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How is the massive dimensionality and complexity of the microscopic
constituents of the nervous system brought under sufficiently tight control
so as to coordinate adaptive behaviour? A powerful means for striking this
balance is to poise neurons close to the critical point of a phase transition, at
which a small change in neuronal excitability can manifest a nonlinear
augmentation in neuronal activity. How the brain could mediate this critical
transition is a key open question in neuroscience. Here, I propose that the
different arms of the ascending arousal systemprovide the brainwith a diverse
set of heterogeneous control parameters that can be used tomodulate the excit-
ability and receptivity of target neurons—in other words, to act as control
parameters for mediating critical neuronal order. Through a series of
worked examples, I demonstrate how the neuromodulatory arousal system
can interact with the inherent topological complexity of neuronal subsystems
in the brain to mediate complex adaptive behaviour.
1. Introduction
The physical principles that govern the interactions of the billions of neurons that
make up the adult human brain remain poorly understood.Any systemwith such
avast set of interacting parts is capable of remarkably complex andheterogeneous
behaviour, due in large part to the enormous degrees of freedom available to the
system. The individual elements of the system—namely, neurons and glia—are
also themselves inherently complex and functionally nonlinear, which further
augments the complexity of nervous system dynamics. There is also robust
evidence to suggest that the brain contains scale-free order—i.e. is organized
across multiple spatial and temporal scales. For these reasons, it is no wonder
that the dynamics emergent in the activity of the nervous system are highly
complex and flexible, yet distributed and low-dimensional.

A framework that captures each of these key features is the critical point of a
phase transition,which arises in complex systems that exhibit an abrupt transition
between distinct states (e.g. order and disorder) [1,2]. Systems poised at (or near)
the critical point exhibit a number of beneficial features consistent with a well-
organized nervous system. First, activity at the critical point is self-perpetuating,
poised between the stillness of quiescence and the blooming and buzzing
confusion of runaway activity. Second, systems poised at the critical point are sus-
ceptible to changes in inputs across multiple orders of magnitude and they can
organize their responses to inputs across a similarly broad diversity of scales.
This neural flexibility is thought to form the basis of cognitively flexible yet
robust motor plans that aim to take advantage of internal and external affor-
dances [3,4]. Finally, systems poised near criticality also display diverging
autocorrelations (a process known as ‘critical slowing down’) that further
imbue the system with susceptibility to a wide range of different signals.

Over the recent decades, a wide range of approaches have been used to detect
signatures of criticality in the brain. By tracking the distribution of action-
potentials (spiking) activity or thresholded local field potentials over consecutive
time bins in neural data [3,5–9], it has been clearly demonstrated that neural popu-
lations typically follow a characteristics power-law distribution, such that the
probability of observing ever larger (fluctuations/spikes) and longer avalanches
scale equivalently across many different recording techniques [2,6,10]. Other
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methods have looked at temporal activity and used detrended
fluctuation analysis [11,12], the Hurst exponent [13,14], or the
power spectrum [15] to provide further evidence for criticality
in neural recordings. Using different approaches to assess
autocorrelation in neural dynamics has led to the suggestion
that the brain might actually be poised in a slightly subcritical
regime [16], which would confer the benefits of criticality
while providing robustness to noisy fluctuations in the
system that may otherwise push a critical system over into
the dangerous supercritical regime. Finally, there are elegant
descriptions of how the hierarchical, modular organization of
the structural connections between regions of the cerebral
cortex may act to ‘stretch’ the critical-point into a broader
quasi-critical regime [17], further imbuing the system with a
susceptibility acrossmultiple orders of spatio-temporal activity
patterns while protective of crossing into the supercritical
regime. In sum, there are an array of different approaches
that each provide complimentary evidence that the brain
uses features of criticality.

Despite substantial evidence for criticality in the brain, the
search for the biological mechanisms that facilitate the critical
transition (known as control parameters) has remained more
challenging. Here, I advance the thesis that the ascending arou-
sal system (AAS)—a set of subcortical structures connecting
the brainstem, thalamus, hypothalamus, and basal ganglia to
the cerebral cortex—is a plausible means for controlling critical
brain dynamics. By modulating the excitability and receptivity
of targeted neurons, the AAS is capable of shifting distributed
neural activity so as to maximize the adaptive capacity of
the emergent dynamics, simultaneously imbuing the brain
with flexibility, robustness and efficiency. In this manuscript,
I will first overview the basic principles of the AAS, and pro-
vide evidence suggestive of their role in mediating criticality
in the brain. I will then elaborate on this position by highlight-
ing idiosyncratic features of the different arms of the arousal
system as differential control parameters that further augment
and distribute signatures of criticality in ways that help to
explain the functional signatures of different neurochemical
pathways in the brain. In this way, I hope to provide a unifying
bridge between neurobiology, systems neuroscience and
statistical physics.
2. A complex, adaptive system under the control
of the ascending arousal system

In dynamical systems, a control parameter is a property of a
system mediating a phase transition that typically impacts the
state or order of the system’s components. A classic example
comes from the Ising model of magnetism (figure 1b)—here,
temperature is a control parameter that regulates the emergent
magnetic strengthof a ferromagneticmaterial. If the temperature
is high, the ferromagnet is non-magnetic—all of the individual
magnetic domains orient in random directions stemming from
stochastic thermal fluctuations, leading to a lack of global
order (and hence, no magnetism). At cooler temperatures, the
fluctuations of individual magnetic domains are decreased,
and as such, the magnet remains locked in a highly ordered
(and hence, magnetic) state. At the critical temperature, a value
in between these two extremes, the magnetic domains are coor-
dinated across multiple scales—i.e. there are magnetic islands
withinmagnetic islands inside (and so on). Crucially, at the criti-
cal point, the magnet is maximally susceptible to an external
magnetic field—i.e. an imposed magnetic field can rapidly
permeate through the magnet aligning domains. In the brain,
critical processes are often couched in terms of chains of
spikes that either dissipate (subcritical), exhibit runaway
activity (super-critical) or sit in a zone in which they can be
self-perpetuating facilitating communication (figure 1c).

