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ABSTRACT
◥

Big data in healthcare can enable unprecedented understanding
of diseases and their treatment, particularly in oncology. These
data may include electronic health records, medical imaging,
genomic sequencing, payor records, and data from pharmaceutical
research, wearables, and medical devices. The ability to combine
datasets and use data across many analyses is critical to the
successful use of big data and is a concern for those who generate
and use the data. Interoperability and data quality continue to be
major challenges when working with different healthcare datasets.
Mapping terminology across datasets, missing and incorrect data,

and varying data structures make combining data an onerous and
largely manual undertaking. Data privacy is another concern
addressed by the Health Insurance Portability and Accountability
Act, the Common Rule, and the General Data Protection Regu-
lation. The use of big data is now included in the planning and
activities of the FDA and the European Medicines Agency. The
willingness of organizations to share data in a precompetitive
fashion, agreements on data quality standards, and institution of
universal and practical tenets on data privacy will be crucial to fully
realizing the potential for big data in medicine.

Introduction
Precision medicine, wherein we learn from all patients to treat each

patient, requires an end-to-end learning healthcare system (1, 2). In the
absence of such a system, healthcare providers, health systems, and the

global biomedical research community bring together available data-
sets when required and feasible. Globally, multitudes of patient-level
data are generated daily; however, myriad factors prevent meaningful
secondary use at the scale necessary to realize precision medicine fully
(Box 1). This paper aims to enumerate some of themajor impediments
to this process and highlight good practices for future data generators.
A companion paper (“Case studies for overcoming challenges in using
big data in cancer") provides potential solutions through successful
prior examples.

Healthcare big data refers to vast quantities of data arising from
the digitization of individual patient healthcare journeys. The rise in
use of such data in the medical setting and beyond promises to
enable an unprecedented understanding of diseases and their treat-
ment. These data may include electronic health records (EHR),
medical imaging, genomic sequencing, payor records, pharmaceu-
tical research, wearables, and medical devices. The landscape is
continually complicated due to the increase in volume, types, and
speed at which data are being generated. The ability to navigate this
complexity and integrate seemingly disparate datasets to derive
previously underappreciated insights could improve patient out-
comes, increase efficiencies in healthcare systems, and drive dis-
covery of new therapeutics with potential to dramatically improve
the lives of people suffering from cancer and ultimately, other
diseases. The road to leveraging big healthcare data is not without
complexities and challenges, including awareness of existing data-
sets, data access, quality assurance (QA), lack of annotation, rec-
onciliation and harmonization, storage, analysis, and derivation of
insights.

While awareness, dissemination, and accessibility to the broader
research community are basic requirements for publicly funded
research studies, the authors of this paper strongly believe that all
who generate data and develop major data commons should
proactively embed these themes as part of their work from the
outset to catalyze secondary data use and beyond. Interoperability
and data quality continue to be major challenges when working
with different healthcare datasets. Mapping terminology across
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datasets, missing and incorrect data, and varying data structures
make combining data an onerous and largely manual endeavor.

Issues of informed consent and data privacy, which have potential
to derail data use and analysis when not appropriately addressed,
further complicatematters. These complications can be exacerbated by
continually evolving country-specific regulations that treat data with
varying levels of conservatism, such as the General Data Protection
Regulation (GDPR; https://ec.europa.eu/info/law/law-topic/data-pro
tection_en) and Health Insurance Portability and Accountability Act
(HIPAA; https://www.hhs.gov/hipaa/for-professionals/index.html);
see the section, “Access to Data: the Role of Privacy Regulations,” for
further detail.

The authors represent organizations and foundations that rec-
ognize the potential promise of big healthcare data and the impor-
tance of collaboration in realizing the full potential of precision
medicine. This document aims to offer a set of good practices as

they apply to the collection of healthcare data for secondary use;
however, these ideas are broadly applicable to all data. The authors
recommend the “green paper” published by scientists from Sage
Bionetworks and Microsoft, which offers a detailed framework and
materials as a toolkit for legal and technical considerations regard-
ing data sharing (3). Readers may also find the recent European
Medicines Agency (EMA) draft guideline on registry-based studies
insightful (4).

