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c Psychiatric Institute “Dr. José Horwitz Barak”, Santiago. Chile 
d School of Medicine, Universidad Finis Terrae, Santiago, Chile 
e Department of Neurology and Psychiatry, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 
f CONNplexity Lab. Purdue University. West Lafayette, Indiana USA 
g Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK   

A R T I C L E  I N F O   

Keywords: 
Functional connectome 
Variability 
Fingerprint 
First-episode of psychosis 

A B S T R A C T   

Patients with Schizophrenia may show different clinical presentations, not only regarding inter-individual 
comparisons but also in one specific subject over time. In fMRI studies, functional connectomes have been 
shown to carry valuable individual level information, which can be associated with cognitive and behavioral 
variables. Moreover, functional connectomes have been used to identify subjects within a group, as if they were 
fingerprints. For the particular case of Schizophrenia, it has been shown that there is reduced connectome sta
bility as well as higher inter-individual variability. Here, we studied inter and intra-individual heterogeneity by 
exploring functional connectomes’ variability and related it with clinical variables (PANSS Total scores and 
antipsychotic’s doses). Our sample consisted of 30 patients with First Episode of Psychosis and 32 Healthy 
Controls, with a test–retest approach of two resting-state fMRI scanning sessions. In our patients’ group, we 
found increased deviation from healthy functional connectomes and increased intragroup inter-subject vari
ability, which was positively correlated to symptoms’ levels in six subnetworks (visual, somatomotor, dorsal 
attention, ventral attention, frontoparietal and DMN). Moreover, changes in symptom severity were positively 
related to changes in deviation from healthy functional connectomes. Regarding intra-subject variability, we 
were unable to replicate previous findings of reduced connectome stability (i.e., increased intra-subject vari
ability), but we found a trend suggesting that result. Our findings highlight the relevance of variability char
acterization in Schizophrenia, and they can be related to evidence of Schizophrenia patients having a noisy 
functional connectome.   

1. Introduction 

Schizophrenia is a heterogenous mental disorder with high vari
ability in clinical profiles displayed by patients. Moreover, there is both 
inter-individual and intra-individual variability in Schizophrenia. In 
other words, not only two people diagnosed with this disorder may show 
different clinical presentations, but also a single patient may show 
different symptomatic patterns along their medical history (Kirkpatrick 

et al., 2001; Wong and van Tol, 2003). 
Even in healthy populations, despite having gross similarities, brains 

of different individuals are unique (Barch et al., 2013; Gordon et al., 
2017). Functional connectomes derived from fMRI studies capture such 
individual variability, and they have been shown to be stable in time, 
allowing for the identification of a particular subject among others, as if 
they were fingerprints (Finn et al., 2015; Amico and Goñi, 2018; Liu 
et al., 2018). However, traditional neuroimaging studies are advocated 
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to the estimation of mean group-level characteristics. As such, they fall 
short when assessing individual-level characteristics, which can be so 
relevant for a heterogenic and complex disorder such as Schizophrenia. 
For fMRI measures to provide insights into the clinical manifestations of 
Schizophrenia, they should correlate with variations in symptoms 
expression and, ideally, predict outcome, treatment response or risk of 
disease onset (van den Heuvel and Fornito, 2014). 

There is evidence that functional connectomes’ variability is asso
ciated with cognitive and behavioral variables (Barch et al., 2013). 
Several studies have used this information to predict individuals’ per
formance variability in cognitive domains or symptom severity in 
neuropsychiatric disorders (Finn et al., 2015; Shen et al., 2017; Svaldi 
et al., 2021). Relatedly, the stability of a subject’s functional con
nectome has been shown to be age-related: it increases during devel
opment, peaks in early adulthood, and decreases thereafter (Kaufmann 
et al., 2017; Ousdal et al., 2020). A delay in the stabilization of func
tional connectomes has been related to mental health in adolescents 
(Kaufmann et al., 2017). 

Particularly, previous research suggests there is reduced connectome 
stability in patients with Schizophrenia, as the connectomic fingerprint 
of patients has been found to be less stable than that of healthy-control 
subjects (Kaufmann et al., 2018) This reduced stability of the con
nectome in Schizophrenia recalls the intra-individual clinical variability 
usually seen in patients. Moreover, it could be related to changes in 
symptom expression, although it has not been directly explored. In 
addition, inter-individual variability in Schizophrenia was also found to 
be higher in patients for whole brain analysis, frontoparietal, DMN, and 
ventral attention networks (Santo-Angles et al., 2021). Furthermore, this 
variability was negatively associated with PANSS scores (Santo-Angles 
et al., 2021), with more symptomatic patients being more similar to a 
patient’s mean-connectome. 

Regardless of their individually less stable connectomes, and in 
support of group-average traditional approaches, group-level mean 
functional connectomes have been shown to be useful for the classifi
cation of subjects with Schizophrenia (Ji et al., 2019; Talpalaru et al., 
2019). Then, functional connectomes may also capture some common 
patterns of Schizophrenia, which make patients differ from healthy 
subjects. Functional connectomes can then capture subject-specific and 
group-average patterns, both of which are relevant for the future 
description of a Schizophrenia biomarker. 

Here, we explored inter and intra-individual variabilities in a lon
gitudinal sample (two resting state fMRI sessions) of patients with First 
Episode of Psychosis (FEP) and Healthy Controls (HC). In the patients’ 
group, we looked for associations with clinical variables –particularly 
antipsychotic medication doses and symptoms severity (measured by 
Positive and Negative Syndrome Scale, PANSS). The early period of 
psychosis has been proposed as the most dynamic period of the illness 
(Birchwood et al., 1998), so studying variabilities and clinical changes in 
FEP patients, instead of looking for common group-patterns, can be a 
way to individualize subjects in their evolution throughout the disease. 
Based on previous literature, we expected to find reduced connectome 
stability (i.e., greater intra-individual variability and greater inter- 
individual variability) in psychotic patients. 

2. Material and methods 

2.1. Sample 

Our data sample consisted of 30 patients with a First Episode of 
Psychosis (FEP), recruited at the Psychiatric Institute “Dr. José Horwitz 
Barak”, in Santiago, Chile, and 32 Healthy Controls (HC). Patients ful
filled criteria for a psychotic episode according to the MINI neuropsy
chiatric interview (Lecrubier et al., 1997; Sheehan et al., 1998). Patients 
with a psychotic episode secondary to drugs abuse or a neurological or 
medical condition were excluded. 