What features must a control parameter possess to mimic
these signatures in the brain? First, like temperature in the
Ising model, the control parameter should have (relatively)
global influence over large portions of the system—the greater
the coverage of the signal, the more likely it is that the system
will respond coherently to changes in the control parameter.
Secondly, the neural system responsible for instantiating
system-wide control should be relatively low-dimensional,
relative to the controlled population, such that signals can be
broadcast to multiple different regions distributed across the
system [18,19]. Finally, the control parameter should retain
the capacity to alter the susceptibility of the individual
elements of the system. In the case of the ferromagnetic
material, the increased susceptibility of the magnet is
mediated by a diverging correlation length between spatially
separated domains. With these simple characteristics, subtle
changes in the control parameter (at the critical point) can
have large effects on the order (and hence, the magnetism)
of the system. The key question then becomes—where do we
see evidence of these features in the brain?

Although there are numerous regions in the brain that
share some (but not all) of these features, such as the diffusely
projecting matrix thalamic nuclei [20], there is one system
that aligns remarkably well—namely, the ascending arousal
system (AAS; figure 2). The AAS is a collection of highly con-
served nuclei in the brainstem and forebrain that are
autonomously active during wake (and various states of
sleep), send unmyelinated axons widely across the brain, con-
tain substantially smaller numbers of neurons than their
projection targets, and alter the excitability (and hence, sus-
ceptibility) of neurons and glia in efferent targeted regions
[21–24]. As outlined above, these features align precisely
with the requirements of an effective control parameter for
a complex dynamical system like the brain. As is the case
with biological systems, the specific mechanisms by which
the AAS alters the susceptibility is highly informative of
their computational role in the brain. Hence, I will outline
these features, and (where possible) link the elements of the
AAS to their computational signatures through empirical
and theoretical investigations.

The neurons that comprise the AAS spike a relatively
constant rate during wake [23–25]. This pervasive tonic
spiking is actually a well-known characteristic that differen-
tiates the waking brain from the same system during the
deep stages of sleep (i.e. NREM; [23,26]), anaesthesia
[13,26,27] and coma [28]. Fascinatingly, electrical stimulation
of different regions within the AAS can wake an anaesthe-
tized animal [29,30]. Given that these same processes can
be mimicked through modelling the impact of the AAS,
this thus provides evidence for critical processes mediated
by the arousal system in the brain. Importantly, intermediate
patterns of activity are also linked to specific functional sig-
natures—for instance, the capacity to perform complex
cognitive tasks has been linked to intermediate levels of
the neuromodulator, noradrenaline, in the prefrontal cortex
[31,32]. In the case of noradrenaline, this inverted
U-shaped relationship between noradrenaline levels
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Figure 1. Control over criticality. (a) Second-order phase transitions, the amount of order ( y-axis) is nonlinearly related to small changes in a control parameter
(x-axis). Below the critical point (green dot), the system has low order (subcritical; blue), whereas above the critical point, the system has increasing order (super-
critical; red). (b) The classic Ising model of magnetism: in the subcritical regime, there is no magnetism, as individual domains are misaligned; near the critical point,
the individual domains are now more susceptible to an external magnetic field, causing fluctuations in magnetism; and in the super-critical regime, the domains
align into an ordered magnetic state. (c) Analogously, in a neuronal population, a subcritical regime is associated with an absorbing quiescent state that arises from
ineffective interactions between neurons, leading to stimuli that effectively dissipate; near criticality, there is maximal percolation among the network; whereas in
the super-critical regime, heightened interactions are such that the network is over-excited by external inputs leading to runaway activity.
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(i.e. arousal) and cognitive function is known as the
Yerkes–Dodson relationship [33].

The majority of nuclei that comprise the AAS project rela-
tively diffusely throughout the brain. The noradrenergic
locus coeruleus, serotonergic dorsal raphe and histaminergic
tuberomammillary nuclei are the most diffuse [24,34–36],
whereas the dopaminergic substantia nigra/ventral tegmental
area [37] and cholinergic basal nucleus, pedunculopontine
nucleus/laterodorsal tegmentum and medial septum [38,39]
projecting in a much more targeted, segregated fashion.
Through thesewidespread contacts, the local activity of neuro-
modulatory nuclei can be distributed across large regions of the
brain, allowing for relatively low-dimensional, coordinated
responses across the nervous system [21,40,41]. Much like in
the example of the magnet, small changes in neuromodulatory
tone, particularlywhen they occur rapidly in time (i.e. in phasic
bursts), can enact widespread change across the brain that
mimics known features of critical systems.

