II 229 (36.5%) 281 (30.3%) 64 (19.2%)

Stage III 181 (28.8%) 248 (26.8%) 50 (15.0%)

Stage IV 90 (14.3%) 134 (14.5%) 16 (4.8%)

Unknown 20 (3.2%) 66 (7.1%) 154 (46.2%)

MSI High 65 (14.3%) 150 (16.7%) -

Low/negative 389 (85.7%) 750 (83.3%) -

BRAFmutation* BRAF mutation
in any loci

62 (10.4%) 136 (15.0%) -

BRAF c.1799T >
A (p.V600E)
mutation

48 (8.32%) - -

Wild-Type 529 (89.5%) 770 (85.0%) -

CIMP High 58 (12.8%) 155 (18.1%) -

Low/negative 396 (87.2%) 703 (81.9%) -
*Gene names are italicized.
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cancer groups, our approaches successfully identify the prognostic
differences in both groups (Supplementary Data 1). A sensitivity ana-
lysis that was restricted to a surgery-only subgroup demonstrates the
robustness of our results (Supplementary Fig. 1). Attention visualiza-
tion shows that morphology patterns in tumor-associated stroma and
groups of adenocarcinoma cells are highly indicative of progression-

free survival (Fig. 3C, D). Compared with the overall survival predic-
tion, our progression-free survival model puts more emphasis on
infiltrating lymphocytes and regions associated with extracellular
mucin in its prediction.

Furthermore, we employ MOMA to predict both overall survival
and progression-free survival outcomes of stage III colorectal cancer
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patients. Results show that MOMA successfully identifies patients’
overall survival outcomes in the TCGAheld-out test set (Fig. 4A),with a
c-index of 0.66 and log-rank test p-value of 0.02 between the two
predicted prognostic groups. We successfully validate our model in
two independent external cohorts: NHS-HPFS (Fig. 4B; P =0.0495) and
PLCO (Fig. 4C; P =0.04). On model visualization, we show that dense
clusters of adenocarcinoma cells are highly indicative of worse overall
survival outcomes (Fig. 4D, E). Similarly, MOMA successfully predicts
patients’ progression-free survival outcomes (Fig. 5A), with a c-index of
0.74 and log-rank test p-value of 0.02 between the two predicted
prognostic groups in the TCGA held-out test set. These results are
validated in our independent external cohorts from NHS-HPFS (Fig. 5B;
P =0.003). Similar to our overall survival results, model visualization
shows that dense clusters of adenocarcinoma cells are highly indicative
of worse progression-free outcomes (Fig. 5D, E). Quantitative concept-

based analyses reveal that regions of tumor-associated stroma and
interactions of carcinoma cells with smooth muscle cells in the can-
cerous regions are related to unfavorable progression-free survival.

MOMA provides improved prediction of MSI status using his-
topathology images
Immune checkpoint inhibitors have shown substantial survival bene-
fits among a fraction of colorectal cancer patients. However, not all
patients respond to this treatment modality with substantial immune-
related adverse events.High-levelmicrosatellite instability (MSI) status
has been identified as a biomarker that predicts the response to
immune checkpoint inhibitors. To facilitate the treatment effective-
ness prediction for immune checkpoint inhibitors, we employ MOMA
to predict theMSI status of each patient. Results show that the AUROC
of the TCGA held-out test set is 0.88 ±0.06 (Fig. 6A), and in the NHS-

Fig. 1 | An overview of the Multi-omics Multi-cohort Assessment (MOMA)
machine learning framework. A Machine learning workflow for connecting
whole-slide digital histopathology images with multi-omics biomarkers and survi-
val outcomes. The MOMA platform processes the image patches from whole-slide
pathology images, normalizes them, and leverages vision transformers to extract
image features.BWedevelopmulti-omics characterization and survival prediction
frameworks using the extracted image features. C Model visualization and inter-
pretation. To enhance the interpretability of our machine learning approaches, we
compute the importance of each image region to the prediction target by quanti-
fying the performance decay due to occlusion of the region, and we develop a
multi-task classification model to quantify the concept (e.g., lymphocyte, stroma,
tumor, adipose tissue,mucin, etc.) score using patcheswhose importanceweight is
greater than 0.7. This method connects prior histopathology knowledge with