Each subject was scanned twice (two resting state fMRI sessions). In 

the patients’ group, the first scan was taken during their first psychotic 
episode (with a mean duration of treatment with antipsychotic medi
cation of 23.83 ± 10.69 days) and the second scan, after 122.6 ± 44.22 
days (or 17.51 ± 6.31 weeks) of treatment (Undurraga et al., 2022). In 
the case of healthy controls, the interval between scans was similar to 
that of patients (p = 0.605), with 128.87 ± 47. 59 days (or 18.3 ± 6.83 
weeks). 

Treatment was provided according to local guidelines and the clin
ical team’s criteria, with no intervention from the research team. At both 
sessions, a psychiatrist assessed patients’ symptoms with the PANSS 
scale (Stanley R Kay et al., 1987). 

The study was approved by the Ethics and Research Committee of the 
Northern Metropolitan Health Service (SSMN) and the Ethics Committee 
of the Pontificia Universidad Católica de Chile. All participants signed 
informed consent. 

2.2. Clinical variables 

To compare doses of antipsychotic medication across patients taking 
different antipsychotic drugs, we used Chlorpromazine (CPZ) dose 
equivalents calculated according to Defined Daily Doses method (DDDs) 
(Leucht et al., 2016). 

To assess symptoms severity, we used Positive and Negative Syn
drome Scale (PANSS) (Stanley R Kay et al., 1987). This instrument is 
constituted by three subscales measuring positive and negative syn
dromes, and general psychopathology. The subscales are:  

- Positive Scale (range 7 to 49): measures so-called positive symptoms, 
including delusions and hallucinations, which originally were 
conceptualized as productive features superadded to the mental 
status of patients.  

- Negative Scale (range 7 to 49): measures negative symptoms such as 
a lack of motivation, conceptualized originally as deficit features 
characterized by loss of functioning.  

- General Psychopathology (range 16 to 112): an important adjunct to 
the positive–negative assessment, to provide a parallel but separate 
measure of illness severity. 

PANSS Total score (range 30 to 210) is obtained by summation 
across Positive, Negative and General Psychopathology subscales. 

2.3. MRI protocol and preprocessing 

Resting-state functional MRIs were acquired with a Philips Ingenia 3 
T MRI scanner with a 16-channel brain coil. The scanning parameters 
were the following: total scan time 8.33 min, single-shot EPI, TR 2.5 s, 
TE 35 ms, flip angle of 82◦, FOV of 220x220x110mm, and an isotropic 
spatial resolution of 2.75 mm. Subjects were asked to remain still and 
with their eyes opened. A structural T1-weighted image was also ac
quired with a voxel size of 1.0 mm3 isotropic, a TI delay of 965.2 ms, TE 
3.6 ms, TR 7.7 ms, and flip angle of 8◦. 

Preprocessing of the functional images followed the same pipeline 
described elsewhere (Tepper et al., 2022), which includes usual steps of 
realignment and slice-time correction with SPM12 (Ashburner et al., 
2021), co-registration and nonlinear transformation to MNI space with 
ANTs, (Avants et al., 2014), linear detrending, intensity normalization, 
spatial smoothing and bandpass-filtering (MATLAB, 2021). ICA-AROMA 
(Pruim et al., 2015) was used to remove residual movement artifacts, as 
well as the regression of mean white matter and cerebrospinal fluid. 
Also, one iteration of DiCER (Diffuse Cluster Estimation and Regression) 
(Aquino et al., 2020) with a full gray matter mask was implemented in 
order to correct biphasic global signal artifacts. This algorithm performs 
a clustering analysis of the voxels’ time series to find wide-spread signal 
deflections (WSD); then it computes an adjusted-mean of such identified 
voxels, in which any anticorrelated voxel is flip around in sign. Finally, 
this adjusted mean of a detected WSD is regress-out to clean the BOLD 
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signal. By using a full gray matter mask and one iteration in our 
implementation, we performed an adjusted version of Global Signal 
Regression (GSR), in which the flipping of anticorrelated voxels allows 
for correction of biphasic signal artifacts that are not cleaned-out by 
GSR, because its global mean value would turn out to be close to zero. 

2.4. Analyses of functional connectomes 

To define the ROIs in our functional connectomes, we used a 400 
parcellations atlas (Schaefer et al., 2018) in which each parcel is 
matched to a corresponding network in the 7 Yeo networks (Yeo et al., 
2014). We also incorporated a subcortical parcellation with 32 ROIs 
(Tian et al., 2020). For our analyses including subnetworks computa
tions, 7 Yeo networks plus 1 subcortical ‘network’ were considered. 

We computed functional connectomes (FC) by performing pairwise 
Pearson’s correlations between time-series of the previously mentioned 
432 ROIs. Fisher’s z transform was applied to all subjects’ FCs to get 
normal distributions of correlation values (Fisher, 1992) before 
computing our three variability measures (Deviation from Healthy FC, 
Iself and Iothers). 

2.4.1. Intra-individual variability: Iself 
We analyzed connectome stability to study whether patients’ FCs 

change more than those from healthy controls from one session to the 
other (i.e., intra-subject variability). 

Connectome stability was computed as the within-subject Pearson’s 
correlation coefficient (i.e., Pearson’s correlation between the two 
connectivity matrices from the same subject, taken in the two fMRI scan 
sessions) (see Fig. 1, top-left panel). This measure can also be referred to 
as the individual’s fingerprint (Finn et al., 2015) or as Iself (Amico and 
Goñi, 2018), which will be used from now on. We computed Iself both 
from whole brain functional connectomes and separately from the 7 Yeo 
canonical functional networks (Yeo et al., 2014; Schaefer et al., 2018) 

plus one additional ‘network’ of subcortical regions (Tian et al., 2020). 
Then, we compared mean Iself values of FEP patients and HC on a 

group-level analysis. For these analyses, we modeled Iself with a GLM 
model including age, sex, days between sessions (SessInterval) and 
maximum framewise displacement (maximum value across the two 
mean values, each from one scan session) as covariates of no interest, 
and a categorical variable ‘Group’ with values ‘FEP’ or ‘HC’. All nu
merical variables were standardized (centered and scaled) to aid in the 
interpretation of results.  

Iself_network ~ Intercept + Age + Sex + maxFD + SessInterval + Group    

Where Iself_network refers to either Iself computed from whole brain 
FC or subnetworks’ FCs. 

We used a second model, only with data from our patient’s sample, to 
find out whether differences in connectome stability were related to 
clinical measures. Our predictors in this model were: deltaPANSS, which 
measured absolute changes in symptoms between the two sessions 
(measured as the absolute value of the inter-sessions difference of 
PANSS Total scores), and deltaAP, which measured absolute changes in 
treatment between the two sessions (measured as the absolute value of 
the inter-sessions difference of antipsychotic doses, APdose). Antipsy
chotic doses were expressed in mg of chlorpromazine (CPZ) equivalents 
using the DDD method (Leucht et al., 2016). As in the previous model, 
we included age, sex, days between sessions, and maximum framewise 
displacement as covariates of no interest, and all numerical variables 
were standardized to aid in the interpretation of results.  

