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SUMMARY

Identification of the optimal dose presents a major challenge in drug development with molecularly targeted
agents, immunotherapy, as well as chimeric antigen receptor T-cell treatments. By casting dose finding
as a Bayesian model selection problem, we propose an adaptive design by simultaneously incorporating
the toxicity and efficacy outcomes to select the optimal biological dose (OBD) in phase I/II clinical
trials. Without imposing any parametric assumption or shape constraint on the underlying dose–response
curves, we specify curve-free models for both the toxicity and efficacy endpoints to determine the OBD.
By integrating the observed data across all dose levels, the proposed design is coherent in dose assignment
and thus greatly enhances efficiency and accuracy in pinning down the right dose. Not only does our
design possess a completely new yet flexible dose-finding framework, but it also has satisfactory and
robust performance as demonstrated by extensive simulation studies. In addition, we show that our design
enjoys desirable coherence properties, while most of existing phase I/II designs do not. We further extend
the design to accommodate late-onset outcomes which are common in immunotherapy. The proposed
design is exemplified with a phase I/II clinical trial in chronic lymphocytic leukemia.

Keywords: Bayesian adaptive design; Bayesian model selection; Delayed response; Optimal biological dose; Phase
I/II trial.

1. INTRODUCTION

Identification of the optimal biological dose (OBD) in early-phase cancer trials plays an increas-
ingly important role in new drug development of targeted agents, immunotherapy, as well as chimeric
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antigen receptor (CAR) T-cell therapy. Compared with cytotoxic agents in oncology, these novel
agents are generally tolerable, and thus the optimal doses may not be subject to severe side effects
(Hoering and others, 2011). In contrast to the traditional phase I clinical trials, which often focus on
determination of the maximum tolerated dose, the primary objective of dose finding for immunotherapy
and targeted therapy is to locate the OBD which is defined as the lowest safe dose that has the highest
efficacy (Yan and others, 2018). By considering both toxicity and efficacy outcomes simultaneously, phase
I/II designs can seamless maximize the therapeutical effect of the new drug while controlling its adverse
effect, which enhances the trial efficiency as well as the ethics of early drug development.

However, the OBD determination in phase I/II trials is associated with many challenges, among which
the most prominent one is that the shape of the dose–efficacy curve is typically unknown and may not follow
a monotonic pattern in contrast to the dose–toxicity relationship. In practice, the dose–efficacy curves for
targeted agents and immunotherapy are often expected to have three main shapes: a monotone increasing
or decreasing pattern; an umbrella shape which attains the maximum therapeutical effect in the middle
of the dose range; or a plateau shape, that is, the dose–efficacy curve increases initially and then remains
flat as the dose continues to increase. Without knowing a priori the specific form of the dose–efficacy
relationship, it is difficult for the conventional toxicity-based dose-finding designs such as the 3+3 design
and the continual reassessment method (CRM) to identify the OBD accurately. Many phase I/II designs
have been developed to capture the relationship between the efficacy probability and the dose level (Yin,
2012). For example, Thall and Cook (2004) adopted a quadratic form to quantify the non-monotone pattern
of the dose–efficacy curve and introduced a toxicity–efficacy trade-off contour for dose finding. Zang and
others (2014) proposed two designs: one is called the isotonic design, which continually estimates the
dose–efficacy curve by a nonparametric isotonic regression approach; and the other has a semiparametric
spirit as it assumes a logistic model for the dose–efficacy relationship locally around the current dose.
Riviere and others (2018) utilized an adaptive randomization scheme to determine the plateau in phase I/II
dose-finding trials. Takeda and others (2018) developed a Bayesian optimal interval design by considering
both toxicity and efficacy outcomes. Other examples of phase I/II designs can be found in Braun (2002),
Yin and others (2006), Wages and Tait (2015), Muenz and others (2019), Li and others (2020), Lin and
others (2020), among others. Phase I/II designs have also be considered for more complex early-phase
trials, for example, the drug-combination trials (Yuan and Yin, 2011), personalized dose finding (Guo and
Yuan, 2017), incorporation of immune responses (Wang and others, 2019), accommodating time-to-event
outcomes (Takeda and others, 2020), among others. For a comprehensive review on the existing methods
of phase I/II trials, see Mandrekar and others (2010) and Yuan and others (2017).

Our research is motivated by a phase I/II dose-finding study in patients with relapsed or refractory
chronic lymphocytic leukemia (CLL) (Van Den Neste and others, 2013). Preclinical studies have demon-
strated in vitro that acadesine activates adenosine monophosphate-activated protein kinase and selectively
induces apoptosis in B cells of CLL patients. The primary objective of this multicenter trial was to inves-
tigate the safety as well as efficacy of acadesine in CLL patients. Most of the existing phase I/II designs
impose parametric assumptions to quantify the dose–toxicity and dose–efficacy curves, which however
may not be reliable when the assumed models clearly deviate from the true dose–response profiles. To
relax the rigidity in parametric model specifications, we propose an adaptive dose-finding design to search
for the OBD under the framework of Bayesian model selection. A key feature that makes our design essen-
tially different from existing ones is that our design estimates the optimal dose directly, instead of using an
indirect way by estimating the dose–response curves. A set of curve-free models is specified for toxicity
to examine which dose level is the cutoff for the tolerable dose set; and another set of curve-free models
is imposed for efficacy to test which of the tolerable doses is the most efficacious one. Our prespecified
models require minimum constraints yet can capture both monotone and nonmonotone dose–response
relationships. As a result, the proposed design enjoys both robustness and adaptiveness in the sense that
each dose assignment is determined optimally according to some criterion by integrating all the available



Bayesian adaptive model selection design 279

data in the trial. Furthermore, our design is shown to be coherent in the sequence of dose assignment,
which enhances its ethical implications. To the best of our knowledge, the coherence property has never
been studied for existing phase I/II trial designs. We further generalize the design to address the issue of
late-onset outcomes, which is another prominent challenge with novel targeted agents and immunotherapy.