Access to Data: The Role of Privacy
Regulations

There are multiple regulatory pathways to sharing data for
research in the US. Much US cancer research is covered by
HIPAA regulations (https://www.hhs.gov/hipaa/for-professionals/
index.html) and the federal human subjects research rules govern-
ing identifiable data, also known as the Common Rule (https://
www.hhs.gov/ohrp/regulations-and-policy/regulations/common-rule/
index.html; refs. 6, 7). Although state laws (e.g., California Privacy
Rights Act) can play a significant role in shaping data sharing
solutions, a survey of state laws is beyond the scope of this section.

HIPAA and the common rule
Both HIPAA and the Common Rule require a HIPAA-compliant

authorization or informed consent before identifiable information,
such as names, locations, and procedure dates, can be used for research
purposes; the Common Rule also requires Institutional Review Board
(IRB) reviewof the research.However, both also provide paths forward
for big data research that impose fewer preconditions on data access,
such as de-identification, wherein researchers cannot readily ascertain
participant identities. Table 1 provides an overview of common
elements of HIPAA and the Common Rule, and Table 2 lists updates
to both that help streamline research (8–10).

New Research Model:
Participant-Contributed Data

Historically, data for research was obtained from clinical settings, or
research organizations recruited participants to agree to research uses
of their data. “Patient-driven” analysis is now becoming more com-
mon, where patient advocacy organizations establish and run research
registries, or individuals agree to collect and donate their data
directly for research purposes (11). The HIPAA Privacy Rule provides
individuals with a right to copies of their medical and claims infor-
mation. For example, the federal All of Us Research Program has a
“direct volunteer” pathway that enables individuals to sign up for
the program, obtain their clinical information and send it directly to
the All of Us program (https://allofus.nih.gov/get-involved/participa
tion). This will create other opportunities for individuals to gather
relevant clinical information and donate it for research purposes (12).
This approach enables patients to contribute to the types of research
most important to them, potentially allowing them to feel more
invested in the research. HIPAA or the Common Rulemay still govern
such patient-driven or patient-contributed research models, but
with opportunities for greater patient buy-in and more meaningful
participation.

Clinico-omic datasets highlight the risks between generating mean-
ingful, large datasets and protecting patient privacy. Though de-
identified, these datasets contain patient-unique data that could be
exploited to re-identify patients, e.g., DNA in an attribute disclosure
attack (13). Because there is no comprehensive data privacy law in

Box 1: Patient Perspective by
Liz Salmi

Whenwe see health data at an individual level (aka “small data”),
we better understand the value of data at a grand scale and may be
more likely to appreciate science, support expanded research
budgets, and maybe even enroll in a study ourselves. It was not
long ago that the general public, including myself, thought of
cancer as one big, homogenous disease. It was only after my own
diagnosis nearly a decade ago that I learned cancer is actually
hundreds of different diseases. Each person with cancer today is an
n of 1, and a precision approach to treating these individuals is as
complex as the disease itself.

The goals for big data guidance—digging into the sticky issues of
standards, storage, and agreements, in an effort to glean insights
and hopefully achieve a “superior outcome”—are necessary, hon-
orable, and in many ways, exciting. But to those who see informed
consent and data privacy as a derailment to your efforts, I suggest
you look at it in another way: as an opportunity to send insights
back to those you have pledged to respect and prevent unnecessary
harm.

This is not a wild idea; it’s already happening for the 1 million
participants in the NIH All of Us Research Program (https://
allofus.nih.gov). In exchange for enrolling in a longitudinal study,
participants in All of Us are promised regular updates about how
their data are used in research, including free access to academic
publications and notifications about major findings.