Iself_patient ~ Intercept + Age + Sex + maxFD + SessInterval + delta
PANSS + deltaAP                                                                                  

With: deltaPANSS = abs(PANSSTot_sess2 – PANSSTot_sess1)                      

and deltaAP = abs(APdose_sess2 – APdose_sess1)                                     

Fig. 1. Methods to compute Iself, DevfHC and 
Iothers measures (schematic representation). 
Different color functional connectomes (FCs) repre
sent different subjects. For Iself (top-left panel) blue 
and light blue represent two FCs from the same sub
ject, taken in two different sessions. Top-left panel: 
Iself was computed as the within-subject Pearson’s 
correlation coefficient (i.e., Pearson’s correlation be
tween two FCs from the same subject). Top-right 
panel: for each subject and each session, DevfHC was 
computed as 1 minus the mean of pairwise Pearson’s 
correlations between its FC and each healthy subjects’ 
FC, for the same session. Bottom panel: Iothers was 
computed as the mean of Pearson’s correlations be
tween pairs of FCs from different subjects from the 
same group, and the same session. (For interpretation 
of the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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2.4.2. Deviation from healthy FC 
We then studied whether patients’ FCs were more different to 

healthy FCs than HC intra-group differences. For this, we computed the 
“Deviation from Healthy FCs” (DevfHC) measure for each subject and 
each session as 1 minus the mean of pairwise Pearson’s correlation be
tween their connectome and each healthy subjects’ FC, for the same 
session (see Fig. 1, top-right panel). As each subject has two FCs (one per 
session), we computed two DevfHC for each subject. Accordingly, we 
used the following mixed linear model for repeated measures to explore 
group differences in DevfHC:  

DevfHC ~ Intercept + Age + Sex + FD + Group + (1|subject)                   

Where age and sex were time-invariant covariates (just one value 
was used for the repeated observations from a given subject), while FD 
was a time-varying covariate, taking on a different value (mean FD from 
session 1 or from session 2) for each of the repeated observations. We did 
not control for SessInterval in this model because DevfHC is computed 
independently for each session of each subject. All numerical variables 
were standardized to aid in the later interpretation of results. 

Then, we tested whether different values of DevfHC in the FEP group 
were associated with clinical variables, specifically with symptoms 
levels (PANSS Total scores) and doses of antipsychotic medication (AP 
dose), with the following model:  

DevfHC ~ Intercept + Age + Sex + FD + Total PANSS + AP dose + (1| 
subject)                                                                                                

In this model, both Total PANSS and AP dose were modeled as time- 
varying factors (with the corresponding values measured in each of the 
two sessions of each subject), to account for changes in between ses
sions. Antipsychotic doses were expressed in mg of chlorpromazine 
(CPZ) equivalents using the DDD method (Leucht et al., 2016), and all 
numerical variables were standardized before fitting the model. 

In order to study how changes in clinical variables might relate to 
changes in DevfHC, we used the following model:  

deltaDevfHC ~ Intercept + Age + Sex + FDmax + deltaPANSS_signed +
deltaAPdose_signed                                                                               

in which all ‘delta’ variables were computed as the difference be
tween their value as measured in session 1 minus their value in session 2 
(different from what we used in models for Iself values, in which we 
were not interested in the direction of the change, but only on its ab
solute value).  

Here, then: deltaDevfHC = DevfHC_sess1 – DevfHC_sess2                          

deltaPANSS_signed = PANSSTotal_sess1 – PANSSTotal_sess2                    

deltaAP_signed = APdose_sess1 – APdose_sess2                                       

Also, in this model we do not control for SessInterval because each 
value of DevfHC is computed by comparisons with healthy subjects on 
that same session. So, any physiological changes due to time will be 
present not only in the FC of each individual but also in those FCs with 
which we are comparing them. 

2.4.3. Inter-individual variability: Iothers 
To evaluate inter-individual differences between patients and con

trols, we used the fingerprint-like measure “Iothers” (as defined by 
Amico and Goñi, 2018), which can be calculated as the average of 
Pearson’s correlations between pairs of connectivity matrices from 
different subjects from the same group. In other words, this is a measure 
of how much alike different subjects are in an intra-group fashion. 

With our dataset, with two sessions per subject, we computed two 
measures of Iothers per subject as the average of Pearson’s correlations 

between their own FC and those of the other subjects of the same group 
(see Fig. 1, bottom panel). For the case of HC group, Iothers is the inverse 
of DevfHC; but for FEP patients, Iothers is an intragroup inter-individual 
variability measure, whereas DevfHC is an intergroups inter-individual 
comparative measure. This is, DevfHC measured differences between 
patients and HC, and Iothers measured how different patients were 
among themselves. 

We tested whether FEP patients had different Iothers than HC by 
means of the following mixed linear model (with all numerical variables 
standardized, and with FD as the only time-varying covariate). We did 
not control for SessInterval because Iothers is computed independently 
for each session of each subject.  

Iothers ~ Intercept + Age + Sex + FD + Group + (1|subject)                     

Then, we evaluated whether different values of Iothers in FEP were 
related to clinical variables (both PANSS Total scores and doses of 

Table 1 
Demographic and clinical information of the sample. Groups differed 
significantly in age, but not in sex, days between sessions nor framewise 
displacement. In the First Episode of Psychosis group (FEP), patients showed 
statistically significant differences in symptoms severity between sessions 1 and 
2 (for PANSS Total scores and independently for each subscale). Not statistically 
significant changes were found in doses of antipsychotic medication between 
sessions.   

FEP 
(N = 30) 

HC 
(N = 32) 

Statistics 

Sess1 Sess2 Sess1 Sess2 

Sex (F/M) 8/22 13/19 Chi- 
square =
1.34 
p = 0.246  

Age (mean ± sd) 20.4 ± 2.57 24.06 ± 3.56 t = − 4.62 
p ¼ 2.12e- 
05 

Days of treatment 
before first 
session 
(mean ± sd)  

23.83 ± 10.69 NA NA 

Days between 
sessions 1 and 2 
(mean ± sd)  

122.6 ± 44.22 
(17.51 ± 6.31 

weeks) 

128.87 ± 47.59 
(18.3 ± 6.83 

weeks) 

t = 0.52 
p = 0.605 

PANSS Total score 
(mean ± sd) 

68.83 
± 13.20 

45.86 ±
15.27 

NA NA t = 6.23 
p ¼ 5.62e- 
08 

PANSS Positive 
scale (mean ± sd)  