The remainder of this article is organized as follows. In Section 2, we formulate the Bayesian adaptive
model selection design and present its theoretical properties. In Section 3, we examine the performance
of the new design via simulation studies and make extensive comparisons with existing methods. As an
illustration, we apply our design to a phase I/II dose-finding trial with acadesine therapy in Section 4, and
Section 5 concludes with some remarks. Technical details and additional simulation studies are presented
in the Supplementary material available at Biostatistics online.R codes to implement the proposed methods
can be found from https://github.com/ruitaolin/BAMS.

2. METHODOLOGY

2.1. Probability model

Consider a phase I/II trial with J dose levels, let pTj and pEj denote the toxicity and efficacy probabilities
at dose level j respectively, for j = 1, . . . , J . Let di ∈ {1, . . . , J } denote the dose level assigned to the ith
patient, and let xTi and xEi represent the corresponding binary dose-limiting toxicity (DLT) and efficacy
outcomes, with a value of 1 indicating that the patient has experienced the corresponding outcome, and
0 otherwise. To facilitate the development of our method, we assume that the bivariate outcomes of all
treated patients can be quickly observed without delay, while its extension to late-onset responses is given
in Section 2.5. Let Dn = {(d1, xE1, xT1), . . . , (dn, xEn, xTn)} represent the data accumulated up to the nth
patient, and then yEj = ∑n

i=1 xEiI {di = j}, yTj = ∑n
i=1 xTiI {di = j} and mj = ∑n

i=1 I {di = j} are the
numbers of efficacy responses, DLTs and patients treated at dose level j, respectively, where I {·} is the
indicator function.

In dose-finding trials, the toxicity probabilities are typically assumed to increase monotonically with
dose levels, that is, pT1 < · · · < pTJ , while the dose–efficacy relationship is not subject to such a monotonic
constraint. Specifically, the dose–efficacy curve may be monotonically increasing, decreasing, umbrella-
shaped, or plateau-shaped; that is, the efficacy probabilities may first increase and then decrease or remain
flat in the plateau region as the dose increases. Therefore, any of the J dose levels may attain the largest
efficacy probability, that is, pE1 ≤ · · · ≤ pEj and pEj ≥ · · · ≥ pEJ , for any j ∈ {1, . . . , J }. Let φT denote the
prespecified maximum tolerable toxicity probability, and then the admissible set AT contains all the dose
levels with the toxicity probabilities less than φT, AT = {j : pTj ≤ φT, j = 1, . . . , J }. To handle possible
ties, we define the OBD as the lowest dose level in AT that has the largest efficacy probability; that is

jOBD = min{S}, where S = {
j : j = argmax

j′∈AT

{pEj′ }
}
.

Alternatively, the OBD can also be defined as the dose level that is the most efficacious in AT (Mozgunov
and Jaki, 2019). The two definitions coincide when the efficacy curve is monotone or has an umbrella
shape, while multiple optimal doses may satisfy the second definition for a dose–efficacy curve with a
plateau.

To identify the admissible set AT, we consider a Bayesian model selection procedure with J +1 toxicity
models,

MTk :

{
AT = ∅, k = 0,

AT = {1, . . . , k}, k = 1, . . . , J ,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://github.com/ruitaolin/BAMS
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where MT0 indicates that none of the J toxicity probabilities satisfies pTj ≤ φT, that is, all the J doses
are excessively toxic, and MTk (k = 1, . . . , J ) represents that the kth dose is the highest level in the
admissible set AT. Under each toxicity model MTk , k = 0, . . . , J , we specify a sequential uniform prior
distribution πT(pT1, . . . , pTJ |MTk) to maintain the monotonically increasing pattern of the dose–toxicity
curve, ⎧⎪⎨⎪⎩

pTj|MTk ∼ Unif (0, φT), j = k ,

pTj|MTk , pT,j+1 ∼ Unif (0, min(pT,j+1, φT)), j < k ,

pTj|MTk , pT,j−1 ∼ Unif (max(φT, pT,j−1), 1), j > k ,

(2.1)

where pT0 = 0 and pT,J+1 = 1 are the lower and upper boundaries of the prior distribution, respectively.
As the dose–efficacy curve may possess a nonmonotone pattern, we consider J models for the efficacy

probabilities,

MEk : pEk = max
1≤j≤J

{pEj}, k = 1, . . . , J ,

which indicates that under model MEk dose level k attains the largest efficacy probability among the J
dose levels. The joint prior distribution πE(pE1, . . . , pEJ |MEk) under model MEk , k = 1, . . . , J , is given
by ⎧⎪⎨⎪⎩

pEj|MEk ∼ Unif (δE, 1), j = k ,

pEj|MEk , pE,j+1 ∼ Unif (0, pE,j+1), j < k ,

pEj|MEk , pE,j−1 ∼ Unif (0, pE,j−1), j > k ,

(2.2)

where δE is the exploratory efficacy cutoff for searching the maximum efficacious dose level, and it controls
the degree of aggressiveness of the design. Usually, a large value of δE facilitates more exploration of untried
tolerable doses, while a small value of δE might cause the trial to be trapped in some suboptimal doses.
In practice, δE can be chosen as the response rate under the alternative hypothesis that would be used in
a phase II trial. The default setting δE ∈ [0.25, 0.40] generally results in satisfactory performance of the
proposed design given that the efficacy rate of the OBD is below 0.5, which is the case for most cancer
treatments (Paoletti and Postel-Vinay, 2018). However, if it is expected that several doses may have large
efficacy probabilities, for example, pEj > 0.5, we recommend to increase the value of δE to 0.5 or even a
higher value.