Despite my enthusiasm for the potential and opportunities, I
still have questions. What is the trade-off for loss of privacy? [Is
it possible to re-identify that which has been de-identified (5)?]
Will there be penalties for selling my information? Will my
information be sold to for-profit companies, potentially leading
to discrimination in other domains (such as housing or hiring
decisions)? Might healthcare inequities be further perpetuated
by big data? And will taxpayers who fund this research ever be
notified of the results?

If public–private entities are successful in adhering to these
guidelines and are able to design truly meaningful feedback
mechanisms for the supporters and subjects of this work, we will
have a real shot at advancing therapies, andmaybe even some cures,
for people facing cancer.
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Table 1. Comparison of HIPAA and the Common Rule.

Topic HIPAA Common rule Distinctions

Overview The HIPAA Privacy Rule requires any
entity that provides or processes
healthcare data to obtain consent
before disclosing a person’s medical
history to another entity. These
covered entities may disclosemedical
information without consent if
needed for obtaining treatment,
payment, or healthcare operations, or
if in the public interest. [45 CFR Part
160 and Part 164 Subparts A and E]

The HIPAA Security Rule protects all
individually identifiable health
information a covered entity creates,
receives, maintains, or transmits in
electronic form. [45 CFR Subpart Part
160 and Part 164 Subparts A and C]

The Common Rule provides protection
for human subjects in research
conducted or supported by most
federal departments and agencies. It
is the baseline standard of ethics by
which any government-funded
research in the US is held; nearly all
academic institutions hold their
researchers to these statements of
rights regardless of funding.

Consideration is given to how various
aspects of research projects
(including privacy, confidentiality,
data collection, data maintenance,
and data retention) impact physical,
emotional, financial, and
informational harms.

The policy established IRBs to help
review and ensure compliance with
the policy and the requirements for
informed consent. [45 CFR 46]

HIPAA provides protection for all PHI
accessed by entities who provide or
process healthcare. The Common
Rule provides protection for human
subjects in research settings.

De-identified data De-identified data (per HIPAA
standards) not subject to further
HIPAA requirements. [45 CFR 164.514
(a)]

Data that are “not identifiable” are not
subject to the Common Rule. [45 CFR
46.102(e) (1) & (5)]

Although the Common Rule does not
explicitly reference the HIPAA de-
identified data standards, IRBs have
been known to rely on it in
determining if research is not subject
to the Common Rule.

Limited data A limited data set can be used or
disclosed for research without the
need for prior consent of participants
if a data use agreement is executed,
setting forth research purposes and
prohibiting re-identification. [45 CFR
164.514(e)]

An IRBmaydetermine that a study is not
“human subjects research” or, in the
case of secondary data research,
consider the study to be “exempt”
because the identity of participants is
not “readily ascertainable”
(researchers must agree not to re-
identify or contact participants). [45
CFR 46.104(d) (4)(ii)]

Common Rule exemption is limited to
secondary data (a HIPAA limited data
setmay involve data initially collected
for research purposes). The Common
Rule requires limited IRB review for
determination of exemption.

Secondary use Entities have the option to broadly
consent individuals to future research
uses of their identifiable PHI. [Federal
Register vol. 78, no. 17, page 5612
(January 25, 2013)]

Entities may create secondary research
databases with broad consent,
subject to limited IRB review. [45 CFR
46.104(d) (7) & (8)]

Common Rule exemption is limited to
secondary data (HIPAA broad
consent provisions could involve data
initially collected for research
purposes). The Common Rule
requires limited IRB review for
determination of exemption. Broad
consent under the Common Rule is
subject to specific requirements.

Use of PHI PHI used in research; when broad
consent is not applicable, full HIPAA
authorization is required (unless
altered or waived; see below). [45
CFR 164.512(i)]

If governed by HIPAA, Common Rule
exemption is available [45CFR46.104
(d) (4)(iii)]; otherwise, identifiable
information used or disclosed in
research—when not subject to any of
the above exemptions—requires full
IRB review and full informed consent
(unless waived; see below). [45 CFR
46.106 & 46.116]

The Common Rule allows entities to rely
on HIPAA where it applies; otherwise,
the Common Rule requires IRB
review.