16.33 
± 6.18 

10.10 ±
5.03 

NA NA  
t = 4.29 
p ¼ 6.93e- 
05  

PANSS Negative 
scale (mean ± sd)  

19.93 
± 7.43 

13.33 ±
7.13 

NA NA t = 3.51 
p ¼ 8.68e- 
04  

PANSS General scale 
(mean ± sd)  

32.57 
± 6.69 

22.43 ±
6.31 

NA NA t = 6.04 
p ¼ 1.18e- 
07 

Antipsychotic (AP) 
medication doses 
(CPZ equivalents in 
mg) 

510.0 
±

303.81 

450.36 
±

268.49 

NA NA t = 0.79 
p = 0.433 

Mean Framewise 
Displacement 
(mean ± sd) 

0.325 
± 0.129 

0.318 ±
0.118 

0.282 
±

0.071 

0.322 
±

0.117 

t (FEPsess1, 

HCsess1) =

1.64 
p = 0.106 
t (FEPsess2, 

HCsess2) =

-0.14 
p = 0.885 

NA = Not Applicable. FEP = First Episode of Psychosis. HC = Healthy Controls. 
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antipsychotic medication as time-varying factors) with the following 
model:  

Iothers_patients ~ Intercept + Age + Sex + FD + Total PANSS + AP dose +
(1|subject)                                                                                             

We also repeated these analyses computing Iothers from the 7 Yeo 
canonical functional networks (Yeo et al., 2014; Schaefer et al., 2018) 
plus the additional subcortical ROIs (Tian et al., 2020). 

3. Results 

Demographic and clinical information can be found in Table 1. Pa
tients and healthy controls differed significantly in age (p = 2.12e-05). 
According to PANSS Total scores, and its correspondence to Clinical 
Global Impressions ratings (Leucht et al., 2005), our patients were 
“moderately ill” in session 1 and improved to “mildly ill” in session 2, 
with 122.6 ± 44.22 days of treatment in between sessions. Statistically 
significant differences between symptoms in sessions 1 and 2 were found 
for PANSS Total scores (p = 5.62e-08) and also for Positive, Negative 
and General subscales (p = 6.93e-05, p = 8.68e-04 and p = 1.18e-07, 
respectively). We modeled clinical symptoms severity by including 
PANSS Total scores in our models (results from models including PANSS 
subscales as separate factors can be found in Supplementary 
Information). 

Where group comparisons were made between FEP and HC (models 
without inclusion of clinical variables), 1 HC subject was excluded due 
to missing values for days between sessions (N = 61, where NFEP = 30 
and NHC = 31). In all FEP analyses including AP doses, 2 FEP subjects 
were excluded because of missing values (remaining N = 28). 

3.1. General results 

Summary of the computed measures and uncorrected group com
parisons (2 sample t-test) can be found in Table 2. We found no differ
ences in Iself values (p = 0.120), but patients differed significantly from 
healthy subjects in DevfHC and in Iothers in their first fMRI scanning 
session (p = 0.021 and p = 0.0001, respectively), but not in the second 
session (p = 0.230 and p = 0.163). Results from more refined analyses 
including confounds are described in the following sections. 

3.2. Intra-individual variability: Iself 

As it can be seen in Tables 3 and 4, we found no group differences for 
whole brain functional connectomes (Group p-val = 0.154). Uncorrec
ted p values point to a significant effect of Group for Iself values from 
somatomotor, frontoparietal and DMN network, but none of them sur
vives multiple comparisons correction (FDR Benjamini & Hochberg). 
The direction was similar for lower Iself in FEP patients for all sub
networks (see Table 4 and Fig. 2). 

Results from modelling Iself values with clinical variables can be seen 
in Table 3 (whole brain) and Table 5 (all networks). For these models, no 
results were statistically significant after correcting for multiple com
parisons with FDR Benjamini & Hochberg method. When substituting in 
the model the predictor deltaPANSS by its three subscales (deltaPositive, 
deltaNegative and deltaGeneral), results suggest a significant associa
tion between changes in General PANSS subscale and Iself values in 
Ventral Attention networks. For more details on those results see Sup
plementary information (Table S1 and S2). 

Table 2 
Summary of computed measures (whole brain FCs) and uncorrected group 
comparisons. We found no significant difference for Iself values between 
groups. Groups differed significantly in DevfHC and Iothers in session 1, but not 
in session 2.   

FEP 
(N = 30) 

HC 
(N = 32) 

Statistics 

Sess1 Sess2 Sess1 Sess2 

Iself 
(mean 
± sd)  

0.476 ± 0.087 0.508 ± 0.074  
t = -1.58 
p = 0.120  

DevfHC 
(mean 
± sd)  

0.629 ±
0.035 

0.630 ±
0.026 

0.609 ±
0.033 

0.621 ±
0.033 

t (FEPsess1, 

HCsess1) = 2.36 
p ¼ 0.021 
t (FEPsess2, 

HCsess2) = 1.21 
p = 0.230  

Iothers 
(mean 
± sd)  

0.356 ±
0.033 

0.368 ±
0.024 

0.391 ±
0.033 

0.379 ±
0.033 

t (FEPsess1, 

HCsess1) = -4.13 
p ¼ 0.0001 
t (FEPsess2, 

HCsess2) = -1.41 
p = 0.163  

Table 3 
Models for Iself computed from whole brain FCs. Top table shows results for 
group comparisons (no statistically significant differences were found when 
correcting for age, sex, framewise displacement (FDmax) and days between 
sessions (SessInterval)). Bottom table shows model looking for associations with 
changes in clinical variables in the FEP group. No statistically significant results 
were found. All coefficients showed are standardized.  

Iself ~ Age + Sex + FDmax + SessInterval + Group 
N = 61  

Coef. Std.Err t P > |t| [0.025–0.975] 

Intercept 0.2994 0.265 1.132 0.263 − 0.231 – 0.829 
Age − 0.1594 0.157 − 1.014 0.315 − 0.474 – 0.156 
Sex[T.M] − 0.1328 0.286 − 0.464 0.644 − 0.706 – 0.440 
FDmax − 0.2345 0.137 − 1.709 0.093 − 0.509 – 0.040 
SessInterval 0.0304 0.129 0.235 0.815 − 0.229 – 0.289 
Group[T.FEP] − 0.4317 0.298 − 1.447 0.154 − 1.029–0.166 

Iself_patients ~ Age + Sex + FDmax + SessInterval + deltaPANSS + deltaAPdose 
N = 28  

Coef. (std) Std.Err t P > |t| [0.025–0.975] 

Intercept − 0.0478 0.418 − 0.114 0.910 − 0.916 – 0.821 
Age − 0.2098 0.227 − 0.925 0.365 − 0.681 – 0.262 
Sex[T.M] 0.0669 0.520 0.129 0.899 − 1.014 –1.148 
FDmax − 0.1155 0.217 − 0.532 0.600 − 0.567 – 0.336 
SessInterval 0.1852 0.227 0.814 0.425 − 0.288 – 0.658 
deltaPANSS − 0.1886 0.214 − 0.883 0.387 − 0.633 – 0.225 
deltaAPdose 0.3332 0.205 1.629 0.118 − 0.092 – 0.759  

Table 4 
Iself subnetworks: groups comparison. Summary of results for categorical vari
able ‘Group’, across models for Iself values computed from subnetworks. Un
corrected p values point to significant group differences in somatomotor, 
frontoparietal and DMN networks, with reduced Iself values in patients. No re
sults remain significant after correction for multiple comparisons with FDR 
Benjamini & Hochberg. All coefficients showed are standardized.  