Alternatively, we consider a data-adaptive choice for δE by treating δE as a function of the sample size
as well as the observed efficacy rate at the current dose. Specifically, suppose that j is the current dose
level, and we set δE as

δE =
{

0.5, if mj ≥ N ∗ and yEj/mj ≥ 0.25;

0.25, otherwise.

Such a data-adaptive choice for δE indicates that if the number of patients at the current dose is sufficiently
large (say, greater than N ∗ = 12), and the corresponding observed efficacy rate is also acceptable, then
we assign a larger value to δE to facilitate more exploration of other potential doses (i.e., untried doses
or promising doses yet tested adequately). This scheme inherits the exploitation–exploration spirit of
reinforcement learning, and thus it can prevent the trial from being stuck at some suboptimal doses without
sacrificing too much on safety. We recommend using such a data-adaptive scheme as our numerical studies
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show that it is more robust and can flexibly accommodate various toxicity/efficacy profiles. The value
of δE can be further increased above 0.5 according to the trial’s characteristics or the need of clinical
investigators. For example, for trials that anticipate ≥ 70% response rates, setting the maximum value
of δE larger than 0.5 may result in a better design performance. Nevertheless, even under the default
setting, as demonstrated by extensive simulation studies, the proposed design still delivers a competitive
performance in comparison with other designs.

Based on the observed data Dn, the marginal likelihood under model Mlk is

P(Dn|Mlk) ∝
∫

· · ·
∫

πl(pl1, . . . , plJ |Mlk)

J∏
j=1

{
p

ylj
lj (1 − plj)

mj−ylj

}
dpl1 · · · dplJ , l ∈ {T, E}

where πl(pl1, . . . , plJ |Mlk) represents the joint prior distribution of {pl1, . . . , plJ } under model Mlk . Thus,
the posterior probabilities of model MTk and MEk are respectively given by

P(MTk |Dn) = P(Dn|MTk)P(MTk)∑J
j=0 P(Dn|MTj)P(MTj)

, P(MEk |Dn) = P(Dn|MEk)P(MEk)∑J
j=1 P(Dn|MEj)P(MEj)

,

where P(Mlk) is the prior probability of Mlk , l ∈ {T, E}. The prior information about the drug’s safety and
efficacy can be elicited from historical data or clinicians’ expertise knowledge, which can be incorporated
into the prior model probability P(MTk). If there is little information a priori, we specify a discrete uniform
distribution for the prior model probability, for example, P(MTk) = 1/(J + 1) and P(MEk) = 1/J .

We model the toxicity and efficacy outcomes independently, while it is possible to take their correla-
tion into account, which however requires more complicated models and intensive computation. In the
literature, it has been demonstrated that the approach of joint modeling does not improve the design per-
formance (Yin and others, 2006), which is also confirmed via a sensitivity analysis in the Supplementary
material available at Biostatistics online.

2.2. Bayesian adaptive model selection design

Most of the existing phase I/II designs cast dose finding into a regression problem of estimating the
dose–toxicity and dose–efficacy curves. By contrast, we propose to determine the next dose level using
the posterior model probabilities P(Mlk |Dn). The posterior probability of pTj ≤ φT can be derived using
Bayesian model averaging (BMA),

P(pTj ≤ φT|Dn) =
J∑

k=0

P(MTk |Dn)P(pTj ≤ φT|MTk , Dn) =
J∑

k=j

P(MTk |Dn),

where the second equality is inherited from the definition of MTk . Given j, if k < j, MTk specifies that
pTj > φT and, as a result, P(pTj ≤ φT|MTk , Dn) = 0; if k ≥ j, MTk specifies that pTj ≤ φT and, as a result,
P(pTj ≤ φT|MTk , Dn) = 1.

The admissible set AT is estimated by ÂT(Dn) = {j : P(pTj ≤ φT|Dn) > δT}, and the highest dose
level in ÂT(Dn) is denoted by jmax

Tn = max
{ÂT(Dn)

}
, where δT > 0 is a prespecified posterior probability

cutoff for toxicity that determines the conservativeness of a trial. The smaller the value of δT, the more
aggressive the dose allocation. When the OBD is located in the lower dose region, a larger value of δT

is more desirable as it tends to rule out the higher dose levels. However, if the OBD is located in the
higher dose region, an overly large value of δT may lead to exclusion of the OBD from the admissible
set. In practice, the location of the OBD is unknown a priori and thus the optimal value of δT cannot be

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data


282 R. LIN AND OTHERS

determined. In general, we recommend δT ∈ [0.10, 0.20], which leads to effective exclusion of overly
toxic dose levels.

For the efficacy outcome, the most efficacious dose level based on the current data Dn is the one that
attains the largest posterior probability MEj, that is, jmax

En = arg max
1≤j≤J

P(MEj|Dn). When multiple tolerable

dose levels have the same largest posterior efficacy model probability, we would choose the lowest one from
them as it has the smallest toxicity rate. By considering the toxicity and efficacy outcomes simultaneously,
the optimal dose level based on the cumulative data is

j∗n = min(jmax
Tn , jmax

En ). (2.3)

If the efficacious dose level jmax
En is tolerable as noted by jmax

En ≤ jmax
Tn , then jmax

En is optimal; otherwise the
optimal level is jmax

Tn due to the underlying umbrella-shaped dose–efficacy curve.
At the beginning of a trial, the posterior estimates are typically unstable due data sparsity, which often

causes the dose movement to be trapped in some lower dose levels. To stabilize the estimates as well
as accelerating the trial conduct, we implement a start-up phase as follows. The first cohort of patients
is treated at the lowest dose level, and if no toxicity or efficacy outcome is observed, we escalate one
dose level for the next cohort of patients. The start-up phase continues escalation until the first toxicity or
efficacy outcome is observed or the highest dose level is reached, and then the trial enters seamlessly into
the main phase. With a cohort size of three patients, when the dose assignment reaches dose level j at the
end of the start-up phase, we would have at least one toxicity/efficacy outcome at dose level j, and a total
of 3 × j patients have been evenly allocated across the first j dose levels.