quantitative importance metrics independently learned by the models. D A sum-
mary of the pathology concepts associated with survival and multi-omics predic-
tions. The concept scores are plotted on the log scale. OS: overall survival
prediction in early-stage CRC; DFS: disease-free survival prediction in early-stage
CRC; MSI: microsatellite instability prediction; BRAF: BRAF mutation status pre-
diction; BECN: BECN-1 overexpression prediction; CIMP: CpG island methylator
phenotype prediction. The major concepts visualized here include lymphocytes
(LYM), cancer-associated stroma (STR), tissue debris (DEB), mucus (MUC), smooth
muscle (MUS), colorectal adenocarcinoma epithelium (TUM), and adipose tissue
(ADI). The score for each concept indicates the relative importance of each type of
microenvironment in predicting patient prognoses or the selected multi-omics
variations with clinical implications.
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Fig. 2 | MOMA predicts overall survival outcomes of stage I and II colorectal
cancer patients using digital histopathology images, with validation in mul-
tiple independent cohorts. A MOMA successfully distinguishes the shorter-term
survivors from longer-term survivors using histopathology images (two-sided log-
rank test P-value= 0.01). Results from the TCGA held-out test set are shown. B The
machine learning model derived from MOMA is successfully validated in an inde-
pendent external validation set from the Nurses’ Health Study and Health Profes-
sionals Follow-up Study cohorts (two-sided log-rank test P-value<0.05).
C We further validate our overall survival prediction model in PLCO, a nationwide

multi-center study cohort (two-sided log-rank test P-value <0.05). D Model pre-
diction of a patient with longer-term overall survival. The model focuses on
regions of cancerous tissue and cancer-associated stroma when making the
prediction in this example. E Interpretation of the overall survival prediction
model. The prediction of a patient with shorter-term survival is shown in this
figure panel. Cancerous tissue, cancer-associated stroma, and smooth muscle
receive high attention weights in the overall survival prediction task. TUM: col-
orectal adenocarcinoma epithelium; STR: cancer-associated stroma; MUC:
mucus; MUS: smooth muscle.
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HPFS dataset, the AUROC is 0.76 ±0.04 (Fig. 6B and Supplementary
Table 1). Our methods improve the AUROC by 4% compared with the
state-of-the-art methods by Kather et al.12 (Supplementary Table 2). In
both coloncancer and rectal cancer groups,MOMAshowscorrelations
between histopathology images and MSI status (Supplementary
Data 1). Model visualization further demonstrates that MOMA attends
to lymphocytes, stroma, mucosa, and cancer regions when predicting
MSI status (Fig. 6C, D).

MOMApredicts copy number alterations (CNAs) and expression
levels of key genes in cancer development
We further examine the performance of MOMA in predicting copy
number alterations (CNAs), whole-genome doubling, and over-
expression of the BECN1 gene using histopathology images. CNAs of
many key genes, including FHIT and PTEN, have been implicated in
carcinogenesis. Here we show that MOMA predicts CNAs in FHIT and
many other tumor suppressor genes (Fig. 7A–C). Compared with PC-
CHiP, a commonly used image-based CNA prediction method, MOMA
attains substantially improved prediction performance (Supplemen-
tary Table 3). In addition to the previously reported histopathology-
CNA associations, MOMA further predicts amplifications in NOL4L,
HM13, and FOXS1, and deletions in WWOX and CCER1, among many
others (Fig. 7D–F). Furthermore, MOMA demonstrates improved pre-
diction performance for whole-genome doubling, compared with PC-
CHiP (Supplementary Table 4).

Moreover,MOMAreveals the correlation between histopathology
image patterns and the expression levels of BECN1 (Supplementary
Fig. 2A), with the results validated in the NHS-HPFS dataset (Supple-
mentary Fig. 2B and Supplementary Table 1). Stratified analyses by
colon and rectal cancers show similar prediction performance in both
cancer groups (Supplementary Data 1). In both BECN1-high and

BECN1-low tumors, the model focuses on tumor and mucus regions;
however, in BECN1-high tumors, the model also focuses on regions
occupied by lymphocytes, while in BECN1-low tumors the model
focuses on the stroma. (Supplementary Fig. 2C and Supplemen-
tary Fig. 2D).