Waiver of consent Waiver of HIPAAauthorization by IRB or
Privacy Board. [45 CFR 164.512(i) (2)
(ii)]

Waiver of informed consent by IRB. [45
CFR 46.116(f)]

Waiver criteria similar; the Common
Rule also requires consideration of
welfare and rights of participants and
whether research is minimal risk.

Abbreviations: CFR, Code of Federal Regulations; PHI, protected health information.
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America, the rapid progress of analysis technologies increases the
likelihood of re-identification without legal constraints or ramifica-
tions (14). Currently, there is no solution guaranteeing data privacy
and it is outside the scope of this article to discuss mitigation
technologies; however, there are combined system and process
approaches such as access control, data anonymization, and cryptog-
raphy that can serve as deterrents to re-identification. It is the best
interest of the research community to continue working towards an
unimpeachable technology solution and, meanwhile, adhere to data
privacy best practices.

Data Quality
Perhaps the greatest challenge to optimizing the practical use of

aggregated healthcare data is resolving the central tension between two
fundamental data concepts: the paradigm of “collect once, use many”
and the concept of data “fit for purpose.” The volume, velocity, and
variety that characterize big data require extraordinary technology and
computational power to store, access, and analyze, which necessitate
either a unique patient identifier to link different electronic sources or a
parsimonious approach to data entry. However, this conflicts directly
with the goals of secondary data reuse, because, in the healthcare
context, that same data variety negatively impacts fitness by intro-
ducing bias and noise. Nevertheless, the concept of “data quality” is
most commonly defined as showing the property of data fitness—the
ability to be used for its intended purpose—and encompasses such
characteristics as accuracy, completeness, consistency, reliability,
lack of bias, and timeliness/currency. The attractiveness of real-
world data (RWD), defined as data collected outside the context of a
clinical trial from sources such as EHRs, disease registries, claims
databases, and wearables, lies in its strong external validity and
ability to capture characteristics and outcomes of patients com-
monly encountered in practice. However, reliance on RWD for
clinical care and its use for discovery requires that data quality
issues be addressed transparently.

Clinicians play a central role as the actors most responsible for
data quality in EHRs, but these systems are optimized for patient care
and billing documentation, not for population health research and
downstream analytics. As a result, clinicians’ use of EHRs is not
fundamentally aligned with these secondary goals. In addition, most
physicians are challenged daily by EHRs with poor usability,
requiring time-consuming data entry detracting from patient con-
tact and contributing greatly to professional dissatisfaction and
burnout. To compensate, physicians often resort to dictating clin-
ical notes rather than structured data entry, resulting in large
volumes of unstructured text that is challenging to parse without
advanced but imperfect techniques such as natural language pro-
cessing (NLP). Consequently, enormous variability and heteroge-
neity exist across similar data elements from system to system,
even for inherently structured data types such as drug or laboratory
test names. Many of the most important concepts required to
understand the cancer patient’s journey, such as cancer stage,
biomarkers, adverse events, and outcomes such as progression, are
captured largely in unstructured notes. Manual data curation of
unstructured documents, typically performed by trained human
abstractors, has been effectively employed by some consortia
and data aggregators. Further, some workflows can be enhanced
by NLP and other forms of artificial intelligence (AI); however, this
remains an enormously expensive, unscalable, and therefore unsus-
tainable solution.

