Table 3.
Monomers and ingredient groups | Mechanisms | Experimental models |
---|---|---|
Polysaccharides from Lepidium meyenii Walp (Li et al., 2017, Tang et al., 2019) | Increasing HG content; decreasing BUN level; up-regulating mitochondrial biogenesis; antioxidation | FST; mouse leg grip-strength test; rotarod test; LST; treatment with H2O2 in C2C12 skeletal muscle cells |
Oligosaccharides from Amorphophallus konjac C. K.Koch (Zeng et al., 2018) | Antioxidation; increasing blood glucose content | LST |
Polysaccharides from Avena sativa Linn. (Chao et al., 2009) | Increasing non-esterified fat acid content, and glycogen storage | Running performance test |
Polysaccharides from Lycium barbarum L. (Wu and Guo 2015) | Changing glycerophospholipid and tyrosine metabolism; inhibiting lipid peroxidation; elevating catalase and GSH-Px activity; decreasing MDA level |
FST |
Polysaccharides from Polygonatum sibricum Red. (Cui et al., 2018) | Decreasing LA and BUN contents; increasing HG content | FST |
Polysaccharides from Polygonatum alte-lobatum Hayata (Horng et al., 2014) | Decreasing BUN and MDA contents; increasing SOD activity; scavenging free radical | Exhaustive treadmill exercise |
Polysaccharides from Gynostemma pentaphyllum (Thunb.) Makino (Qi and Huang 2014) | Scavenging ROS and increasing glycogen levels in skeletal muscle | FST |
Polysaccharides from Hericium erinaceus (Bull.) Pers. (Zhang 2015) | Increasing HG content; decreasing BUN and LA content | LST |
Polysaccharides from Dendrobium officinale Kimura et Migo (Chen et al., 2021b) | Increasing glycogen storage; antioxidation | LST |
Polysaccharide from Ziziphus jujube Mill. var. spinosa (Bunge) Hu ex H. F. Chow (Chi et al., 2015) | Improving immune function; antioxidation | Mimic the multiple-factor pathogenesis of CFS using electric shock, restraint stress, and cold-water-swim |
Polysaccharides from Radix Rehmanniae Preparata (Tan et al., 2012) Protein-bound polysaccharides from Epimedium brevicorum Maxim. (Chi et al., 2017) |
Increasing HG content; decreasing BUN and LA contents Improving tyrosine, arginine, and proline metabolism |
LST Mimic the multiple-factor pathogenesis of CFS using restraint-stress, forced exercise, and crowed and noisy environment |
Polysaccharides from Abelmoschus esculentus (L.) Moench (Gao et al., 2018) | Decreasing BUN and LA contents; increasing HG, muscle glycogen, and adenosine triphosphate levels; enhancing LDH and ATPase activity | LST |
Polysaccharides from Ganoderma lucidum (Curtis) P. Karst. (Hu et al., 2012) | Increasing antioxidant enzymes activity; decreasing MDA content in skeletal muscle | FST |
Polysaccharides from Zea mays L. (Yang et al., 2020a, Yang et al., 2020b) | Decreasing BUN and LA content; increasing LDH activity and HG content | LST |
Polysaccharides from Polygonatum cyrtonema Hua. (Shen et al., 2021) | Decreasing LA, BUN, and MDA levels; increasing HG, muscle glucose, and adenosine triphosphate content in muscle | LST |
Adventitious root protein from Panax ginseng C.A.Mey. (Wang et al., 2022) | Activating the adenosine 5′-monophosphate-activated protein kinase/ glucose transporter type 4 signaling pathway to promote glucose uptake | LST |
Polysaccharides from Codonopsis pilosula (Franch.) Nannf. (Cai et al., 2014) | Preventing lipid peroxidation; antioxidation | LST |
Flavonoids from Saussurea involucrate (Kar. et Kir.) Sch.Bip. (Su et al., 2014) | Increasing SOD and GSH-Px activity; decreasing LA content | FST |
Flavonoids from Sophopra japonica L.(Tao 2013) | Antioxidation | FST |
Flavonoids from Wasps drone pupae (Xi et al., 2018) | Eliminating metabolic accumulation | LST |