MOMA identifies the histopathology patterns associated with
BRAF mutation status
Genomic variations of proto-oncogenes and tumor suppressor genes
are central to the development of colorectal cancers. For example,
mutations in the BRAF gene propagate cell growth signals and are
associated with reduced patient survival23. Several targeted therapy
drugs focusing on BRAF inhibition have been developed, and combi-
natorial targeted therapy trials are underway. To identify the mor-
phological impact of clinically important genomic variations, we
leverageMOMA to systematically predict themutation status of BRAF,
HIF1A, and PIK3CA. Results show that MOMA identifies a moderate
histopathology signal for predicting BRAF c.1799T >A (p.V600E)
mutation in the TCGA test set, with an AUROC of 0.71 ± 0.07 (Sup-
plementary Fig. 3A and Supplementary Table 1). To further identify the
morphological patterns associated with this actionable genetic aber-
ration, we visualize the attention distribution of our models in Sup-
plementary Fig. 3B and Supplementary Fig. 3C. The concept scores of
mucus, stroma, and tumor regions for BRAFmutation with c.1799T > A
(p.V600E) detection are 19.89, 18.94, and 16.87, respectively (Fig. 1D).
When classifying samples with BRAF mutation at any locus (n = 529)
with those without BRAF mutation, we also show that MOMA can
identify the morphological signals associated with BRAF mutations in
general (Supplementary Fig. 4A, B). Similar approaches also identify
the relationship between histopathology and the mutation status of
HIF1A and PIK3CA (Supplementary Figs. 5 and 6).
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Fig. 3 | Quantitative histopathology imaging predicts stage I and II colorectal
cancer patients’ progression-free survival outcomes. A MOMA-trained models
differentiate patients with early relapse or death from those with longer
progression-free survival using histopathology images (two-sided log-rank test P-
value=0.02).BWe successfully validate ourmodels using the independent external
validation set from the Nurses’ Health Study and Health Professionals Follow-up
Study cohorts (two-sided log-rank test P-value<0.005). C Interpretation of the

progression-free survival predictionmodel. The predictionof a patient with longer-
term survival is shown in this figure panel. Mucosal regions and regions occupied
by cancer cells both receive high attentionweights in the overall survival prediction
task.DModel prediction of a patient with shorter-term overall survival. In samples
collected from shorter-term survivors, our model also focuses on regions of lym-
phocytes when making predictions. MUC: mucus; TUM: colorectal adenocarci-
noma epithelium; STR: cancer-associated stroma; LYM: lymphocytes.
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MOMA correlates histopathology patterns with the CpG island
methylator phenotype
CpG island methylator phenotype (CIMP) colorectal cancer is a sub-
type characterized by widespread hypermethylation of promoter CpG
islands. This hypermethylation pattern inactivates many tumor sup-
pressor genes and causes global gene expression dysregulations and
metabolic alterations. Previous studies suggest that patients with
CIMP-high status have worse prognoses under the standard
treatments24. To identify the histopathology patterns indicative of
CIMP-high status, we employ MOMA to predict CIMP-high status and
visualize the resultingmodel. Results show that theAUROCof theheld-
out test set in the TCGA cohort is 0.66 ± 0.06 (Supplementary Fig. 7A),
and in the independent NHS-HPFS validation dataset, the AUROC is
0.63 ± 0.03 (Supplementary Fig. 7B and Supplementary Table 1). Fur-
thermore, regions of lymphocytes and cancer cells are highly indica-
tive of CIMP-high status (Supplementary Fig. 7C and
Supplementary Fig. 7D).

MOMA predicts consensus molecular subtypes using histo-
pathology patterns
The consensus molecular subtype (CMS) is a commonly used mole-
cular subtyping system for colorectal cancer that addresses incon-
sistencies in gene-expression-based classifications and reflects the
biological differences in tumor characteristics25. To identify the his-
topathology patterns indicative of the CMS subtypes, we employ
MOMA to classify the major CMS subtypes with sufficient numbers of
samples (CMS2 and CMS4). Results show that MOMA achieved an
AUROC of 0.66 ±0.04 in the held-out test set not participating in the

model development process (Supplementary Fig. 8A and Supple-
mentary Table 1). When stratifying the analysis by the colon and rectal
cancer groups, we see a slightly improved performance in CMS pre-
diction (AUROC=0.74–0.77; Supplementary Data 1). MOMA indicates
that regions of cancer-associated stroma and mucus are highly indi-
cative of CMS2 and CMS4 (Supplementary Fig. 8B and Supplemen-
tary Fig. 8C).