A potential solution to improving data quality is to enhance data
interoperability. Standards-based solutions that address both syntactic
interoperability (related to data formats and communication proto-
cols) and semantic interoperability (related to the meaning of the data
being exchanged) are needed. One such contemporary example is the
Minimal Common Oncology Data Elements (mCODE) initiative
(https://confluence.hl7.org/display/COD/mCODE/) led by the Amer-
ican Society of Clinical Oncology (ASCO), The MITRE Corp., and
other collaborators (15). mCODE has established a foundational data
specification in which clinical oncology data are subdivided into six
domains (Patient, Disease, Lab/Vitals, Genomics, Treatment, and
Outcomes) and individual data elements are defined by standard,
nonproprietary terminologies such as Systematized Nomenclature
of Medicine–Clinical Terms (SNOMED CT) and Logical Observa-
tion Identifiers Names and Codes (LOINC). Version 1.0 of mCODE
was approved by Health Level Seven International (HL7) as a
Standard for Trial Use in March 2020. Implementation pilots are
currently underway.

Ensuring the fitness of RWD requires a systematic approach
using data quality assessment best practices and tools to analyze
the datasets themselves. A reasonable data quality assessment and
remediation plan would include a formal data quality assessment
program; validation of data against external comparator datasets;
development and validation against clinical trials of RWD end-
points; and methods to address RWD bias. RWD bias has many
sources, including nonrandom “missingness,” where data dropout
is related to the dependent variable; selection bias; performance
bias; detection bias; and attrition bias (16). Common mitigation
strategies include performing multivariate analyses to adjust for
potential confounders, recognition of unmeasured confounders,
and using propensity scoring techniques and sensitivity analy-
ses (17), in addition to discarding incomplete cases, imputation,
and performing Bayesian analyses.

Moreover, RWD continues to be redefined and may include mul-
timodal integration of advanced molecular diagnostics, radiologic and
histologic imaging, and codified clinical data. This presents real

Table 2. HIPAA and Common Rule Updates to Streamline
Research.

HIPAA can be used solely to determine appropriate research access for
HIPAA-governed research. [45 CFR 46.104(d) (4)(iii)] (https://www.
hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/index.
html)

Both HIPAA and the Common Rule allow participants to provide broad
authorization (consent) for secondary research uses of data, without the
need for study-specific consent.

Individuals can broadly authorize future research uses of their data, as long
as the research is such that a “reasonable” individual would “expect that
his or her health information could be used or disclosed for such future
research” (10).

Research-ready databases of identifiable information can be created under
a broad consent; secondary use needs IRB review but does not require
re-consent of the participants. [45 CFR 46.104(d)(7&8)] (https://www.
hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/index.
html)

Researchers can request an IRB to waive or alter the elements of
informed consent (or authorization). In response to the 21st Century
Cures Act, FDA has indicated that it would honor IRB approvals of
alterations or waivers of informed consent issued under the Common
Rule (8).

The Common Rule now requires single IRBs for federally funded research
involving more than 1 institution (9).
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opportunities to advance precision oncology beyond genomics and
standard molecular techniques, but also requires increasingly sophis-
ticated algorithms and approaches (18).

Storage, Annotation, Integration, and
Analysis of Data

With the cost of sensors falling with Moore’s law (19), it is easier
each year to produce larger datasets; on the other hand, few if any
advances make cleaning, annotation, integration, and analysis of large
datasets any easier. Although cloud computing has created the under-
lying computing infrastructure to store and process large datasets, the
ingestion, cleaning, integration, and analysis of these datasets is still
largely limited by the availability of data “wranglers” and analysts.

The NCI has created several resources to assist in this regard. The
NCI Cancer Research Data Commons (CRDC; https://datascience.
cancer.gov/data-commons) is an example of the collection
and integration of multiple types, sets, and sources of curated
clinical data and tools for analysis. The CRDC provides access
to repositories of genomic, proteomic, imaging, and other data
types and data from NCI programs as well as analytic tools. The
Imaging Data Commons component of CRDC includes images and
associated clinical trial and metadata, and will include digital
pathology images, and multispectral data from the Human Tumor
Atlas Network (https://humantumoratlas.org/). The NCI Cloud
Resources (The Broad Institute Firecloud, ISB Cancer Gateway in
the Cloud, and Seven Bridges Cancer Genomics Commons) provide
access to analysis tools. The Genomic Data Commons (GDC;
ref. 20), one of the resources described in our companion review,
is a component of the CRDC.