In the main phase, suppose that n patients have been treated and the latest cohort is assigned dose level
j, then the optimal dose level j∗n is determined according to (2.3). For the next cohort of patients, (i) if
j > j∗n , de-escalate to the lower dose level j − 1; (ii) if j < j∗n , escalate to the higher dose level j + 1; and
(iii), otherwise, retain at the same dose level j. The trial will be stopped after exhaustion of a total of N
patients or be terminated early due to safety concerns.

As the proposed design can adaptively integrate all the observed data under the framework of Bayesian
model selection for decision making, we name it as the Bayesian adaptive model selection (BAMS)
design. In our proposal, the BAMS design adaptively allocates patients to a safe, highly efficacious dose
that is determined using all the observed data. As the proposed model selection framework is flexi-
ble, alternative dose-finding rules can be incorporated. One choice is to adapt BAMS into a Bayesian
decision-making framework by incorporating a loss function, as shown in the Supplementary material
available at Biostatistics online.

2.3. Coherence property

The BAMS design enjoys several prominent features: First, the trial design is model-free, as no parametric
assumption is imposed on either the dose–toxicity or dose–efficacy curves; Second, BAMS makes deci-
sions based on Bayesian posterior model probabilities rather than posterior estimates of the toxicity and
efficacy probabilities, which not only accounts for the observed number of toxicity and efficacy events
but also reflects the sample size; Third, the dose movement of BAMS is coherent as indicated by the next
theorem.

THEOREM 2.1 Suppose that the dose level for the nth patient is dn.

(1) If dn = jmax
T,n−1 and xTn = 1, the BAMS design is coherent in dose escalation, that is, for the (n+1)th

patient, dn+1 ≤ dn, with probability one.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
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(2) If dn = jmax
E,n−1 and (xTn, xEn) = (1, 1), the BAMS design is coherent in dose escalation, that is, for

the (n + 1)th patient, dn+1 ≤ dn, with probability one.
(3) If dn = jmax

E,n−1 and (xTn, xEn) = (0, 1), the BAMS design is coherent in dose retainment, that is, for
the (n + 1)th patient, dn+1 = dn, with probability one.

In a further elaboration, (1) indicates that when the current dose is the highest one in the admissible set
ÂT (Dn−1), if a DLT is observed for the most recent nth patient, then the highest dose in the updated set
ÂT (Dn) ⊂ ÂT (Dn−1) satisfies jmax

Tn ≤ jmax
T,n−1, and thus the dose level for patient (n+1) would not exceed that

for the nth patient.And, (2) indicates that when dn = jmax
E,n−1, we have P(ME,dn |Dn−1) > P(ME,dn+1|Dn−1). If

xTn = 1, then ÂT (Dn) ⊂ ÂT (Dn−1), and further if xEn = 1, then we have P(ME,dn |Dn) > P(ME,dn+1|Dn).
As a result, the next higher dose level will not be considered for treating the next patient by BAMS. In this
case, whether to de-escalate or retain the dose then depends on whether or not the updated highest dose in
ÂT (Dn), jmax

Tn , is lower than dn. Similarly, (3) indicates that when the dose assigned to the nth patient has
the largest posterior efficacy model probability based on Dn−1, if xTn = 0, then ÂT (Dn) ⊃ ÂT (Dn−1), and
if further xEn = 1, the posterior model probability P(ME,dn |Dn) is strengthened even more. As a result,
the current dose level is retained for the next patient.

The proof of Theorem 2.1 is provided in the Supplementary material available at Biostatistics online.
The coherence principle was first proposed for toxicity-based dose-finding designs (Cheung, 2011).
To the best of our knowledge, coherence has not been established for any existing phase I/II trial
designs. This finite-sample property provides a theoretical insight into BAMS: Along the trial con-
duct, each dose assignment is reasonable and intuitive, which enhances practicality of the proposed
method.

It is worth noting that Theorem 2.1 only establishes coherence for certain cases and there are other
ambiguous cases that cannot be covered by this theorem. For example, the complement to (1) is the
case with dn = jmax

T,n−1 and xTn = 0. Although we can show that jmax
T,n−1 ≤ jmax

Tn , the determination of the
next dose escalation/de-escalation decision requires to compare the posterior efficacy model probabilities
among all dose levels. Moreover, in combination, (2) and (3) consider the cases with dn = jmax

E,n−1 where
(xTn, xEn) = (1, 1) or (xTn, xEn) = (0, 1). For other cases with dn = jmax

E,n−1 where (xTn, xEn) = (0, 0) or
(1, 0), coherence cannot be established in either dose escalation, de-escalation or retainment, because
more information is needed. In particular, when dn = jmax

E,n−1 and (xTn, xEn) = (0, 0), we can show that
jmax
T,n−1 ≤ jmax

Tn , but whether dn still possesses the largest posterior efficacy model probability is unclear.
Thus, decisions of dose escalation, retainment or de-escalation are all possible in this case. Similarly,
if dn = jmax

E,n−1 and (xTn, xEn) = (1, 0), we can show that jmax
T,n−1 ≥ jmax

Tn and the posterior efficacy model
probability of dose level dn decreases (in turn, the posterior efficacy model probabilities of other dose
levels increase). As a result, whether to escalate, retain or de-escalate the dose depends on the relative
magnitude of the posterior efficacy model probabilities of the adjacent doses.