Iself_network Group (T.FEP) 
Coefficient Uncorrected p Corrected p (fdr) 

Whole brain − 0.4317 0.154 —— 
Visual − 0.0157 0.956 0.956 
Somatomotor − 0.6193 0.040 0.106 
Dorsal Attention − 0.4891 0.105 0.210 
Ventral Attention − 0.4374 0.149 0.239 
Limbic − 0.3526 0.255 0.340 
Frontoparietal − 0.6249 0.023 0.106 
DMN − 0.6301 0.030 0.106 
Subcortical − 0.1092 0.715 0.817  
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3.3. Deviation from healthy FC 

We found a significant association between Deviation from healthy 
connectomes (DevfHC) and being in the FEP group (standardized beta of 

0.491 ± 0.237, p = 0.038; Table 6 top panel), controlling for differences 
in sex, age and framewise displacement. We also looked at whether this 
association was related to clinical variables. As shown in Table 6 (bot
tom panel), we did not find significant associations (p values for 

Fig. 2. Residualized Iself group differences. Residuals from model Iself ~ Intercept + Age + Sex + FD + SessInterval (all numerical variables standardized) plotted 
according to Group (FEP or HC). Blue line represents the mean value of the distribution. Shown p-values correspond to uncorrected p-values for ‘Group’ beta co
efficient from linear models with Iself as dependent variable (* highlights p < 0.05) (See Table 4). Uncorrected p values point to significant group differences in 
somatomotor, frontoparietal and DMN networks, with reduced Iself in patients. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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variables Total PANSS and APdose were 0.136 and 0.060 respectively). 
Results looking at PANSS subscales were similar and can be found in 
Supplementary information (Table S3). 

When assessing changes in DevfHC (deltaDevfHC), we found no group 
differences (see Table 7). However, in the group of patients, we found a 
positive association between deltaPANSS_signed and deltaDevfHC (p =
0.035) (see Table 7 and Fig. 3). Results looking at PANSS subscales 
suggest this association to be mainly attributable to changes in Negative 
symptoms (see Table S4). 

3.4. Inter-individual variability: Iothers 

Regarding Iothers (i.e., how similar a subject is to their group), we 
found a statistically significant difference between groups (p = 0.001), 
after controlling for sex, age and movement within the scanner. FEP 
patients showed reduced Iothers values (more inter-subject variability) 
with standardized beta coefficient of − 0.716. 

Then, we tested whether these differences in whole brain Iothers of 
FEP patients were attributable to clinical differences (PANSS Total score 
and doses of antipsychotic medication). When correcting for age, sex 
and framewise displacement, we found a statistically significant asso
ciation with PANSS Total scores (p = 0.027) and a trending association 
with AP doses (p = 0.057) (see Fig. 4). We also found an association 
between Iothers and sex, with male subjects being more similar to other 
patients (p = 0.049). More information about these analyses can be 

Table 5 
Iself subnetworks: models with clinical variables. Summary of results for variables ‘deltaPANSS’ and ‘deltaAP’ (see Methods) across models for Iself values 
computed from subnetworks, and only for FEP subjects. Uncorrected p values point to significant associations between deltaPANSS and Iself from Ventral Attention 
network, and between deltaAPdose and Visual, Ventral Attention and Frontoparietal networks. No results remain significant after correction for multiple comparisons 
with FDR Benjamini & Hochberg. All coefficients showed are standardized.  

Iself_patients deltaPANSS deltaAPdose 
Coefficient Uncorrected p Corrected p (fdr) Coefficient Uncorrected p Corrected p (fdr) 

Whole brain − 0.1886 0.387 —— 0.3332 0.118 —— 
Visual − 0.1251 0.534 0.611 0.4743 0.021 0.092 
Somatomotor − 0.1070 0.642 0.642 0.3210 0.154 0.206 
Dorsal Attention − 0.1509 0.456 0.611 0.1747 0.369 0.422 
Ventral Attention − 0.4886 0.018 0.146 0.4142 0.034 0.092 
Limbic 0.1876 0.394 0.611 0.3278 0.127 0.203 
Frontoparietal 0.1246 0.513 0.611 0.4054 0.032 0.092 
DMN − 0.1610 0.445 0.611 0.3214 0.120 0.203 
Subcortical 0.1446 0.500 0.611 − 0.0057 0.978 0.978  

Table 6 
Results for DevfHC mixed models. Top table shows results for group com
parisons: FEP subjects showed greater DevfHC when correcting for age, sex and 
framewise displacement (FD) (p = 0.038). Bottom table shows model looking for 
associations with clinical variables in the FEP group. No statistically significant 
results were found. All coefficients showed are standardized.  

DevfHC ~ Age + Sex + FD + Group + (1|subject) 
N = 61  

Coef. Std. 
Err 

z P > |z| [0.025 – 
0.975] 

Intercept − 0.152 0.209 − 0.727 0.467 − 0.563 – 
0.258 

Age 0.033 0.122 0.275 0.783 − 0.205 – 
0.272 

Sex[T.M] − 0.136 0.224 − 0.610 0.542 − 0.575 – 
0.302 

FD 0.027 0.088 0.307 0.759 − 0.145 – 
0.199 

Group[T.FEP] 0.491 0.237 2.071 0.038 0.026 – 0.957 
Group Var (random 

factor) 
0.288 0.199    

DevfHC ~ Age + Sex + FD + TotalPANSS + APdose + (1|subject) 
N = 28  

Coef. Std. 
Err 

z P > |z| [0.025 – 
0.975] 

Intercept 0.288 0.256 1.124 0.261 − 0.214 – 
0.790 

Age 0.096 0.135 0.709 0.478 − 0.169 – 
0.360 

Sex[T.M] − 0.403 0.310 − 1.301 0.193 − 1.011 – 
0.204 

FD − 0.169 0.134 − 1.264 0.206 − 0.432 – 
0.093 

Total PANSS 0.197 0.132 1.489 0.136 − 0.062 – 
0.456 

APdose 0.264 0.141 1.878 0.060 − 0.011 – 
0.539 

Group Var (random 
factor) 