In 2000, the NCI Early Detection Research Network (EDRN)
investigators envisioned the use of big data in biomarker discovery
and planned for storing, curating, and disseminating biomarkers-
related data using Common Data Models (CDM). Such data models
include information about cellular and molecular phenotypes of
cancer and stromal cells, clinical information, biospecimens, other
varied biologic and epidemiologic information, and descriptions of
experiments that will ensure that analytical results can be replicated.

The EDRN (https://edrn.cancer.gov/data-and-resources/informat
ics/) Informatics Center and Data Management and Coordinating
Center developed more than 4000 common data elements (CDE) to
enable search and retrieval of specific data from the data repository, as
well as analysis. All CDEs and their interrelationships have been
deposited in the cancer Data Standards Registry and Repository for
community use. The EDRN also developed a data commons called
Laboratory Catalog and Archive Service (LabCAS) that provides
network researchers with a protected ecosystem for storing, searching,
and analyzing data. For example, validated RNA sequencing (RNA-
seq) pipelines have been implemented in the LabCAS architecture.
Sites across the network use the pipeline to process sequencing data
consistently and reproducibly. FASTQ files are generated in research
laboratories, ingested into LabCAS with structured metadata (CDEs),
and processed to produce results that are annotated with CDEs and
stored in LabCAS. Investigators are then able to search using any
combination of CDEs to identify sets of data for exploration and
further analysis.

Biomarker research is intimately related to complex data arising
from genome sequencing, gene expression profiling, proteomic and
metabolomic analyses, and other point-of-care devices generating
real-time, large amounts of data from special cohorts, populations,
screening trials, etc. However, for these data to be useful as potential

signatures for disease detection, the next step is to harmonize and
integrate them to discover biomarker signatures for precision med-
icine. Successful integration of these data requires continued devel-
opment and deployment of CDMs, NLP, and AI tools (including
machine learning for predictive modeling), and health information
exchange. As a simple example, initial harmonization of data in the
GDC consisted of about a petabyte of data from a variety of exper-
imental platforms, including DNA sequencing, RNA-seq, and meth-
ylation, and required hundreds of millions of core hours to process
with a uniform set of bioinformatics pipelines (21).

As illustrated above, it is imperative that researchers have a delib-
erate plan regarding the significant resources associated with storage
and computation of increasingly large amounts of data. The specific
setup will depend on the size of datasets being transacted, access
requirements including latency, frequency, and size of the user base, as
well as the anticipated long or short-term nature of projects, to name a
few. Optionsmay include on premise or cloud resources, or a hybrid of
both, and may also be a dedicated or a shared resource across multiple
teams or departments in single or multiple institutions.

Regulatory Perspective: FDA
The FDACenter for Devices and Radiological Health (CDRH) has a

long history of supporting and advancing use of real-world evidence
(RWE) in regulatory decision-making. The Medical Device Epidemi-
ology Network (MDEpiNet), established by CDRH in 2010, is a global
RWE collaborative for health technologies. FDA also collaborates with
the National Evaluation System for Health Technology (NEST) to
foster evidence generation for regulatory decision-making and
awarded a cooperative agreement to the Medical Device Innovation
Consortium (MDIC) to establish a coordinating center for NEST.
Among its objectives, NEST promotes the implementation of Unique
Device Identifiers (22), without which the identity of devices and their
use in routine healthcare settings cannot be discerned. Further,
Systemic Harmonization and Interoperability Enhancement for Lab-
oratory Data (SHIELD) is a public–private partnership working
to solve the interoperability problem for laboratory data by providing
an authoritative source for coding and supporting stakeholders in
adoption of US Department of Health and Human Services—required
reporting standards. SHIELD is the backbone for diagnostic test
reporting for the COVID-19 pandemic; increasing adoption of
SHIELD over time will help solve interoperability barriers for a
plethora of laboratory data.