During the trial or at the time for dose estimation, we additionally implement a dose-elimination rule
for safety when some doses are excessively toxic or unacceptably sub-therapeutic.

(1) If dose level j satisfies P(pTj ≤ φT | Dn) < cT, then this dose and all the higher dose levels should
be eliminated from the trial due to excessive toxicity.

(2) If dose level j satisfies P(pEj ≥ φE | Dn) < cE, then this dose is futile and should be eliminated
from the trial.

Once a dose level is eliminated, it would not be considered in the subsequent dose assignments or in the
final dose estimation. If all dose levels are eliminated during the trial, then the trial should be terminated
early and no OBD is recommended. Here, φE, prespecified by clinicians, is the smallest efficacy probability
that is considered to be clinically meaningful; cT and cE are two probability cutoffs, which can be calibrated
through simulations so that the probability of incorrect elimination can be controlled at a reasonably low

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
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level. For example, in our default settings with φT = 0.30 and φE = 0.25, and the cutoff combination
(cT, cE) = (0.05, 0.10) can generally ensure satisfactory performances.

2.4. Optimal dose estimation

After a total of N patients have been treated in the trial, we take a two-step procedure to estimate the
OBD. First, we identify the highest safe dose level jmax

TN from the estimated admissible set ÂT(DN ). Next,
we consider the following J models for efficacy:

⎧⎪⎨⎪⎩
pEj|M̃Ek ∼ Unif (0, 1), j = k ,

pEj|M̃Ek , pE,j+1 ∼ (1 − w)Unif (0, pE,j+1) + wpE,j+1, j < k ,

pEj|M̃Ek , pE,j−1 ∼ (1 − w)Unif (0, pE,j−1) + wpE,j−1, j > k ,

(2.4)

for k = 1, . . . , J , where w is a prespecified prior probability that the two adjacent doses have the same
efficacy probability. By this way, the plateau shape of a dose–efficacy curve can be accommodated.Another
difference between M̃Ek and MEk is that M̃Ek no longer has the exploration parameter δE, due to the fact
that we need not to try more doses at the final OBD estimation stage. In other words, the more aggressive
model specification MEk facilitates dose exploration in the dose-finding stage so that more information
about the dose–response curves can be collected. At the end of the trial when the OBD is estimated, M̃Ek

tends to favor lower doses. Given the high variation caused by the sparse data as well as the possibility of
a dose–efficacy plateau relationship, we select a lower, efficacious dose level as follows:

jmax
EN = min

{
k : P(M̃Ek | DN ) ≥ max

j=1,...,J
{P(M̃Ej | DN )} − ε, and k �∈ E

}
,

where E is the set of dose levels that have been eliminated, and ε is a small positive number indicat-
ing an indifference or noninferiority margin, for example, ε = 0.05. In other words, jmax

EN is the lowest
admissible dose level that has the posterior model probability no less by ε than the maximum one. Due
to the incorporation of the indifference parameter ε, the definition of jmax

EN in the dose-estimation stage
differs from that of jmax

En , n < N , in the dose-finding stage. This is because the primary objective of the
dose-finding stage is to explore as many promising doses as possible in a reasonably greedy sense, while
that of the dose-estimation stage is to identify the safest dose with the highest efficacy. The incorporation of
ε in the dose-estimation stage can effectively identify a lower dose level that still possesses a high efficacy
rate. This is particularly important in small trials where the underlying dose–efficacy curve has a plateau
shape, because the posterior model probabilities for the high-efficacy doses tend to be indistinguishable.
Finally, the OBD can be determined as

jOBD
N = min{jmax

TN , jmax
EN }.

In addition, the proposed framework also facilitates to estimate the toxicity and efficacy probabilities
(pTj, pEj). For example, the BMA estimate of pTj at dose level j is given by

p̄Tj =
J∑

k=0

p̂(k)

Tj P(MTk |DN ), (2.5)
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where p̂(k)

Tj is the posterior mean of pTj under model MTk ,

p̂(k)

Tj =
∫ · · · ∫ pTjπT(pT1, . . . , pTJ |MTk)

∏J
j′=1

{
p

yTj′
Tj′ (1 − pTj′)

mj′−yTj′
}

dpT1 · · · dpTJ∫ · · · ∫ πT(pT1, . . . , pTJ |MTk)
∏J

j′=1

{
p

yTj′
Tj′ (1 − pTj′)

mj′−yTj′
}

dpT1 · · · dpTJ

.

The BMA estimate of pEj can be derived in a similar way using the models specified in (2.4).

2.5. Late-onset outcomes

For many cancer treatments such as radiation therapy or novel targeted therapy, it may take a long period
of time to observe the response post treatment. The delay in observing outcomes would cause serious
logistical issues for implementing adaptive trial designs, which typically assume that the outcomes can
be observed shortly after treatment so that the complete data of all previously treated patients can be
used when making decisions for newly enrolled patients. A possible solution to late-onset outcomes is
to suspend the accrual until the outcomes of all treated patients are observed. However, this would result
in an extremely long duration and repeatedly interrupted trial, which is neither feasible nor ethical by
holding incoming patients without treatment. To accommodate late-onset responses and shorten the trial
duration, we adopt the idea of time-to-event CRM (Cheung, 2011) into the BAMS design and apply the
approximation proposed by Lin and Yuan (2020) to obtain a standard binomial likelihood. More details
on the time-to-event BAMS (TITE-BAMS) design are provided in the Supplementary material available
at Biostatistics online.