Comparisons of regions predictive of key clinical and multi-
omics profiles
We summarize the regions indicative of patients’ prognostic outcomes
and molecular profiles identified by our interpretable machine learn-
ing framework. Our approaches provide a quantitative measurement
of the relative importance of each region in predicting these outcomes
of interest. For example, we show that histological patterns of the
tumor, stroma, and mucus regions are relevant to the prediction of
overall survival and disease-free survival, while regions with lympho-
cytes and mucus provide signals for predicting CIMP-high status. Fig-
ure 1D visualizes the regions of importance for each prediction task.

Discussion
In this study, we designed the MOMA framework for molecular char-
acterization and clinical prognostic prediction using histopathology
images of colorectal cancer, and we further validated our models in
two independent patient cohorts. Our results demonstrate that inter-
pretable machine learning approaches can predict patients’ survival
outcomes and clinically important molecular profiles26. Our methods
can automatically identify informative regions from whole-slide
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Fig. 4 | MOMA predicts overall survival outcomes of stage III colorectal cancer
patients using digital histopathology images, with validation in multiple
independent cohorts. A MOMA successfully distinguishes the shorter-term sur-
vivors from longer-termsurvivors usinghistopathology images (two-sided log-rank
test P-value=0.02). Results from the TCGA held-out test set are shown. B The
machine learning model derived from MOMA is successfully validated in an inde-
pendent external validation set from the Nurses’ Health Study and Health Profes-
sionals Follow-up Study cohorts (two-sided log-rank test P-value<0.05). C We
further validate our overall survival prediction model in PLCO, a nationwide multi-

center study cohort (two-sided log-rank test P-value = 0.04).DModel prediction of
a patient with longer-term overall survival. The model focuses on regions of can-
cerous tissue and cancer-associated stroma when making the prediction in this
example. E Interpretation of the overall survival prediction model. The prediction
of a patient with shorter-term survival is shown in this figure panel. Cancerous
tissue, cancer-associated stroma, and smooth muscle receive high attention
weights in the overall survival prediction task. TUM: colorectal adenocarcinoma
epithelium; STR: cancer-associated stroma; MUC: mucus; MUS: smooth muscle;
LYM: lymphocytes.
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pathology images without the need for detailed region-level annota-
tions. In addition, we employed the vision transformer and obtained
significantly improved performance compared with that of standard
deep learning methods12. Our multi-cohort validation showed the
generalizability of our data-driven approaches for analyzing high-
resolution digital pathology images.

Our models demonstrated that high-resolution histopathology
slides contain useful predictive signals for genetic aberrations and
survival outcomes. Because genetic profiling requires additional tissue
samples, processing time, and costs, our prediction models that use
only the H&E-stained histopathology slides can provide timely deci-
sion support for treatment selection in resource-limiting settings or in
clinical scenarios with limited tissue availability. In addition, our stage-
stratified survival outcome prediction successfully identified patients
with shorter overall and disease-free survival under the standard
treatments. These results showed that our machine learning approa-
ches extracted stage-independent morphological signals indicative of
patients’ clinical outcomes. Because patient prognosis depends on
many clinical factors, no prediction models can perfectly identify the
survival outcomes of individual patients. Nonetheless, our approach
unveiled histopathology patterns related to patient prognosis, which
could be useful in guiding clinical decision-making. For example,
clinicians may provide closer follow-up to patients with suboptimal
clinical prognoses, consider more aggressive treatment options, or
enroll them in ongoing clinical trials27.

Compared with previously published methods, our approaches
achieved substantially improved prediction performance. For
instance, we first reproduced a widely used patch-based convolutional
neural network12 for MSI prediction using the TCGA dataset, and we
showed that MOMA achieved a 4% improvement on the same dataset

(Supplementary Table 2). For CNA and WGD prediction, our approa-
ches outperform models derived by the state-of-the-art PC-CHiP
methods28 by 7–29% (Fig. 7). Wilcoxon signed-rank tests confirmed
that the performance difference is statistically significant in many
clinically important genetic alterations, including BCL2L1
amplification29, 30 and FHIT deletion31 (Supplementary Table 3). Fur-
thermore, we successfully predicted the copy number alterations of 14
additional genes and connected our attention-based deep learning
framework with time-to-event models for survival prediction. These
methods have the potential to guide clinical decision-making, suggest
clinical trial enrollment, and reduce costs attributed to sequencing by
serving as a screening tool. We further validated our models in two
independent patient populations, i.e., the NHS-HPFS and the PLCO
cohorts, which demonstrated the reliability of our approaches when
applied to previously unseen populations32–35.