Upon stimulation, the axonal fibres of the AAS release
neuromodulatory ligands from stored vesicles in their terminal
fibres. These ligands are released into the synapse or extracellu-
lar space, where they interact with trans-membrane G-protein-
coupled receptors. These receptors in turn enact major confor-
mational change to the internal milieu within neurons and glia
in ways that alter the excitability (or gain) of targeted regions
[21]. There are two major classes of neuromodulatory receptor
that are used by the different neuromodulatory systems [42]:
high-affinity Gs/i receptors, which alter the refractory period
and resting potential of targeted neurons; and low-affinity Gq

receptors, which release intracellular Ca2+ ions from internal
stores, and hence shift the membrane potential of the cell
closer to its reversal potential (thus augmenting the likelihood
of action potential formation). Depending on the density of
receptors, their precise location on the neuron (i.e. either pre-
or post-synaptic) and the identity of the cell on which they
are located (i.e. an excitatory or inhibitory neuron), the acti-
vation (or silencing) of these pathways can have substantial
impacts on emergent activity patterns.

By changing the gain of excitatory and inhibitory neur-
ons, neuromodulatory ligands can act as control parameters
for specific neural subpopulations, and in turn alter the
manner in which they process information. Considering the
arousal system in this light has specific implications for
a system-level understating of decision making. So how
might this process play out in a population of neurons dis-
tributed across the brain? An emerging consensus describes
decision-making in the brain as the accumulation of infor-
mation distributed across multiple sites in parallel [43,44].
Within this framework, decisions reflect the presence of neur-
onal ‘quora’ (figure 3), each signalling for a particular option,
such as an outcome, an action plan or the presence (or
absence) of a particular feature. While the subtleties of this
process are still being investigated, there are numerous
examples of distributed decision-making processes in biology
that can provide intuition for how the same processes may
play out in the human brain [45]. For instance, bacteria use
chemical signals to track population decisions [46], and
both ants [47] and bees [48] appear to rely on positive feed-
back patterns to determine the appropriate time to move to
a new site, and in which direction to travel. In each of these
cases, a key variable that tracks the ability to form quora is
the balance between the amount of information stored in
individuals and the amount shared among the population
(figure 3; [49]).
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Figure 2. The AAS alters neuronal gain. (a) The AAS comprises a set of autonomously active nuclei in the brainstem and forebrain that project diffusely around the
brain, albeit with idiosyncratic projection patterns. Key: nBM, the cholinergic nucleus basalis of Meynert (nBM; light green); the orexinergic lateral hypothalamus (LH;
light orange); the histaminergic tuberomammillary nucleus (TMN; dark orange); the dopaminergic ventral tegmental area (VTA; blue); the cholinergic pedunculo-
pontine nucleus (PPN; dark green); the noradrenergic locus coeruleus (LC; red); and the serotonergic dorsal raphe (DR; purple). (b) Upon release, neuromodulatory
ligands predominantly interact with G-protein-coupled receptors (Gq [green] and Gi [green]); (c) this causes a change in the relative spiking output (ΔQout) of a
neuron for a given change in current (ΔI), which is also referred to a change in gain (dQ/dI ). Key: Q, firing rate. Figure adapted from [21].
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Importantly, this balance between segregated information
storage among individuals and shared information transfer is
precisely the variable modulated by the neuromodulatory
ligands of the AAS. Indeed, evidence from computational
modelling suggests that the gain-altering mechanism of
neuromodulatory systems can facilitate precisely this infor-
mational transfer [50], wherein changes in neural gain can
alter the systems-level in the topological configuration of
macroscale brain networks, as measured by techniques such
as fMRI [40,41]. These computational links lead us to predict
that, during cognitive processing, low-levels of neuromodu-
latory tone will mediate a self-dominated mode that is
associated with relatively high local information storage
[50] and a segregated network architecture [40,41], whereas
at higher levels of neuromodulatory tone, heightened feed-
back between regions will lead to increased information
transfer [50] and a more integrated network topology
[40,41]. Although not interrogated through the lens of the
AAS, there is evidence to suggest that this quorum-formation
framework provides a parsimonious account of cortical
activity during a two-alternative forced-choice [51].

These features of the AAS are all consistent with their
role as control parameters in the brain. By augmenting (or
diminishing) the signals propagating through trains of gluta-
matergic-mediated action potentials [52], the AAS is ideally
placed to shape critical dynamics across the whole brain. But
if this is indeed the case, one wonders why the brain would
retain somany different classes of neuromodulatory chemicals
to perform the role that could be maintained by, say, a single
control parameter that is differentially received by a more
nuanced receptor profile in distinct regions of the brain. One
putative benefit for the diversity of neuromodulatory control
that we observe in the brain is that it can allow the system to
shift into different processing modes according to an animal’s
given set of needs [53–55]. Another (non-mutually exclusive)
benefit of retainingmultiple control parameters is that different
neuromodulatory nuclei can recruit (and hence, either aug-
ment or diminish) the topological features inherent within
the unique connectional architectures that characterize differ-
ent regions of the brain [55,56] (figure 4). Although there are
billions of neurons in the brain, the manner in which they are
connected with one another is strikingly different depending
on where the neurons reside. Nowhere is this difference more
striking than in the differences inherent within the organiz-
ation of the cerebral cortex (which is thought to be loosely
organized into columns of cells that are connected in particular
ways to one another; [57,58]; figure 4) and the cerebellum
(which is the paradigmatic example of organized, modular
architecture, with a precise cellular motif repeated across the
entire cerebellarmantle; [59]; figure 4). Given that distinct com-
putational benefits are presumed to emerge from the
machinations of these different topological organizations
[55,56], any neuromodulatory chemical that could augment
one or the other could thus represent a difference that makes
a difference in the nervous system.
3. Shaping signal-to-noise properties in the
thalamus