3. NUMERICAL STUDIES

3.1. Simulation configurations

We conduct extensive simulation studies to examine the finite-sample performance of the proposed BAMS
design and also compare it with other existing designs. We take the toxicity upper bound φT = 0.30 and
the efficacy lower bound φE = 0.25. To account for a possible plateau in the dose–efficacy curve, we
define the OBD as the lowest tolerable dose that achieves the highest efficacy probability; and define
the suboptimal biological doses (s-OBDs) as all the tolerable doses with the highest efficacy, which
certainly include the OBD. We consider five dose levels and set the maximum sample size N = 30 with
a cohort size of three patients. As shown in Figure 1, eight dose–toxicity and dose–efficacy scenarios are
specified with various true response probabilities, curve shapes, and locations of the OBD. The outcomes
for each patient are simulated under the independence assumption between toxicity and efficacy; while
the performance of the proposed method under different correlations is examined in the Supplementary
material available at Biostatistics online. To avoid cherry-picked scenarios, the Supplementary material
available at Biostatistics online also contains the same 12 scenarios in Mozgunov and Jaki (2019) with a
maximum sample size of 60 (i.e., scenarios A1–A12 in Table S1 of the Supplementary material available
at Biostatistics online), which were also examined in Wages and Tait (2015) and Riviere and others (2018).
In particular, the 12 additional scenarios include flatter dose–response curves compared with the eight
scenarios considered here.

We examine two versions of the proposed designs: BAMSf uses a fixed exploratory efficacy cutoff δE =
0.35, and BAMSa implements a data-adaptive cutoff as discussed in Section 2.1. For both BAMS designs,
we set the posterior probability cutoff for toxicity δT = 0.15, the prior probability for a plateaued efficacy
curve w = 0.3, the indifference margin ε = 0.05, and the probability cutoffs for dose elimination (cT, cE) =
(0.05, 0.10) throughout all simulations. For comparison, we examine the operating characteristics of five

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
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Fig. 1. Eight scenarios with various dose–toxicity (red dashed line) and dose–efficacy (blue solid line) curves in
the simulation study. The red (or blue) dash–dotted line corresponds to the prespecified maximum tolerable toxicity
probability φT = 0.30 (or the minimum efficacy probability φE = 0.25), which determines the admissible dose set.

existing dose-finding methods: the WT design (Wages and Tait, 2015), the MTA-RA design (Riviere and
others, 2018), the L-logit design (Zang and others, 2014), the Iso design (Zang and others, 2014), and the
BOIN-ET design (Takeda and others, 2018). The first three are parametric model-based designs and the last
two can be viewed as model-free methods. Under all the considered designs, the trial starts treating the first
cohort at the lowest dose level.Although different designs may have different utilities or objectives, we have
performed extensive calibration to ensure that each design on average achieves the optimal performance
across the considered scenarios. Detailed parameter specifications of the five competing designs are given
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in the Supplementary material available at Biostatistics online. For a benchmark comparison, we also
include the nonparametric optimal design (Cheung, 2014). The optimal design assumes, in an oracle way,
that the outcomes for each patient are available at all dose levels, and thus it provides a practical upper
bound for the accuracy of dose-finding designs. A comparison of the OBD selection percentage of the
proposed design with the values under the optimal one shows how far the design performance is from
the best possible selection percentage. Under each design, we replicate 5000 simulated trials for each
scenario.

Supplementary material available at Biostatistics online also contains extensive sensitivity analyses to
examine the performance of the proposed BAMS design with respect to different values of the posterior
probability cutoff for toxicity δT, the exploratory efficacy cutoff δE, the correlation between toxicity and
efficacy, as well as the prior probability w in the final efficacy models.

3.2. Simulation results

The simulation results based on the eight scenarios in Figure 1 are reported in Tables 1 and 2, and
those based on the additional 12 scenarios are provided in Figures S1–S5 of the Supplementary material
available at Biostatistics online. To evaluate the operating characteristics of different designs, we consider
five performance statistics: the selection percentage of the OBD and those of the s-OBDs; the numbers
of patients treated at the OBD and s-OBDs; and the number of patients treated at overly toxic dose levels
as noted by pTj ≥ φT + 0.05. Not only do these five statistics quantify the accuracy and efficiency of a
design, but they also reflect the ethical aspects of the trial. In general, it is more desirable to treat patients
at the most efficacious dose level while controlling the risk of DLTs.

As shown in Table 1, when the highest efficacy rate is moderate, the performances of BAMSa and
BAMSf are similar. In scenarios 1–4, the efficacy probability initially increases with the dose but plateaus
later, and the OBD is lower than the Maximum Tolerated Dose (MTD). In scenario 1, compared with
MTA-RA, BAMSa yields a similar OBD selection percentage, but a 10% higher probability of selecting
s-OBDs. In terms of patient allocation, BAMSa treats most of the patients at the OBD, which in turn leads
to a smaller ratio of the number of DLTs to the number of efficacy responses. In scenario 2, the efficacy
curve plateaus at dose level 3, but the toxicity probability of dose level 5 exceeds the target toxicity rate.
As a result, more aggressive designs, such as L-logit, would allocate more patients to dose level 5, and
the WT and BAMSa designs outperform the others in terms of the selection percentage of s-OBDs. In
scenario 3, dose level 4 is the OBD and dose level 5 can be considered as an s-OBD. Although BAMSa

has a superior performance in selecting dose level 4, it tends to treat fewer patients at dose level 5, because
BAMSa uses a similar toxicity monitoring scheme as the design by Lin and Yin (2017). Such an overdose
control procedure in BAMSa also leads to the smallest number of DLTs. In scenario 4, the BOIN-ET
and BAMSa perform equally well, with the selection percentages of s-OBDs close to that of the optimal
design. As shown in Table 2, the set of s-OBDs contains only one dose in scenarios 5–6. Under scenario
5, the OBD and the MTD coincides, and BAMSa yields the best performance. Under scenario 6, the
efficacy curve monotonically increases, and BAMSa ranks the second best in terms of OBD identification.
Scenario 7 has a monotonically decreasing efficacy curve, which is the opposite case of scenario 6. The
MTA-RA has the highest OBD selection percentage, and BAMSa performs similarly to the other designs
except L-logit. It is desirable to terminate the trial early under scenario 8, because none of the five doses
is admissible due to excessive toxicity or futility. According to the last column of Table 2, BAMSa can
quickly identify the inadmissibility of the selected doses with a limited sample size, and thus it has the
highest early termination rate. In contrast, the L-logit and Iso designs do not have any futility stopping
rules, leading to a large probability of selecting futile doses.