Our approaches provide several advantages compared with con-
ventional methods. First, we embedded color normalization approa-
ches in our end-to-end sample processing pipeline, which contributed
to the improved robustness of our survival prediction models. In
addition, we developed a tumor detectionmodel trained on slide-level
annotations and employed this model to identify the regions of
interest for multi-omics and survival prediction tasks. Our approaches
effectively reduced the need for detailed annotations by pathologists.

Due to the large number of parameters in deep learningmodels36,
they are largely viewed as black boxes with limited interpretability37.
To enhance our understanding of model behaviors, we developed
concept scores to quantitatively investigate the relevance of each
region to the prediction tasks of interest, and we connected these
regions with pathologists’ annotations to provide biological insights
into our data-driven models. Our results demonstrated that regions
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Fig. 5 | MOMA predicts progression-free survival outcomes of stage III color-
ectal cancer patients using digital histopathology images, with validation in
independent patient cohorts. A MOMA successfully distinguishes the shorter-
term survivors from longer-term survivors using histopathology images (two-sided
log-rank test P-value=0.02). Results from the TCGA held-out test set are shown.
B The machine learning model derived from MOMA is successfully validated in an
independent external validation set from the Nurses’ Health Study and Health
Professionals Follow-up Study cohorts (two-sided log-rank test P-value=0.003).

C Model prediction of a patient with longer-term progression-free survival. The
model focuses on regions of cancerous tissue and cancer-associated stroma when
making the prediction in this example. D Interpretation of the progression-free
survival prediction model. The prediction of a patient with shorter-term survival is
shown in this figure panel. Cancerous tissue, cancer-associated stroma, lympho-
cytes, and smooth muscle receive high attention weights in the overall survival
prediction task. STR: cancer-associated stroma; MUC: mucus; TUM: colorectal
adenocarcinoma epithelium; LYM: lymphocytes.
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occupied by tumors, supporting stroma, and mucus are crucial for
survival prediction. These findings are consistent with observations
that tumor invasiveness and tumor-stromal interactions are related to
tumor progression38. We further revealed that lymphocyte-infiltrated
regions are associated with MSI status, BECN1 overexpression, and
CpG islandmethylator phenotype (CIMP) status. TheMSI-high status is
an established biomarker for responses to immune checkpoint
blockade39, while BECN1 is a key regulator of autophagy40 and has been
proposed as a potential target for immunotherapy41. Our findings
confirmed the relevance of these biomarkers with immune cell infil-
tration and suggested the role of digital pathology profiling in the
prediction of response to immunotherapy.

Our study has a few limitations. First, our study is based onpatient
populations in North America. Although our results are validated in
two large-scale, independent, and diverse patient cohorts, additional
studies that focus on specific patient populations are needed to eval-
uate the applicability of our models in the targeted clinical settings. In
addition, recent studies on self-supervised machine learning hinted at
the potential for enhanced representation learning for efficient
machine learning42–45, which may be useful for enhancing deep
learning-based pathology feature extraction. Future research can
investigate the benefits and potential caveats of these methods. Fur-
thermore, incorporating patients’ radiology imaging data, pathology
profiles,molecular aberrations, and clinical characteristicsmay further
improve the prognostic prediction for colorectal cancer patients.
Additional research is required to identify the optimal prognostic
prediction methods and enable personalized treatments and advance
care planning.

In summary, we presented an interpretable machine-learning
framework that systematically identifies the relationships between
histopathology, molecular variations, and patients’ survival outcomes.
We successfully predicted key genetic aberrations, gene expression

profiles, overall survival, and progression-free survival in colorectal
cancer patients, with the results validated in two independent valida-
tion cohorts. Our approaches can be extended to characterize the
prognostic-informing quantitative pathology patterns of other com-
plex diseases.