Neuromodulatory neurotransmitters play a crucial role in shap-
ing evolving activity patterns in the thalamus. In particular, the
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Figure 3. Controlling the systems that define adaptive decision making.
During an information accumulation process, it has been suggested that
decisions emerge through a process of information distributed across multiple
sites in parallel. For instance, take an abstract scenario, such as an animal
making a decision as to whether to commit to option A [red] or option B
[blue])—this could stand in for a movement, a choice or a strategy (or
any number of other scenarios). In this case, control parameters can provide
useful catalysation of different aspects of the decision-making process,
depending on which sub-process the control parameter was influencing. As
I have argued above, neuromodulators (NM) are well-placed to play this
role in the brain, and hence could signal: (a) an information processing
signal, which could reflect the rate at which information is accumulated
(NM1; green); (b) an urgency signal, which could stand in for whether a
quorum had not yet been obtained (NM2; orange), often necessitating greater
effort or flexibility; and/or (c) a satiation signal, which could identify whether
the accumulation phase has been successful (NM3; purple), which in turn
would necessitate inhibition of the accumulation process.
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addition of both acetylcholine and noradrenaline [60,61] has
been shown to shift the thalamus from a relatively sparse
‘burst’ mode (typically elevated during slow-wave sleep and
quiescence) to a more active ‘tonic’ mode (which tends to occur
more frequently during wake [62]; though see [63]). By contrast,
the two neuromodulators also have opposing effects on the
reticular nucleus: acetylcholine hyperpolarizes, whereas
noradrenaline depolarizes the inhibitory nucleus [60]. The sys-
tems-level implications for these effects present interesting
conundrums: although the heightened signal-to-noise in the nor-
adrenergic state [64] is consistent with our augmented sensory
discrimination during a relatively vigilant state [65], the noisier
background signal in the cholinergically modulated thalamus
is more difficult to unify with the focused, normalization [66]
and stabilized brain state trajectories [22,67] typically attributed
to the cholinergic state. One interesting possibility (that remains
to be confirmed empirically) is that the extremes of cholinergic
modulation onneuronal variabilityonlyemerge inpurely cholin-
ergic states (such as rapid eye movement sleep; [68]), but are
otherwise kept in check by other neuromodulatory systems
(such as the noradrenergic, serotonergic and dopaminergic
systems) that are active during the waking state.

By contrast to noradrenaline and acetylcholine, the predo-
minant action of serotonin in the thalamus is to hyperpolarize
the thalamic relay nuclei and thus, inhibit the tonic firing
mode [69]. Interestingly, the magnitude of the hyperpolarizing
response is typically more pronounced in diffusely projecting,
higher-order nuclei [69]. The effect of increased thalamic seroto-
nin would thus likely bias the system toward a deterministic,
feedforward mode of processing by diminishing the role that
feedback processes could play in the dynamic evolution of
the global brain state. The associative nuclei of the primate
thalamus also receive substantial dopaminergic inputs [70],
though the precise role of these projections is currently poorly
understood [71,72]. Given the crucial interactions between the
thalamus and cortex, which provide important constraints
over the balance between excitation and inhibition [73] and
shape an animal’s conscious awareness of the world around
them [74–76], I propose that neuromodulatory inputsmodulate
the excitability of the thalamus in a way that directly effects the
criticality propagation of activity in the cerebral cortex
(figure 1c).
4. Shifting between feedforward and feedback
modes in the cerebral cortex

The massive diversity and heterogeneity of both excitatory and
inhibitory cells within the cerebral cortex allows it to process in
a number of distinctmodes, which in turn aremodulated by the
presence of different neurochemicals. For instance, inputs to the
cortex from the thalamus (figure 5; dark red; [20]) or lower
(more granular) cortical regions [77,78] can cause the pyramidal
cells within a cortical region to send sparse spikes, and hence to
function in a relatively deterministic, feedforward mode. By
contrast, feedback projections arise from regions higher in the
cortical hierarchy [77], and project to supragranular layers of
lower cortical regions, wherein they innervate both inter-
neurons and the apical dendrites of pyramidal neurons with
cell bodies in L2, L3 and L5 (figure 5). These two streams of
activity are presumed to combine together to instantiate a
form of predict processing in the brain, albeit with distinct
implementation-level predictions depending the particular
cells under investigation [79–81]. For instance, one proposed
implementation of predictive processing suggests that, when
feedforward and feedback signals coincide within a precise
(approx. 30 ms) temporal window, there is evidence that
thick-tufted, layer 5 pyramidal-tract cells (L5PT; figure 5; grey)
undergo an ‘apical amplification’ and transition into an
NMDA-receptor mediated burst mode of firing, that strongly
increases their signal-to-noise properties [82] in a way that
integrates their activity into an evolving state of conscious
awareness [56,79,83].