In the eight scenarios considered in Tables 1 and 2, the two proposed designs have similar performances
when the efficacy response rate of OBD is not overly high (e.g., <60%). The performances of BAMSf

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab028#supplementary-data
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Table 1. Operating characteristics of the BAMS designs in comparison with existing dose-finding methods
under scenarios 1–4 with the optimal biological dose (OBD) in boldface and the suboptimal biological
doses (s-OBDs) underlined;“Overdoses” meaning the overly toxic dose levels with pTj ≥ 0.35 and“None”
indicating the percentage of inconclusive trials. The maximum sample size is 30

Design
Selection percentage (no. of patients) at dose level No. of No. of

None
1 2 3 4 5 overdoses DLTs/Effs

Scenario 1
(pT, pE) (0.01, 0.25) (0.05, 0.40) (0.10, 0.40) (0.15, 0.40) (0.30, 0.40)
WT 14.8 (6.9) 32.9 (9.1) 26.2 (7.3) 18.5 (4.6) 7.6 (2.1) 0.0 2.5/11.0 0.0
MTA-RA 24.6 (7.7) 38.4 (8.9) 20.1 (6.5) 11.6 (4.6) 5.2 (2.3) 0.0 2.6/10.8 0.1
L-logit 11.1 (4.6) 28.5 (7.9) 26.4 (7.5) 25.1 (5.7) 9.0 (4.3) 0.0 3.3/11.5 0.0
Iso 17.6 (7.3) 34.9 (9.9) 23.9 (6.6) 17.7 (4.0) 5.9 (2.2) 0.0 2.5/10.9 0.0
BOIN-ET 6.5 (4.4) 24.2 (7.9) 25.8 (7.0) 27.2 (6.4) 16.3 (4.3) 0.0 3.4/11.3 0.0
BAMSf 14.2 (6.2) 35.1 (11.3) 27.9 (7.8) 17.8 (3.6) 5.1 (1.2) 0.0 2.3/11.1 0.0
BAMSa 14.3 (5.9) 36.1 (11.7) 28.8 (8.2) 16.8 (3.3) 4.1 (0.9) 0.0 2.3/11.1 0.0
Optimal 3.5 42.9 27.5 18.3 7.7 – – 0.0

Scenario 2
(pT, pE) (0.10, 0.15) (0.12, 0.18) (0.15, 0.38) (0.25, 0.38) (0.35, 0.38)
WT 12.3 (7.9) 10.6 (5.9) 36.9 (8.1) 28.8 (5.6) 8.3 (2.2) 2.2 4.8/8.2 3.1
MTA-RA 13.0 (6.4) 13.4 (6.7) 42.6 (9.0) 21.9 (5.6) 7.6 (2.2) 2.2 5.0/8.6 1.5
L-logit 13.4 (6.0) 8.3 (5.7) 37.7 (7.4) 29.9 (6.4) 10.4 (4.4) 4.4 5.6/8.8 0.2
Iso 25.6 (9.0) 13.5 (6.1) 31.4 (7.1) 22.7 (4.9) 6.6 (2.8) 2.8 4.9/8.1 0.0
BOIN-ET 9.4 (4.9) 9.6 (5.3) 38.6 (8.7) 29.6 (7.0) 12.2 (4.1) 4.1 5.6/9.2 0.6
BAMSf 8.6 (5.2) 6.2 (5.9) 41.8 (10.0) 33.3 (6.8) 8.7 (2.0) 2.0 5.1/8.9 1.5
BAMSa 9.8 (5.4) 6.2 (6.3) 41.3 (9.7) 33.2 (6.6) 8.1 (1.8) 1.8 4.9/8.8 1.5
Optimal 0.9 2.4 61.2 26.5 8.1 – – 1.0

Scenario 3
(pT, pE) (0.01, 0.10) (0.02, 0.20) (0.05, 0.35) (0.10, 0.55) (0.25, 0.55)
WT 3.9 (4.7) 7.0 (4.9) 12.8 (5.0) 35.2 (7.4) 40.6 (8.0) 0.0 3.0/11.7 0.5
MTA-RA 2.4 (4.1) 9.4 (5.2) 18.3 (6.2) 41.9 (8.1) 27.4 (6.3) 0.0 2.9/11.4 0.6
L-logit 4.3 (4.0) 6.5 (5.4) 15.2 (5.2) 44.8 (6.8) 29.2 (8.6) 0.0 3.3/11.8 0.0
Iso 14.6 (6.5) 14.5 (6.2) 13.7 (5.2) 35.7 (6.6) 21.4 (5.5) 0.0 2.5/10.4 0.0
BOIN-ET 0.8 (3.3) 2.3 (3.9) 10.4 (6.3) 55.3 (11.2) 31.3 (5.3) 0.0 2.8/12.4 0.0
BAMSf 2.7 (4.0) 5.5 (5.2) 19.4 (7.6) 53.7 (10.0) 18.7 (3.1) 0.0 2.3/11.3 0.1
BAMSa 4.1 (4.1) 6.6 (5.8) 16.0 (7.5) 54.6 (9.6) 18.7 (2.9) 0.0 2.1/11.1 0.1
Optimal 0.0 0.1 5.4 67.3 27.2 – – 0.0