RWE has been used to support numerous marketing authorizations
for Class II and III medical devices, and high-quality RWD sources
have been leveraged to replace traditional post-approval studies.
A small number of premarket authorizations for in vitro diagnostics
(IVD) have used RWE, and the use of RWE for severe acute respiratory
syndrome coronavirus 2 diagnostics is growing. The Illumina MiS-
eqDx Cystic Fibrosis Clinical Sequencing Assay (23) and the Illumina
MiSeqDx Cystic Fibrosis 139-Variant Assay (24) illustrate the use of
RWE to support premarket authorization of a genomics IVD. These
assays detect genetic variations in the CFTR gene and are intended to
be used as an aid in diagnosing individuals with suspected cystic
fibrosis. Distinguishing pathogenic from benign variation is one of the
greatest challenges in personalized medicine. Enormous variation
exists in many human genes including CFTR, but evidence to
help distinguish benign variation from disease-causing variation is
often limited, especially for uncommon variants. Clearance of these
IVDs was achieved by using a publicly maintained next-generation
sequencing database called CFTR2 (Clinical and Functional
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Translation of Cystic Fibrosis Transmembrane Conductance Reg-
ulator), which contains RWD from patients and families who have
undergone CFTR sequencing and for whom phenotypic informa-
tion is available (25). The CFTR2 database was used as a source of
valid scientific evidence to establish which variants were disease-
causing. Clinical sensitivity and specificity of the Illumina MiSeqDx
Cystic Fibrosis Clinical Sequencing Assay was estimated on the
basis of information from the CFTR2 database.

To support using public human genetic variant databases as sources
of valid scientific evidence for clinical validity of genomic tests in
premarket submissions, FDA has established a database recognition
program and published a guidance (26). The first public genetic
database to achieve FDA recognition was the ClinGen expert-
curated human variant data, which pertains to assertions of clinical
significance for germline-derived, highly penetrant variants (27).
Recognition of additional databases, including somatic variant data-
bases, along with increased concentration on pharmacogenetic
databases, will help support future premarket submissions for geno-
mics IVDs, as has been done with the OncoKB variant database
(https://www.fda.gov/drugs/resources-information-approved-drugs/
fda-recognizes-memorial-sloan-kettering-database-molecular-tumor-
marker-information).

FDA has also published guidance on the use of RWE to support
regulatory decision-making for medical devices (28), and in 2020,
the MDIC IVD RWE Framework was established to build on the
FDA guidance by providing additional contextual information for
incorporating fit-for-purpose RWE into product development and
regulatory decision-making, particularly in support of IVD author-
izations (https://mdic.org/resource/ivd-rwe-framework/).

Regulatory Perspective: EMA
As part of evolving data-driven regulations, the EMA has iden-

tified a number of top priorities (https://www.hma.eu/about-hma/
working-groups/hma/ema-joint-big-data-steering-group.html). These
include: Delivering a sustainable platform to access and analyze
healthcare data from across the EU; establishing an EU framework
for data quality and representativeness; enabling data discover-
ability; developing EU Network skills in big data; strengthening
EU Network processes for big data submissions; building EU
Network capability to analyze big data; modernizing the delivery
of expert advice; ensuring data are managed and analyzed within
a secure and ethical governance framework; collaborate with
international initiatives on big data; and creating an EU big data
“stakeholder implementation forum.”