There is evidence to suggest that the cholinergic system
may favour feedforward modes of processing [84], either
by exciting intra-telencephalic (IT) pyramidal cells [85] or
by recruiting the parvalbumin-staining, fast-spiking GABA-
ergic interneurons [86,87] that utilize feedforward inhibition
[88,89] to facilitate high-frequency gamma rhythms in the
cortex [90]. These neurobiological details may help to explain
the links between cholinergic tone in the brain and leading
computational accounts of focussed attention—namely,
divisive normalization [66]. Other neuromodulatory classes
can instead promote increases in feedback processing.
There is evidence to suggest that neuromodulatory neurotrans-
mitters can directly facilitate the interaction between the apical
and basal dendritic trees L5PT pyramidal cells [91–94]. Hyper-
polarization-activated cyclic nucleotide-gated (HCN) Ih
channels typically ensure that the apical and basal dendritic
compartments of the L5PT remain electrically isolated from
one another [82,95,96]. Importantly, noradrenaline has been
shown to inhibit these channels via the activation of α2A
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augmented by the excitatory (Gq or Gs) mechanisms associated with the four main classes of neuromodulatory nuclei: α1A (Gq) for noradrenaline (red); D1 (Gs) for
dopamine (blue); M1 (Gq) for acetylcholine (green); and 5-HT2A (Gq) for serotonin (purple).
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receptors [31,93], which are the same receptors in the prefrontal
cortex known to (somewhat paradoxically) augment cognitive
function [32,97]. How might this work? When HCN Ih chan-
nels are blocked, the resting leak current reverses within the
apical dendrites of L2, L3 and L5 pyramidal cells, such that
the context-laden feedback signals from higher regions of
the cerebral cortex that innervate the supragranular layers
of cortex (i.e. the location of the apical dendrites) are able
to temporally coincide with feedforward channels of infor-
mation flow from infragranular layers (likely through the
extensive horizontal projections of L2/3IT pyramidal cells
that make contact with L6 cells [98]) and transition the cell
into burst-firing mode [99]. Apical amplification of L5PT pyra-
midal cells in the somatosensory cortex of mice has recently
been tied to supra-threshold perceptual episodes [100] and
differentiates waking and anaesthesia [94], suggesting that
this mechanism may be crucial for the mediation of our
conscious awareness.

Other classes of neuromodulatory transmitters can also
shape information flow in the cerebral cortex, particularly
when they differentially effect unique cell classes in the brain.
This is particularly true for inhibitory interneurons, which
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are ofmajor importance for a number of cognitive, motoric and
attention capacities [101–103]. For instance, the disinhibitory
capacity of VIP+ interneurons [89,101], which synapse exclu-
sively onto, and hence disinhibit [104] other (predominantly
SST+) interneurons [105], is under the fast, ionotropic influence
of both serotonin and acetylcholine [106,107], as well as the
slow, metabotropic influence of noradrenaline and acetyl-
choline (figure 5b). The fast timescale of the ionotropic effects
(on the order of microseconds) means that these cells can
briefly shift a pyramidal cell from a feedforward into a feed-
back mode with high temporal precision [102]. This may help
to explain why VIP+ interneurons in the barrel cortex of a
mouse have been shown to be crucial for the deliberate move-
ment of the whiskers [103] and active, wakeful behaviours
[108], possibly through the augmentation of gamma band
coherence [109]. By contrast, late-spiking neurogliaform cells
[110] (figure 5a; red) are under predominantly metabotropic
neuromodulatory control [107], suggesting that their late,
hyperpolarizing effects within the cerebral cortex are only
modulated at relatively slow timescales [105]. Far from being
limited to these specific examples, we can expect that the
coming years will bring a much finer appreciation of
the relationships between neuromodulation and interneuron
recruitment [90,111], particularly given the importance of
inhibitory stabilization for mediating effective computation in
the cerebral cortex [112–114].

The laminar topography of different neurotransmitter
receptor families in the cerebral cortex is also of great impor-
tance [115–117]. In recent work that used quantitative in vitro
receptor autoradiography to scan the post-mortem human
brain at micrometre resolution, it has been shown that inhibi-
tory 5HT1 receptors, which are known to facilitate the balance
between impulsive and goal-directed behaviour [118], are
predominantly expressed in supragranular layers across the
cortical mantle [115]. Similarly, the α2 adrenergic receptors
that facilitate pyramidal cell burst firing [31,93] are selectively
enriched in supragranular layers in prefrontal cortex [115]. By
contrast, nicotinic cholinergic receptors are typically enriched
in granular layers, particularly in primary sensory cortices
[115,119]. Activation of nicotinic receptors has been shown
to inhibit both IT- and PT-type while activating CT-type pyr-
amidal cells in frontal cortex of mice [120,121]. These
mechanisms suggest that the balance between noradrenaline,
serotonin and acetylcholine (among others) in the cerebral
cortex places important constraints on whole-brain functional
dynamics [122] in ways that can shift the critical dynamics
within corticothalamic circuits in order to modulate patterns
of adaptive information processing in the brain.
5. The distributed impact of dopamine on
corticostriatal circuits

The diffuse nature of neuromodulatory projections implies that
the effects of neuromodulatory ligands result from their mul-
tiple circuits in tandem, however much of the existing
literature has (for good reason) focussed on individual regions
one at a time. Perhaps the paradigmatic example of this is for
the neurochemical dopamine. There is extensive literature link-
ing the function of the basal ganglia with the relative levels of
the neurochemical dopamine [123] that arise from the axons of
the substantia nigra pars compacta. The prevailing notion is
that dopamine acts to excite Gs-mediated D1 receptors of the
‘direct’ pathway in the striatum (which has the effect of releas-
ing the tonic inhibitory effects of the globus pallidus internus)
and inhibit Gi-mediated D2 receptors of the ‘indirect’ pathway
(which has the opposite effect). Together, the balance between
these two pathways is presumed to play an important role in
the preparation and selection of behaviour [124], with the pre-
cise function depending onwhich cortical and thalamic regions
are innervating the structure.

It is less well appreciated that these dopamine-sensitive
systems also interconnect with precise circuits in the cerebral
cortex that are differentially related to dopaminergic tone.
Specifically, there is evidence that intra-telencephalic (L5IT;
dark green in figure 5a) cells with cell bodies in layer 5 predo-
minantly express excitatory D1 receptors [125] and project to
D1-expressing direct pathway spiny projection neurons in the
striatum [126], whereas pyramidal-tract (PT-type [L5PT]; grey
in figure 5) express inhibitory D2 receptors [127] and project
to D2-expressing indirect pathway striatal neurons [126].
Importantly, these two cell populations are differentially
involved in action planning (L5IT) and execution (L5PT)
[128–130]. This suggests that dopamine release from the ven-
tral tegmental area and substantia nigra pars compacta does
not just influence critical dynamics in the striatum, but also in
the distributed excitatory populations in the cerebral cortex
that project to these pathways as well.