0.000 0.201     

Table 7 
Results for deltaDevfHC models. Top table shows results for group compari
sons: no statiscally significant difference were found when accounting for age, 
sex and framewise displacement (FDmax). Bottom table shows model looking for 
associations with changes in clinical variables in the FEP group: deltaPANSS_
signed was positively associated with deltaDevfHC (p = 0.035). All coefficients 
showed are standardized.  

deltaDevfHC ~ Age + Sex + FDmax + Group 
N = 61  

Coef. Std. 
Err 

t P > |t| [0.025 – 
0.975] 

Intercept − 0.3122 0.269 − 1.161 0.250 − 0.851 – 
0.226 

Age 0.1030 0.160 0.646 0.521 − 0.217 – 
0.423 

Sex[T.M] 0.2318 0.290 0.799 0.428 − 0.349 – 
0.813 

FDmax 0.1127 0.139 0.809 0.422 − 0.167 – 
0.392 

Group[T.FEP] 0.3256 0.303 1.075 0.287 − 0.281 – 
0.932 

deltaDevfHC ~ Age + Sex + FDmax + deltaPANSS_signed + deltaAPdose_signed 
N = 28  

Coef. Std. 
Err 

t P > |t| [0.025 – 
0.975] 

Intercept 0.0063 0.388 0.016 0.987 − 0.799 – 
0.811 

Age − 0.2057 0.220 − 0.935 0.360 − 0.662 – 
0.250 

Sex[T.M] − 0.0089 0.474 − 0.019 0.985 − 0.992 – 
0.974 

FDmax − 0.0222 0.209 − 0.106 0.916 − 0.455 – 
0.411 

deltaPANSS_signed 0.4906 0.218 2.254 0.035 0.039 – 0.942 
deltaAPdose_signed 0.1660 0.206 0.806 0.429 − 0.261 – 

0.593  
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found in Table 8. 
We then analyzed Iothers computed from subnetworks. After con

trolling for sex, age, and movement within the scanner, and correcting 
for multiple comparisons (FDR Benjamini & Hochberg), we found a 
significant group difference in all 7 Yeo networks (but not for subcortical 
regions) (see Table 9). As it can be seen in Table 8, for all significant 
subnetworks, FEP patients showed reduced Iothers values (more inter- 
subject variability). Residualized Iothers group differences (correcting 
for sex, age and FD) can be seen in Fig. 5. 

In 6 out of these 7 networks (visual, somatomotor, dorsal attention, 
ventral attention, frontoparietal and DMN), Iothers was negatively 
correlated with PANSS Total scores (more symptomatic patients would 
be more different from other patients) (see Table 10). Associations with 
AP doses did not reach statistical significance. Results looking at PANSS 
subscales suggest associations between changes in Negative symptoms 
and Iothers computed from whole brain, as well as somatomotor and 
ventral attention networks (see Table S5 and S6). 

4. Discussion 

In this study, we explored inter and intra-individual variabilities in a 
group of subjects with First Episode of Psychosis (FEP) using resting 
state fMRI data and fingerprint-like measures derived from functional 
connectomes. Particularly, we explored three measures: Iself, Deviation 

from Healthy FC, and Iothers. 
As mentioned in the introduction, it has been previously reported 

that adults with Schizophrenia spectrum disorders have decreased 
connectome stability (Kaufmann et al., 2018). We expected our results 
to replicate such increased intra-subject variability, but no statistically 
significant values emerged from our analysis of Iself measures (whole 
brain p-value = 0.154). However, the tendency of all of our comparisons 
pointed in the same direction as previously reported findings, showing 
reduced Iself for FEP patients. Moreover, uncorrected p-values (without 
correcting for multiple comparisons) showed three Schizophrenia- 
relevant networks as focuses of reduced connectome stability (i.e., 
somatomotor, frontoparietal and DMN networks). 

Even if our results did not back up inter-group differences in con
nectome stability, the idea of greater intra-individual variability inevi
tably recalls the clinical variability seen in patients with Schizophrenia. 
As such, we decided to explore whether intra-group differences in Iself 
were associated to changes in symptoms (as measured by PANSS Total 
scores) and/or changes in antipsychotic doses from one session to the 
other (with a few months of treatment in between) in our FEP sample. If 
changes of symptomatology scores (or medication doses) were related to 
Iself in a negative direction, this could imply that patients who remain 
more stable in a certain clinical status have greater congruence with 
their own FC from a different session. However, our results were not 
statistically significant and therefore the data did not support this 

Fig. 3. Model fit for deltaDevfHC and association with deltaPANSS_signed. The positive association between deltaDevfHC and deltaPANSS_signed is colour 
coded. deltaDevfHC was positively associated with deltaPANSS_signed when accounting for age, sex, FDmax and deltaAPdose_signed (p = 0.035). See Table 7 for 
more information on this model. 

Fig. 4. Model fit for Iothers (whole brain) and association with clinical variables. Associations between Iothers WB (whole brain) and clinical variables are 
colour coded. Left panel: Iothers and PANSS Total scores were negatively associated (p = 0.027). Right panel: Iothers and AP doses showed a trend to a negative 
association (p = 0.057). For more information on this model see Table 8. 
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interpretation. 
Regarding inter-individual variance, first, with our measure of De

viation from Healthy FC, we studied individual mean distance to healthy 
functional connectomes. As expected, we found greater distances in the 
patients’ group (p = 0.038). This result means that patients’ FCs are 
generally more different from healthy FC than those of other healthy 
subjects. However, when analyzing our patients’ group, our results were 
not conclusive regarding whether this distance to healthy FCs is 

associated to symptoms severity or medication doses, although patients 
who were more medicated seem to differ more (with trend p value 0.060 
for antipsychotic doses). 

Relatedly, we also evaluated deltaDevfHC to analyze not only the 
relationship between illness severity and the distance to healthy FC, but 
how changes in clinical variables affect such distance. In this case, we 
found no group differences (p = 0.287), meaning patients and controls 
distances to healthy FCs changed approximately the same from session 1 
to session 2 (there might be healthy physiological changes in between 
sessions). However, we did find a positive association in the patients’ 
group between deltaPANSS_signed and deltaDevfHC (p = 0.035). Patients 
whose symptoms were reduced from session 1 to session 2 (delta
PANSS_signed > 0), got closer to healthy FCs (deltaDevfHC > 0) (recall 
from Methods that delta is computed as DevfHC_Sess1 – DevfHC_Sess2, 
so a positive value means that distance was larger in session 1). Ac
cording to analyses with PANSS subscales as covariables, this associa
tions might be mainly driven by changes in Negative symptoms (see 
Table S4). 