Flavonoids from Pueraria lobata (Willd.) Ohwi (Wang et al., 2012) | Antioxidation | FST |
Flavonoids from Astragalus englerianus Ulbr. (Xiao et al., 2014) | Scavenging free radical | Free radical scavenging capability assay |
Flavonoids from Taraxacum mongolicum Hand. -Mazz. (Liu et al., 2020) | Delaying LA production | FST |
Polyphenols from Camellia sinensis (L.) O. Ktze. (Yi 2016) | Anti-inflammation; antioxidation | Athletes |
Polyphenols from Euryale ferox Salisb. ex DC (Wu et al., 2013) | Antioxidation | FST |
Polysaccharides from Angelica sinensis (Oliv.) Diels (Choi et al., 2022) | Increasing muscle glucose content | FST |
Peptide from Hippocampus kelloggi Jordan et Snyder (Guo et al., 2017) | Increasing production of serum glucose, free fatty acid, HG, and adenosine triphosphate; reducing L-lactate, and citrate content | Rotarod test |
Saponins from Panax notoginseng (Burk.) F.H.Chen (Yong-Xin and Jian-Jun 2013) | Increasing HG content; decreasing LA content | LST |
Small-molecule oligopeptides from Panax quinquefolium L. (Li et al., 2018) | Antioxidation; improving mitochondrial function | FST |
Peptide from Pseudosciaena crocea (Zhao et al., 2016) | Inhibiting oxidative reaction | LST |
Peptide from Sheep Placenta (Wang et al., 2018) | Decreasing MDA and LA levels; enhancing GSH-Px and SOD activity; increasing HG content | LST |
Polysaccharides from Polygonum multiflorum Thunb. (Kai et al., 2016) |
Improving HG content, and SOD activity; decreasing BUN, LA, and MDA levels | LST |
Cyanidin-3-glucoside (Matsukawa et al., 2017) | Activating lactate metabolism through skeletal muscle receptor-gamma coactivator-1α (PGC-1α) upregulation | LST |
Quercetin (Zhang and Iop, 2017, Chen, et al., 2021) | Enhancing muscle function; antioxidation | LST and non-loading swimming tests |
Anwulignan (Zhang et al., 2019) | Regulating nuclear factor erythroid-2 related factor 2, and PGC-1α signaling pathway | LST, rotarod test, grip strength test, and tail suspension test |
Securinine (Wang 2012) | Reducing BUN level; increasing glycogen level | LST |
Betaine (Hoffman et al., 2009) | Decreasing BUN and LA contents; increasing HG content | LST |
Ginsenoside Rb1 (Tan et al., 2013, Chen et al., 2015, Liu et al., 2021) | Improving energy metabolism; suppressing skeletal muscle oxidative stress | Postoperative fatigue syndrome (POFS) induced by major small intestinal resection model |
Ginsenoside Compound K (Lan and Liang 2022) | Antioxidation | FST |
Ginsenoside Rg3 (Yang et al., 2018) | Up-regulating concentration of LDH and SOD; decreasing MDA level | POFS model |
N-benzyloleamide (Yang et al., 2016) | Increasing HG content; decreasing LA and BUN content | LST |
Luteolin-6-C-neohesperidoside (Duan et al., 2017) | Decreasing LA and BUN levels; enhancing antioxidant enzymes activity | FST |
Neoagarotetraose (Zhang et al., 2017) | Modulating gut microbial composition, and function in intense exercise | A forced exercise wheel-track treadmill |
γ-aminobutyric acid (Chen, et al., 2016a) | Increasing HG content; decrease LA and BUN content | LST |
Dihydromyricetin (Zou et al., 2014) | Reducing LA and BUN content; decreasing LDH, CK, and GSH-Px activity; increasing glycogen content | LST |
Hypericin (Sun et al., 2022) | Normalizing changes in LA, BUN, creatine kinase, MDA, and HG level, and LDH activity in the liver; improving GSH-Px and SOD activity, and total antioxidant capacity; decreasing the release of tumor necrosis factor-α, interleukin-6, and interleukin-1β | Mice swimming for 120 min for six weeks (for six consecutive days per week) |
Salidroside (Ma et al., 2015) | Enhancing antioxidant enzyme activities in mitochondria | LST |