Methods
Data sources
We obtained histopathology images of colon and rectal cancer
patients from The Cancer Genome Atlas (TCGA) tissue slide dataset46,
the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial
(PLCO)47, the Nurses’ Health Study (NHS)48, and the Health Profes-
sionals Follow-up Study (HPFS)49,50.We acquired thedigitalwhole-slide
pathology images, whole-exome sequencing results, and RNA-
sequencing data of TCGA patients from the National Cancer Institute
Genomic Data Commons Portal (https://portal.gdc.cancer.gov/).
Mutation status, copy number alterations (including genetic amplifi-
cations and deletions), microsatellite instability, and CpG island
methylator phenotypes (CIMP) of both colon and rectal adenocarci-
nomas were extracted from the cBioPortal (https://www.cbioportal.
org/). Whole genome doublings and consensus molecular subtypes
(CMS) of colorectal cancers were obtained from a previous TCGA
publication51.

In addition, we obtained PLCO data from the National Cancer
Institute Cancer Data Access System, and we collected clinical,
genomic profiles, immunohistochemistry, and hematoxylin-and-
eosin (H&E) stained tissue microarray images from the NHS and
the HPFS coordinated by Harvard T.H. Chan School of Public Health,
Harvard Medical School, and Brigham and Women’s Hospital. Nota-
bly, colorectal tumor tissue blocks in the NHS and the HPFS were
retrieved from over a hundred hospitals throughout the U.S. with
variable tissue age, which increased the generalizability of our
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findings52. For each histopathology from the NHS and HPFS cohort,
two experienced colorectal cancer pathologists reviewed the cancer
samples and selected the cores to ensure the representativeness of
the cores. Thus, the TMA images include regions of tumor cells,
stroma, tumor/stromal interfaces (i.e., microscopic tumor invasive
edges), lymphocyte infiltration, and other pathological changes

characteristic of the tumor sample from which the core was gener-
ated. Our multi-center study was approved by the Institutional
Review Boards of Harvard Medical School (IRB20-1509). Our study
protocol was also approved by the Brigham and Women’s Hospital,
Harvard T.H. Chan School of Public Health, and the participating
registries as required.
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Overview of the Multi-omics Multi-cohort Assessment (MOMA)
Framework
Wedesigned aMulti-omicsMulti-cohortAssessment (MOMA)machine
learning framework to enable robust predictions of cancer genomics,
proteomics, and important clinical outcomes. In this framework, we
first pre-processed the whole-slide histopathology images by tiling
each image into patches with 1000×1000 pixels, and we employed the
color normalization proposed by Macenko et al.53 to account for the
staining differences across tissues and convert pixel values to a similar
space in optical density. We used convolutional neural networks and
vision transformers to extract pathology image features from each tile
and connect these features with genomics, gene and protein expres-
sion levels, as well as patients’ overall survival and disease-free survival
outcomes.

One key feature of MOMA is the integration of multiple-instance
learning54, multi-modality outcome prediction frameworks32, and bio-
logical interpretations of the prediction models. Leveraging state-of-
the-art vision transformer models, we extracted informative features
from the whole-slide images, and we connected them with genomic
mutations, copy number alterations, transcriptomic profiles, and sur-
vival outcomes by incorporating relevant statistical models (e.g.,
Weibull models for survival prediction) to predict the molecular pro-
files and clinical outcomes of each individual. We further provided
biological interpretations of the model predictions using pathology
concepts of the tumor microenvironment55. Below we describe our
methodology in detail.

Multi-omics characterization via histopathology
Using the MOMA platform, we conducted multi-omics subgroup pre-
dictions on colorectal cancer patients, with a focus on clinically
actionable molecular aberrations. Specifically, we predicted the
microsatellite instability (MSI) status (65 MSI-high patients; 389 non-
MSI-high patients in TCGA), CpG island methylator phenotype (CIMP;
58 CIMP-high tumor patients; 396 CIMP-low/negative tumor patients),
BRAF c.1799T >A (p.V600E) mutation (48 patients with BRAF
c.1799T >A (p.V600E) tumor; 529patientswithBRAFwild-type tumor),
and the most prevalent Consensus Molecular Subtypes (CMS; 152
CMS2 (canonical) patients; 105 CMS4 (mesenchymal) patients) of
colorectal cancer. These tasks were constructed as weakly-supervised
classification tasks.