The idea of Deviation from Healthy FC can be related to previous 
studies in which group-level mean functional connectomes help classify 
subjects with Schizophrenia (Ji et al., 2019). In this matter, machine 
learning techniques have been used to train relatively successful clas
sifiers (with an average of 75% accuracy) to distinguish between pa
tients and healthy controls based on their functional connectomes (Ji 
et al., 2019; Talpalaru et al., 2019). Results of such classification studies 
are usually interpreted as the same phenotypic group having some 
similar functional connectome features (as connectivity signatures), 
which are used by the trained algorithms to discriminate among subjects 
of different groups. Then, functional connectomes of Schizophrenia 
patients may have some distinct patterns which make them different 
from healthy subjects, and our results point to clinical variables 
(particularly symptoms severity) being related to changes in these 
abnormal patterns. 

Regarding inter-individual variance, we also explored whether pa
tients are more (or less) similar than healthy controls in an intra-group 
comparison. By evaluating group differences of Iothers (i.e., how much 
similar a subject is to their group) computed from whole brain FCs, we 
found a statistically significant difference (p = 0.001), with FEP patients 
showing reduced Iothers values (more inter-subject variability). We also 
found a statistically significant association with PANSS score (p =
0.027), and a trending association with AP doses (p = 0.057), which 
indicates that patients with higher PANSS scores (and higher AP doses) 
have lower values of Iothers (they are less similar to other patients). We 
also found an association with sex (p = 0.049), indicating male patients 
to be more similar to other patients; which might be related to the fact 
that 73% of our patients are men (Ritchie et al., 2018). 

When analyzing Iothers from subnetworks, we found a group differ
ence for Iothers in all 7 Yeo networks (but not for subcortical regions). In 
all subnetworks, FEP patients showed higher inter-subject variability 
(reduced Iothers), which in 6 networks (visual, somatomotor, dorsal 
attention, ventral attention, frontoparietal and DMN) was correlated 
with PANSS Total scores (the more symptomatic, the more different to 
other patients). According to analyses with PANSS subscales as covari
ables, these associations might be mainly driven by Negative symptoms 
(see supplementary information). Associations with AP doses did not 
reach statistical significance. 

A recent study exploring inter-individual variability in Schizo
phrenia found a similar result of higher variability in patients in whole 
brain and in frontoparietal, DMN, and ventral attention networks 
(Santo-Angles et al., 2021). However, in that study they found an 
opposite association with symptomatology: more symptoms were asso
ciated with more similar connectomes (Santo-Angles et al., 2021). The 
authors argued that more symptomatic patients may be overrepresented 
in their mean connectome, which they used for assessing inter- 
individual similarity. When exploring inter-individual variability in an 
intragroup fashion, we should keep in consideration that outcomes will 

Table 8 
Models for Iothers computed from whole brain FCs. Top table shows results 
for group comparisons: FEP subjects showed reduced Iothers when accounting 
for age, sex and framewise displacement (FD) (p = 0.001). Bottom table shows 
model looking for associations with clinical variables in the FEP group: PANSS 
Total score was negatively associated with Iothers (p = 0.027), and male sub
jects had higher Iothers values (p = 0.049). All coefficients showed are 
standardized.  

Iothers ~ Age + Sex + FD + Group + (1|subject) 
N = 61  

Coef. Std. 
Err 

z P > |z| [0.025 – 
0.975] 

Intercept 0.216 0.198 1.091 0.275 − 0.172 – 
0.604 

Age − 0.021 0.115 − 0.187 0.852 − 0.247 – 
0.204 

Sex[T.M] 0.208 0.211 0.982 0.326 − 0.207 – 
0.622 

FD − 0.029 0.086 − 0.337 0.736 − 0.197 – 
0.139 

Group[T.FEP] − 0.716 0.224 − 3.193 0.001 − 1.156 – 
− 0.276 

Group Var (random 
factor) 

0.224 0.179    

Iothers_patients ~ Age + Sex + FD + TotalPANSS + APdose + (1|subject) 
N = 28  

Coef. Std. 
Err 

z P > |z| [0.025 – 
0.975] 

Intercept − 0.419 0.246 − 1.703 0.089 − 0.900 – 
0.063 

Age − 0.076 0.129 − 0.587 0.557 − 0.329 – 
0.177 

Sex[T.M] 0.586 0.297 1.970 0.049 0.003 – 1.169 
FD 0.141 0.128 1.099 0.272 − 0.111 – 

0.393 
Total PANSS − 0.286 0.129 − 2.217 0.027 − 0.539 – 

− 0.033 
APdose − 0.259 0.136 − 1.905 0.057 − 0.526 – 

0.007 
Group Var (random 

factor) 
0.000 0.205     

Table 9 
Iothers subnetworks: groups comparison. Summary of results for variable 
‘Group’ across models for Iothers computed from subnetworks. Before and after 
correction for multiple comparisons with FDR Benjamini & Hochberg, FEP 
subjects showed reduced Iothers when computed from whole brain functional 
connectomes and also from all 7 Yeo networks, but not for subcortical regions. 
All coefficients showed are standardized.  

Iothers_network Group (T.FEP) 
Coefficient 
(beta std) 

Uncorrected p Corrected p (fdr) 

Whole brain − 0.716 0.001 —— 
Visual − 0.505 0.024 0.038 
Somatomotor − 0.966 0.000 0.000 
Dorsal Attention − 0.691 0.001 0.001 
Ventral Attention − 1.024 0.000 0.000 
Limbic − 0.473 0.031 0.041 
Frontoparietal − 0.462 0.022 0.038 
DMN − 0.423 0.042 0.048 
Subcortical − 0.022 0.922 0.922  
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depend on the nature of our samples (this is, who we are comparing each 
subject against). Particularly, when regarding associations with clinical 
variables, the degree and heterogeneity in illness severity of the sample 
under study might have an impact on the direction of results. Here we 

computed Iothers by pairwise comparisons between subjects (and later 
we took the average of those values), and our results point to more 
symptomatic patients having a greater difference to others in their 
group. 