These distributed circuits help to explain the role of dopa-
mine in action selection (figure 6). When there is an action to
be selected, the presence (or absence) of dopamine will innerv-
ate populations of L5IT cells (e.g. red versus green) that then
compete for dominance over one another. This competition is
presumed to occur through circuits that send action potentials
to L5IT, which in turn are augmented by the presence of dopa-
mine (i.e. they express excitatory D1Rs). These same L5IT cells
innervate the direct pathway of the striatum (D1R-rich cells in
figure 6)—the activation of this circuit leads to disinhibition
of the diffusely projecting matrix thalamic cells that send
diffuse re-entrant projections to the supragranular layers of
the cerebral cortex [56,131]. These thalamic projections
(figure 6; orange) are precisely those responsible for transition-
ing L5PT cells into a burst-firing mode (see above) that triggers
action (in this case, choose ‘red’ or ‘green’), in part through the
recruitment of cells in the colliculus, thalamus, pontine nuclei
(and hence, cerebellum) and spinal cord [56,79,132]. By inner-
vating the indirect pathway (i.e. D2R-expressing cells), L5PT
cells are ideally placed to ‘switch off’ the striatum whenever
a decision has been made to act (i.e. when a consensus is
reached). This mechanism which is consistent with the fact
that the striatum decreases its firing rate when an animal per-
forms an action [133].

How does this align with other neuromodulatory systems?
Acetylcholine also has a major influence over the processing
mode of the basal ganglia [134,135]. By contrast to dopamine,
cholinergic input is actually more heavily enriched in the
‘indirect’ pathway, which is typically associated with the
GABAergic suppression of thalamic and brainstem targets.
Cholinergic ligands also act to increase the activity of cholin-
ergic interneurons in the striatum, which have the net effect
of inhibiting the direct pathway [135]. This suggests that a
given circuit’s ability to either facilitate or suppress a diffusely
projecting matrix thalamic projection back to supragranular
regions of cortex depends on the balance between dopamine
and acetylcholine, rather than the absolute concentration of
either neurotransmitter alone. It is also important to note that



accumulation
D1R+

action
D2R+

direct indirect

VTA/SNc

L5IT L5PT

Ca2+

Thal

pontine

nuclei

burst
firing

GPi

GPe

Str
D2

D1D1

D1

D1

D1

D2 D2

D2

D2

D2

D2

D2

D1

D1

D1

Figure 6. Dopaminergic control over information accumulation and action. Different classes of dopaminergic receptors—the excitatory (Gs) D1R and the inhibitory
(Gi) D2R—are preferentially expressed on different cells in both the striatum (Str) and cerebral cortex (the large trapezoidal structure). The distribution of these
receptors is such that the presence (or absence) of dopamine—the putative control parameter of this process—likely facilitates a demarcation between two distinct
information processing stages: at high levels of dopamine, such as when an animal is motivated, D1R augment firing in L5IT pyramidal cells (red and green neurons,
depicting a hypothetical choice between two options: red and green) and direct pathway striatal neurons. The dopaminergically excited striatal neurons ultimately
disinhibit (via the globus pallidus internus; GPi) diffusely projecting, matrix thalamic nuclei in the ventral tier of the thalamus (Thal; orange; [56,131]), which in turn
innervate the supragranular regions of the cerebral cortex and help transition D2R-enriched L5PT pyramidal cells into a burst-firing mode (via apical Ca

2+ waves; [79])
that triggers actions (via subcortical projections), while also innervating the indirect pathway of the basal ganglia (which is typically inhibited by the presence of
dopamine via D2Rs). This action ultimately cancels the thalamic disinhibition mediated by the direct pathway via inhibitory connections in the globus pallidus
externus (GPe) and hence effectively signals the end of an information accumulation epoch.
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one of the major GABAergic interneuron classes in the stria-
tum, the main input nucleus of the basal ganglia, is also
enriched with cholinergic receptors [134]. Together, these
facts have important implications for understanding the bio-
logical basis of the known relationship between cholinergic
function and selective attention, which likely relates to cholin-
ergic mechanisms in the cerebral cortex [86,87], thalamus [85]
as well as the indirect pathway of the basal ganglia [135]. It is
also interesting to consider the complex, nonlinear impact of
serotonin on the basal ganglia [136], particularly in light of
the strong inter-connections between the serotonergic dorsal
raphe and the cholinergic system [137], as well as serotonin’s
role in facilitating different information processing modes in
the brain, to which I will turn next.
6. Switching the balance of activity between the
cerebellum and the cerebral cortex

While a great deal is known about the role of different neuro-
modulatory chemicals in the basal ganglia, less is known
about the impact of modulation on the cerebellum [138].
There is evidence however to suggest that diverse regions
within the extended cerebellar circuit are substantially
modulated by serotonin [139]. For instance, the pontine
nuclei [140], inferior olive [141] and cerebellar cortex [139] all
increase their excitability in the presence of serotonin and
shift many of these nuclei into a relatively high-frequency
firing mode [139]. In addition, serotonin is known to boost
the excitability of Lugaro interneurons in the cerebellar cortex
[142], which play a role analogous to cortical VIP+ inter-
neurons and inhibit other cerebellar interneurons. As in the
cortex, the activation of these cells has the effect of disinhibiting
the granule cells of the cerebellum. Combined with the knowl-
edge that inhibitory (Gi/o) 5-HT1Rs are highly expressed in the
axon initial segment of cortical pyramidal cells, it is likely that
serotonin is used to switch the balance of activity between the
cerebellum and cerebral cortex, albeit likely in an inverted
U-shaped relationship [143]: relatively low levels of serotonin
likely inhibit the cerebral cortex and recruit the cerebellum,
whereas higher levels likely recruit VIP+ interneurons (via
5-HT3R) and PT-type pyramidal cells (via 5-HT2AR) [144,145].