We employed the ResNet-50 network, a residual neural network
with 50 layers56, to extract 2048 features from the image patches. To
mitigate the impact of artifacts in the whole-slide images, we applied
the k-means algorithm to cluster the extracted feature vectors into
10 clusters, because typical colorectal cancer pathology images
contain 10 different types of regions with biological significance
(lymphocyte, stroma, debris, mucus, muscle, tumor, adipose tissue,
background, normal, and others), and we used vision transformers57

to derive the informative features for each cluster. The clusters
whose weights were in the top three (strong positive association) or
bottom three (strong negative association) would be used in the
downstream analyses. After the vision transformer, the dimension of
the feature vectors of each cluster was reduced to 512 to obtain
efficient image representations for multiple-instance learning58–60.
We used a trainable attention-based pooling operation to aggregate
these feature vectors. Our transformer encoder layers contain 512

neurons in the hidden layer, 8 heads, and 2048 neurons in the multi-
layer perceptron, with a dropout rate of 0.1.

Finally, we applied two loss functions in the prediction tasks. The
first one was the bag loss function of standard binary or multiclass
cross-entropy with the inverted class weights informed by the number
of tiles in each class. The inverted class weights enabled machine
learning models to account for the classes with fewer instances and
prevent themodels from biasing toward predicting all instances as the
majority class. The other was the instance loss function of the tile-level
classifiers. To compute the instance loss function, we first ranked the
weights obtained from the attention-based multiple-instance learning
to select the top three clusters with positive labels and the bottom
three clusters with negative labels. Next, we employed the smooth
support vector machine61 with varying hyperparameter tau optimized
for each task. We computed the total loss of the model as the sum of
the bag loss function and the instance loss function.

To develop our models, we first split the TCGA dataset into 60%
training, 20% validation, and 20% test sets. All tiles from the same
whole-slide images were put in the same partition, in order to prevent
information leaks. We trained our models using the training set,
selected the optimal hyperparameters using the validation set, and
reportedour results in theuntouched test set.We further validatedour
models in independent validation cohorts (please see the External
Validation section). We reported the area under the receiver operating
characteristic curves (AUROCs) of the test set for each classification
task. We used a stochastic gradient descent (SGD) optimizer with a
learning rate of 1e-3, amomentumof 0.9, a batch size of 1, and aweight
decay of 5e-4. We trained all models with 250 epochs with a cosine
annealing learning rate scheduler. We implemented our methods
using Python3.6with PyTorch 1.6.0 in a singleGPU systemwithNVIDIA
Titan RTX. To make MOMA easily accessible to pathologists, oncolo-
gists, and biomedical informatics researchers, we further developed a
web portal (https://rebrand.ly/MOMA_demo) that allows users to
upload pathology images and employ our trained models to generate
predictions. Our source codes for data analyses and trained models
could be found at https://github.com/hms-dbmi/MOMA.

Overall survival and progression-free survival prediction
To demonstrate the extensibility of our MOMA platform to different
prediction tasks, we connected our machine learning framework with
the Weibull modeling methods62 to predict overall survival and
progression-free survival outcomes of early-stage (stage I and stage II)
and stage III colorectal cancer patients. We distinguished patients in
the same stage groups into a “predicted longer-term survival group”
and a “predicted shorter-term survival group,” and we used the log-
rank test to evaluate their differences in actual survival outcomes.
Stage IV patients received heterogeneous treatments and were thus
not included in our stratified survival outcome prediction analyses.
The Weibull distribution is a probability distribution with shape
(kappa) and scale (lambda) parameters. Combinations of the shape
and scale parameters canmodel different hazard functions for survival
analyses. We modified our machine learning framework to estimate
these two statistical parameters in theWeibull survivalmodel.We used
a trainable attention-based pooling operation to aggregate the image
feature vectors and employed the exponential activation function for
lambda and softplus for kappa63. Our deep learning-based Weibull

Fig. 7 | MOMA provides improved copy number alteration prediction com-
pared with the current state-of-the-art methods and predicts additional copy
number alterations not achieved in previous studies.We systematically predict
common copy number alterations of colorectal cancer tissues and compare the
prediction performance with that of PC-CHiP28. The mean and range of AUROC are
shown. A Prediction of common genetic deletions in patients with colon adeno-
carcinoma. B Prediction of common genetic amplification in patients with colon
adenocarcinoma. C Prediction of common genetic deletions in patients with rectal