The EMA has begun implementing their priorities through a
number of activities. The Data Analysis and Real World Interro-
gation Network in Europe (DARWIN EU) project (https://www.
ema.europa.eu/en/about-us/how-we-work/big-data/data-analysis-
real-world-interrogation-network-darwin-eu), for example, will serve
as a sustainable data platform connected to the European Health Data
Space (EHDS; https://health.ec.europa.eu/ehealth-digital-health-and-
care/european-health-data-space_en).Amajor component of EHDS is
a code of conduct for health data use, a governance framework
including rules for primary and secondary use of health data, a
regulatory framework for AI, principles such as free flow of data and
free movement of digital health services, and digitization of healthcare
systems. This code of conduct will be aligned with the European Data
Governance Act adopted by the European Commission in November
2020 and the proposed EU Data Act. One of nine European data
spaces, EHDSwill be a space for exchanging and sharing different types

of health data and will include storage, tools, data standards, as well as
GDPR-compliant access and governance mechanisms.

Such initiatives complement existing EMA work in the big
data space, including collaborations with the Clinical Data Inter-
change Standards Consortium on standards for RWD (https://www.
cdisc.org/standards/real-world-data) that will readily be applicable
to big data. EMA work is based on firsthand experience and white
papers that explore the practical use of their CDM (29). Agency
authors also published a call for unconventional analysis methods
for validation by exercises independent from drug development,
using the Agency’s public qualification platform (30). Pathways
have been described for RWD to be used for regulatory decision-
making across therapeutic areas and across the life cycle of
products (31).

In oncology, the European biopharmaceutical industry has mapped
the initiatives and challenges for big data in a data landscape
report (32), and the EMA held a workshop with cancer registries and
cancer data collection initiatives to discuss data elements needed for
regulatory purposes, and the QA and governance of registries and
initiatives collecting data from patients with cancer (33). Key areas of
need for regulators include data on patient function, detailed prog-
nostic factors and biological features, as well as data on interventions,
including reasons for discontinuation. The need to efficiently merge
patient data independently collected by cancer registries and research
initiatives was also identified as important.Other essential information
that could assist regulators with cancer medicine development include
data to support the safety and efficacy of medicines when these data
address uncertainties about effects of a medicine or fill gaps in
knowledge about cancers at the time of regulatory assessment or
shortly after authorization (34).

Outside of the EMA, a number of European big data projects are
already underway. The Innovative Medicines Initiative 2 public–
private partnership: Big Data for Better Outcomes (which includes
HARMONY for hematologicmalignancies and PIONEER for prostate
cancer), and the European Health Data & Evidence Network, plus
several projects under the EU Horizon 2020 funding framework are
but a few examples.

Summary and Recommendations
Cancer is both pervasive and increasingly complex. It is fascinating

to observe the revolution in cancer treatment where the reliance on
large amounts of data is becoming more mainstream. For the vast
volumes of data to be useful, they need to be organized, shared,
integrated, and readily accessible by teams that have decision-
making responsibilities in cancer treatment. More importantly, the
data need to reflect the intent-to-treat population. To date, most
datasets largely reflect patients of European ancestry and conclusions
drawnmay not be broadly applicable to all. Efforts to be as inclusive as
possible in future clinical studies will result in more representative
datasets with time. This report highlighted some of the challenges
associated with each of those steps and offered an array of existing
efforts and opinions aimed at mitigating the respective roadblocks
through real examples.

To maximize knowledge generation from data for patients, it is
imperative that ecosystems of partnerships, standardization, and
legislation continue to advance in concert to avoid weak links in the
value chain of cancer treatment. New interventions will become more
credible and adopted widely when data are used to inform treatment
decisions. Therefore, willingness to share data by organizations in a
precompetitive fashion, agreements on data quality standards, and
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instituting universal and practical tenets on data privacy will be crucial
to realize that aspiration.

Every stakeholder who touches patient data shares responsibility for
delivering the vision of harnessing the totality of data that are available,
to drive decision-making in favor of patients everywhere. The authors
hope that by describing some of the emerging resources, we raise
awareness and inspire generators, stewards, and consumers of health-
care data to consider the secondary use of such data at the earliest
possible step. This will ensure proper sharing of data to generate
insights so that people suffering from cancer and their loved ones stand
the best chance to benefit from collective knowledge of the cancer
community.
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