The cholinergic system also has an important influence
over cerebellar function [146]. For instance, acetylcholine
administration increases the firing rate of cortical pyramidal
cells that contact the pontine nuclei [147], one of the two
input structures to the cerebellum. In addition, there is also
evidence that the granule cell layer of the cerebellar cortex
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[148], which is the most numerous population of cells in the
human brain [149], and the deep cerebellar nuclei [150], the
major output of the cerebellum, are both excited by increases
in cholinergic tone. These processes are by no means selective
to specific neurotransmitters [151], but they do suggest that
elevated serotonin and acetylcholine have a preferential
impact on the influence that the cerebellum has on shaping
core thalamic activity, and hence feedforward activity
patterns within the cerebral cortex.
DR
LC

VTA
midbrain

pons

Figure 7. Closed-loop frontal cortical control over ascending neuromodulatory
activity. Distinct (though likely overlapping) regions of the frontal cortex send
excitatory projections to distinct brainstem and forebrain nuclei: the cholinergic
(ACh) basal nucleus of Meynert (BnM), the dopaminergic (DA) ventral tegmental
area (VTA), the serotonergic (5HT) dorsal raphe (DR) and the noradrenergic
(NAd) locus coeruleus (LC). The recruitment of these nuclei will then lead to
an increase in neuromodulatory tone in the cortex, which in turn will shape net-
work topology and information processing mode of local neural populations. In
this way, microcolumns in the frontal cortex are able to effectively ‘steer’ the
brain network into different information processing modes that befit the current
challenges imposed on the system.
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7. Critical modulation of complex, adaptive
dynamics

How might these processes play out across the complexity of
individual sub-circuits within the brain, each of which can be
augmented (diminished) by different combinations of neuro-
modulatory ligands (figure 3)? One parsimonious way in
which to frame these ideas is in the context of an attractor land-
scape framework, in which state-based neural dynamics are
framed as trajectories across an attractor landscapewhose topo-
graphy is shaped by opportunities for action (i.e. affordances;
[55,56,152]). Within the attractor landscape framework, neuro-
modulators can be thought to manipulate the topography of
the attractor landscape [22,153]. For instance, the addition of
acetylcholine has been shown to accentuate the topography
(i.e. make the landscape more rugged and wells deeper [67],
likely through the ionotropic augmentation of granular layers
[154]). By contrast, the addition of noradrenaline and serotonin
would lead to a flattening of the landscape (i.e. which is equiv-
alent integrating the brain [22,40,41,153], likely through the
recruitment of supragranular feedback connections). This
would have the effect of ‘resetting’ the network’s landscape
[22,155], allowing the brain to reach states that were otherwise
hidden by the topography of the landscape. Others have
argued that high levels of serotonin, particularly when the
ligand agonizes 5-HT2A receptors, can cause a similar flattening
of the energy landscape [156]. In this way, the release of neuro-
modulatory neurotransmitters in response to sensory, cognitive
or affective events would facilitate the dynamic reorganization
of the brain so as to maximize adaptive behaviour. Although
still in its nascent stages, I envisage the framework that outlines
the logical organization of neurobiology in the language of
dynamical systems as one of the crucial pillars of a foundational
language for understanding the multi-scale adaptive dynamics
of the nervous system in action.

When viewed through this lens, a key question becomes
how can the nervous system provide control over its neuro-
modulatory control system? The entire AAS is under the
further neuromodulatory influence of master controller neur-
ons in the hypothalamus [157] and more ventral integrative
regions, such as gigantic cells that together form an allodendri-
tic core in the brainstem [158]. Numerous other subcortical
structures are able to both excite and inhibit the projection
nuclei of the AAS [159], often through the targeting of GABA-
ergic neurons that predominate in the regions surrounding
projection nuclei [53,160]. These peri-AAS cells also receive
substantial inputs from a subset of L5PT pyramidal cells
[159,161]. Through these connections, the cerebral cortex
retains closed-loop control over the activity of the neuromodu-
latory nuclei, which can in turn be tuned to particular cognitive
scenarios, such as uncertainty [162] or Bayesian surprise
[163,164]. Importantly, the impact of increasing the activity
within these nuclei can have important effects on network
topology [22,40] and information processing [50] in the brain.
In addition, distinct locations in the frontal cortex have been
shown to project to unique nuclei in the brainstem, suggesting
nuanced control over ascending neuromodulatory tone in the
brain (figure 6). Indeed, it has been shown that the capacity
to control the temporal evolution of the brain state is related
to heterogeneous patterns of neurotransmitter receptor profiles
around the brain [122,165], allowing the closed-loop control
over neuromodulatory chemicals to control the flow of the
brain state around a hypothetical attractor landscape
[55,56,152,166]. Interestingly, many of the cortical projections
to neuromodulatory nuclei also heavily innervate local inhibi-
tory (i.e. GABAergic) structures in the vicinity of the AAS hubs
[159,167,168], suggesting that a key feature of the descending
projections may be to control the excitatory/inhibitory balance
in local neuromodulatory hubs (figure 7).