adenocarcinoma. D Prediction of additional genetic deletions in colon adeno-
carcinoma. E Prediction of additional genetic amplifications in colon adenocarci-
noma. F Prediction of additional genetic deletions in rectal adenocarcinoma. The
error bars show the 95% confidence interval of the mean. In this analysis, 463
patients are in the COAD group, and 164 patients are in the READ group. Asterisks
denote two-sidedWilcoxon signed-rank test P-value<0.05when comparing the two
groups.
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modeling approach can handle right censoring and accommodate
different patterns of death rate over time (e.g., increasing failure rate,
decreasing failure rate, and constant failure rate). Due to the smaller
sample size in the TCGA dataset for the survival prediction task (337
patients with stage I or II cancer and 181 stage III patients), we first
conducted a 5-fold cross-validation on TCGA before validating our
approaches in external validation cohorts. We divided the prediction
results into shorter-term survival and longer-term survival groups
using the median predicted survival index, and we tested the survival
differences between the predicted groups using the log-rank test. We
used an RMSprop optimizer with a learning rate of 1e-5 and trained the
model with 5 epochs using a batch size of 1.We implement our training
and testing processing using Python 3.6 with TensorFlow 2 in the same
single GPU system.

Multi-cohort external validation
To investigate the generalizability of our machine learningmodels, we
harnessed two additional cohorts collected at different hospitals.
Specifically, we used the pathology tissue microarray, genetic, immu-
nohistochemistry, and clinical datasets from the NHS and HPFS to
validate our trained prediction models. We further validated our sur-
vival prediction models using the whole-slide histopathology and
survival information from the PLCO cohort. We applied the same
image tiling, pre-processing, and color normalization methods to
preprocess histopathology images from these external cohorts. We
reported the AUROC (for classification tasks), concordance index (c-
index), and log-rank test p-value (for survival prediction tasks) in these
independent validations.

Model visualization and interpretation
We further identified human-interpretable pathology features
employed by our machine learning models to obtain biological
insights into the connections between histopathology morphology
and molecular profiles. We developed a model interpretation method
that incorporatesmodel-derived concept scores and expert-annotated
concepts based on prior pathology knowledge. Specifically, we first
quantified the importance of each image region by occluding all pixels
in the region and computing the extent to which the predicted out-
come changed when the region was occluded. We define the impor-
tance index of each image region as the numerical change of the
predicted probability due to the occlusion of the region. To connect
crucial regions with pathology interpretation, we leverage 100,000
histopathology images annotatedby gastrointestinal pathologistswith
seven concepts: colorectal adenocarcinoma epithelium, cancer-
associated stroma, lymphocytes, smooth muscle, mucus, adipose tis-
sue, and tissue debris. We developed a deep learning model that
classified image regions into these pathology concepts with an accu-
racy of 99.38%, and we employed this model to compute the concept
scores for regions with importance indices greater than 0.7. We scaled
our concept scores to a range of [0, 100], where 100 indicates the
region has the highest relevance to the concept of interest. Thus, our
concept scores indicate the amount of attention our machine learning
model pays to different regions of pathology changes in making the
prediction, and it is not directly related to the amount of area occupied
by each pathology pattern in the slides. We repeated this process for
eachmachine learning taskwe performed.We used the standard color
map to visualize the importance index and overlaid it with the original
histopathology images. These approaches provide intuitive model
interpretations using well-established concepts in cancer pathology.

Statistics & reproducibility
No data were excluded from the analyses. All available samples were
included in the machine learning analyses, and the experiments were
not randomized. The investigators were blinded to the labels of the
samples in the test set before the final model evaluation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TCGA histopathology, molecular, and clinical data used in this study
are available through the Genomic Data Commons portal [https://
portal.gdc.cancer.gov/]. Mutation status, copy number alterations
(including genetic amplifications and deletions), microsatellite
instability, and CpG island methylator phenotypes (CIMP) of TCGA
samples were extracted from the cBioPortal [https://www.cbioportal.
org/]. The PLCO data is available at the National Cancer Institute
Cancer Data Access System [https://cdas.cancer.gov/plco/]. The data
from Nurses’ Health Studies and the Health Professionals Follow-up
Study are available under restricted access due to patient privacy
considerations. Procedures to access the data are described at https://
www.nurseshealthstudy.org/researchers (contact email: nhsac-
cess@channing.harvard.edu) and https://sites.sph.harvard.edu/hpfs/
forcollaborators/.

Code availability
The codes for our data analyses and trained models could be found at
https://github.com/hms-dbmi/MOMA. The demo website of our
MOMA system is at https://rebrand.ly/MOMA_demo.
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