Fig. 5. Residualized Iothers group differences. Residuals from model Iothers ~ Age + Sex + FD + (1|subject) (all numerical variables standardized) plotted 
according to Group (FEP or HC). Blue line represents the mean value of the distribution. Shown p-values correspond to uncorrected p-values for ‘Group’ beta co
efficient from mixed models with Iothers as dependent variable (* highlights p < 0.05) (See Table 9). FEP subjects showed reduced Iothers when computed from 
whole brain functional connectomes and also from all 7 Yeo networks, but not for subcortical regions. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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Our findings of higher variability in FEP patients are consistent with 
the heterogeneity of the disorder and could be related to studies showing 
that Schizophrenia subjects have noisier (i.e., more variable) brains. 
There have been studies using entropy measures, which related 
Schizophrenia with more complex signal patterns than healthy subjects 
and dysregulation of brain dynamics (Sokunbi et al., 2014). Also, bio
logically realistic computational models have shown how Schizophrenia 
is characterized by diminished signal-to-noise ratios (Rolls et al., 2008). 
These models have shown that neurons firing irregularly and less syn
chronized, would be reflected in a more variable (that is, noisier) BOLD 
signal (Rolls et al., 2008). Both findings of higher intra and inter- 
individual variabilities in Schizophrenia would be consistent with such 
an assumption. 

These non-uniformly distributed variabilities of functional features 
in Schizophrenia can lead to biased results in group-means comparisons. 
In healthy subjects, intra-subject variability is concentrated in visual and 
somatomotor regions (Laumann et al., 2015; Poldrack et al., 2015), 
while inter-subject variability has been shown to be significantly higher 
in multimodal association areas and lower in unimodal sensory and 
primary motor areas (Mueller et al., 2013). Our findings of reduced 
connectome stability (with uncorrected p-values) showed that patients 
would have higher intra-subject variability in frontoparietal, DMN, and 
somatomotor networks. On top of that, our results showed higher inter- 
subject variability for patients across all cortical networks. In particular, 
inter-subject variability can be a crucial factor for group-means com
parisons, where brain regions with low inter-subject variability reach 
with higher probability the cut-off for significance than regions with 
higher inter-subject variability (Zilles and Amunts, 2013). 

Our results here show that there is increased inter-individual vari
ability in FEP patients, both intragroup and when comparing them to 
healthy subjects. Moreover, inter-individual variability between pa
tients seems to be associated with illness severity, with connectomes 
from more symptomatic patients differing more. This resonates with 
results from studies looking at more chronic patients (Kaufmann et al., 
2018; Santo-Angles et al., 2021), and extends them to the first period of 
the illness, where changes are more dynamic (Birchwood et al., 1998). 
Our findings could support the theory of a noisy connectome. If neuro
transmitter dysregulations result in reduced signal-to-noise ratios, then 
the information captured by functional connectomes would also be 
noisy and any comparisons like the ones made here would result in 
greater variabilities. 

Limitations 
This study has some limitations worth noting. First, our analyses 

(particularly for Iself) could have been underpowered (see Supplemen
tary Information for power analysis and sample size estimation). Iself is 
the only measure in which no averaging (which increases signal-to-noise 
ratios) is done at any point of the computation. Moreover, statistical 
models for Iself values do not have repeated measures, since only one 
measure of Iself is obtained for each subject from the two repeated scans. 

These methodological characteristics would require analyses to have 
larger sample sizes to reach same levels of statistical power. Kaufmann 
et al., 2018 found reduced connectome stability in Schizophrenia pa
tients using a sample>5 times larger than the one used here (Number of 
patients = 167, Number of controls = 202). Similarly, Santo-Angles 
et al., 2021 assessed inter individual variability in 110 patients and 110 
control subjects. 

On top of that, in this study we computed Iself and Iothers using 
Pearson’s correlation of full connectomes (or complete subnetworks). 
Some other more spatially localized measures (such as Regional Ho
mogeneity - ReHo) have been shown to more strongly identify subjects 
(even from Schizophrenia samples) (Larabi et al., 2022). Future studies 
could examine more localized metrics from a fingerprint perspective. 

5. Conclusions 

We showed a trend towards reduced connectome stability (i.e., 
increased intra-subject variability). We found increased deviation from 
healthy FCs in patients with first episode of psychosis, whose changes 
were related to changes in symptoms severity; and we found increased 
intragroup inter-subject variability which was related to symptoms’ 
levels in 6 Yeo networks (visual, somatomotor, dorsal attention, ventral 
attention, frontoparietal and DMN). 

In the search for a Schizophrenia biomarker, and given the hetero
geneity of this disorder, it is highly relevant to find individual-level 
measures which relate to clinical aspects. We here showed that the 
functional connectome can capture individual variability related to the 
severity of the disorder. However, it is possible that some of our analyses 
were underpower. Further research is needed to shed light on the real 
prognostic value of functional connectome’s variability. 
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Table 10 
Iothers subnetworks: models with clinical variables. Summary of results for variables ‘TotalPANSS’ and ‘APdose’ across models for Iothers computed from 
subnetworks, and only for FEP subjects. After correction for multiple comparisons with FDR Benjamini & Hochberg, Iothers was negatively associated to TotalPANSS 
when computed from whole brain as well as networks Visual, Somatomotor, Dorsal Attention, Ventral Attention, Frontoparietal and DMN. No significant associations 
between Iothers and APdose were found. All coefficients showed are standardized.  

Iothers_network TotalPANSS APdose 
Coefficient Uncorrected p Corrected p (fdr) Coefficient Uncorrected p Corrected p (fdr) 

Whole brain − 0.286 0.027 —— − 0.259 0.057 —— 
Visual − 0.304 0.026 0.035 − 0.131 0.348 0.901 
Somatomotor − 0.303 0.016 0.026 − 0.015 0.917 0.917 
Dorsal Attention − 0.355 0.005 0.013 0.066 0.612 0.901 
Ventral Attention − 0.417 0.001 0.005 0.040 0.762 0.901 
Limbic − 0.096 0.557 0.557 − 0.125 0.445 0.901 
Frontoparietal − 0.534 0.000 0.001 − 0.083 0.520 0.901 
DMN − 0.359 0.009 0.018 − 0.036 0.788 0.901 
Subcortical − 0.205 0.135 0.154 − 0.169 0.215 0.901  
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Tristany, J., Teixidó, C., Ortiz-Gil, J., Aguirre, C., Bosque, C., López-Araquistain, L., 
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Svaldi, D.O., Goñi, J., Abbas, K., Amico, E., Clark, D.G., Muralidharan, C., Dzemidzic, M., 
West, J.D., Risacher, S.L., Saykin, A.J., Apostolova, L.G., 2021. Optimizing 
differential identifiability improves connectome predictive modeling of cognitive 
deficits from functional connectivity in Alzheimer’s disease. Hum Brain Mapp 42, 
3500–3516. https://doi.org/10.1002/HBM.25448. 

Talpalaru, A., Bhagwat, N., Devenyi, G.A., Lepage, M., Chakravarty, M.M., 2019. 
Identifying schizophrenia subgroups using clustering and supervised learning. 
Schizophr Res 214, 51–59. https://doi.org/10.1016/J.SCHRES.2019.05.044. 
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