Through this lens, the relative evolutionary expansion of the
lateral frontal cortex inHomo sapiens [169,170] takes on an inter-
esting new perspective. Through an augmentation of the
descending connections from the frontal cortex to brainstem
and forebrain arousal nuclei, the human brain may have vastly
increased the dimensionality of the control mechanism that it
uses to shape the topography of the attractor landscape. This
would afford the human brain greater flexibility for finding dis-
tant local minima in the complex sociocultural landscape in
which we are embedded. By way of analogy, contrast flying in
the cockpit of a modern airline with its myriad controls and
gaugeswith the limitedcontrols available to theWrightbrothers.
This increased fine-grained control over state-space dynamics
suggests a refined ability to balance the competing trade-offs
of exploration and exploitation across multiple hierarchical
levels, which in turn may help to explain the nuanced cognitive
architectures known to characterize human behaviour.
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8. Conclusion
Over the years, there have been a number of compelling, com-
putational accounts of higher-brain function that attempt to
describe the brain according to its emergent functionality. For
instance,much of human cognition can be successfully concep-
tualized ‘as if’ behaviour emerges from an idealized, Bayesian
model [171]. Others have argued that serialized models of cog-
nitive function betray intuitions developed from biological
sciences, and instead that our higher neural capacities some-
how arise from the dynamic synergy of activity across a
diversity of autonomous agents [172–174]. Yet, while these
approaches have had a great deal of impact, it has remained
challenging to link computational accounts to process models
that work within the framework imposed by neurobiology.
Indeed, the conceptual limitations enforced by biology are
often far more rigid than those imposed by computational
accounts of the brain. Simply put, the precise interconnections
of neurons and glia limit the flexibility of their organization in
ways that place constraints on the manner in which higher
brain functions emerge from the brain.

Amajor limitation over ourworkingmodels ofwhole brain
function has been an insufficient appreciation of how the brain
is organized across multiple different spatial and temporal
scales. In essence, we have known the constituent parts of the
central nervous system for some time, but we have lacked a
true appreciation of the manner in which the different parts
interconnect and interact. Many research programmes focus
on a particular location within the brain (such as the visual
cortex, to take a popular example), and make an attempt to
understand the function of that specific circuit. The idea is to
understand a sub-component of the system in detail, and to
then combine the different units together in an effort to under-
stand the system as awhole. By anymeasure, this approach has
been extremely successful. However, we also know that indi-
vidual circuits within the brain did not evolve on their own,
but embedded within the broader context of the other many
and varied elements of the central nervous system [175]. For
instance, there is now ample evidence that complex beha-
viours, such as working memory [176,177] and decision
making [43,178], involve not just the cerebral cortex, but cir-
cuits broadly distributed across the central nervous system,
such as the thalamus, basal ganglia, cerebellum, colliculus
and brainstem [55,56]. In addition, many of the connections
between sub-components are highly precise, conserved and
crucial for system-wide function.

Recent large-scale, multi-centre studies, such as the Allen
Brain Atlas [179], BlueBrain [180] and the Human Connec-
tome Project [181], have changed the way that modern
research in neuroscience is being conducted. These
approaches offer access to blueprints of neural architecture,
with high-resolution, whole-brain maps of cell types and
their connections [182], as well as detailed reconstructions
of microscopic cellular complexity [180,183]. Together, these
data reveal intricate spatial patterns in the cellular makeup
and organization of the brain’s microcircuits. Similar patterns
are observed at the macroscopic level [122,184], suggesting
the potential for a mesoscopic level of organization that med-
iates the two extremes. Yet to truly appreciate how the
emergent dynamics from these systems give rise to cognition
[185], we need to refine our understanding of how the differ-
ent sub-components of the central nervous system work
together at the systems level. Advances made in this space
will undoubtedly help us to better understand the factors
that control neurological disorders, such as dementia,
which has been linked to pathological damage within key
structures in the AAS [186,187], psychiatric disorders,
which are often treated through manipulation of the AAS
[188], and disorders such as epilepsy, which have been
linked in the past to neural activity within supercritical
dynamical regimens [189].

In this manuscript, I have attempted to sketch the begin-
nings of an approach that begins with key features of
neurobiology and then aims to determine what (if any) com-
putational benefits these implementation-level details may
imbue upon the large-scale dynamic patterns of neural
activity emergent in the billions of cells that comprise the
human brain. Specifically, I have argued that the AAS is ide-
ally placed to act as a diverse set of control parameters for
mediating critical dynamics in the brain, with the heterogen-
eity of the arousal system in turn augmenting and
diversifying the capacity for criticality across the idiosyncratic
circuits that characterize the mature nervous system. Cru-
cially, there are other (relatively) diffusely projecting
systems in the brain, such as the matrix thalamic nuclei
[20,55,56,153,190], that can provide similar types of control
over critical dynamics, albeit at faster timescales (due to
their primary glutamatergic signalling) and over spatially
extensive domains (due to their more targeted projection pat-
terns). As we gain more insight into the detailed
neurobiology of the brain and the manner in which the
elements interact, I imagine that this picture will only
appreciate in complexity and nuance. For instance, while I
have not covered them in this manuscript, there are crucial
interactions between the AAS and non-neuronal glia, such
as astrocytes, which are of major importance for energy
metabolism [191,192]. Important gains will be made if we
can continue to discover novel means for testing the
implications of these ideas using whole-brain modelling
[153,193,194] and neuroimaging [22,122,195–197] approaches
that embrace the dynamical systems language in which these
hypotheses are addressed [14,196,198].
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