Scenario 4
(pT, pE) (0.08, 0.10) (0.10, 0.20) (0.15, 0.55) (0.32, 0.55) (0.40, 0.65)
WT 2.0 (5.5) 4.2 (4.7) 38.6 (8.8) 37.8 (7.6) 14.8 (3.1) 3.1 5.7/12.4 2.6
MTA-RA 1.8 (4.4) 5.6 (5.6) 46.7 (9.5) 27.8 (6.9) 17.4 (3.6) 3.6 5.9/12.7 0.7
L-logit 6.8 (4.8) 5.3 (4.8) 42.1 (8.5) 31.4 (6.7) 14.2 (5.2) 5.2 6.3/13.1 0.1
Iso 14.1 (6.5) 7.4 (4.8) 45.0 (9.1) 24.6 (5.9) 8.7 (3.7) 3.7 5.7/12.3 0.0
BOIN-ET 2.1 (3.7) 4.9 (4.5) 62.4 (14.3) 24.4 (5.6) 5.9 (1.8) 1.8 5.4/13.4 0.3
BAMSf 1.2 (3.9) 2.4 (4.7) 63.1 (14.5) 28.5 (5.9) 4.1 (0.9) 0.9 5.3/13.0 0.8
BAMSa 2.2 (4.0) 2.6 (5.1) 60.8 (14.1) 28.9 (5.7) 4.7 (0.9) 0.9 5.2/12.8 1.0
Optimal 0.0 0.44 72.1 16.7 10.4 – – 0.4

Notes: BAMSf (or BAMSa) is the proposed design with a fixed (or data-adaptive) exploratory cutoff; “Optimal” denotes the
nonparametric optimal design (Cheung, 2014); five existing designs include WT (Wages and Tait, 2015), MTA-RA (Riviere and
others, 2018), L-logit (Zang and others, 2014), Iso (Zang and others, 2014), and BOIN-ET (Takeda and others, 2018).
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Table 2. Operating characteristics of the BAMS designs in comparison with existing dose-finding methods
under scenarios 5–8 with the optimal biological dose (OBD) in boldface and the suboptimal biological
doses (s-OBDs) underlined;“Overdoses” meaning the overly toxic dose levels with pTj ≥ 0.35 and“None”
indicating the percentage of inconclusive trials. The maximum sample size is 30

Design
Selection percentage (no. of patients) at dose level No. of No. of

None
1 2 3 4 5 overdoses DLTs/Effs

Scenario 5
(pT, pE) (0.05, 0.10) (0.10, 0.25) (0.25, 0.45) (0.50, 0.60) (0.60, 0.50)
WT 2.5 (5.0) 12.0 (6.4) 60.7 (11.3) 22.0 (6.2) 0.7 (0.7) 6.9 7.3/11.3 2.1
MTA-RA 3.3 (4.6) 16.5 (6.9) 48.9 (9.8) 27.7 (6.8) 3.1 (1.8) 8.6 7.9/11.5 0.5
L-logit 5.9 (4.5) 22.9 (7.0) 58.6 (10.2) 11.6 (5.7) 1.1 (2.6) 8.3 9.0/11.5 0.0
Iso 13.3 (6.2) 26.1 (7.6) 50.3 (9.1) 9.8 (4.9) 0.5 (2.1) 7.0 7.1/10.6 0.0
BOIN-ET 7.0 (4.3) 20.8 (7.3) 60.4 (12.7) 10.9 (5.0) 0.3 (0.6) 5.6 7.0/11.3 0.7
BAMSf 2.5 (4.0) 13.2 (6.8) 66.9 (13.8) 15.5 (5.1) 0.2 (0.2) 5.3 7.1/11.4 1.7
BAMSa 3.2 (4.0) 13.0 (7.2) 63.6 (13.5) 18.5 (5.1) 0.2 (0.2) 5.3 6.9/11.4 1.6
Optimal 0.3 17.1 70.9 1.9 0.1 – – 9.8

Scenario 6
(pT, pE) (0.02, 0.05) (0.05, 0.08) (0.07, 0.15) (0.10, 0.30) (0.15, 0.45)
WT 3.0 (4.5) 4.4 (4.8) 10.7 (4.9) 19.3 (5.6) 55.0 (9.8) 0.0 2.6/7.7 7.6
MTA-RA 1.4 (4.4) 3.6 (5.0) 12.8 (5.9) 29.1 (6.9) 44.6 (7.3) 0.0 2.6/6.9 8.5
L-logit 5.7 (3.9) 7.1 (5.1) 8.3 (5.3) 24.2 (5.4) 54.7 (10.3) 0.0 2.8/7.7 0.0
Iso 11.8 (5.7) 14.4 (6.1) 13.3 (5.0) 18.3 (4.9) 42.2 (8.2) 0.0 2.5/6.7 0.0
BOIN-ET 2.7 (3.7) 3.3 (4.2) 6.7 (4.5) 22.7 (6.2) 64.6 (11.5) 0.0 2.9/8.2 0.0
BAMSf 3.4 (3.6) 2.9 (4.1) 6.3 (4.7) 23.8 (7.0) 63.5 (10.6) 0.0 2.9/8.0 0.2
BAMSa 4.6 (3.8) 3.2 (4.5) 6.2 (4.9) 23.9 (6.8) 61.9 (9.9) 0.0 2.8/7.8 0.3
Optimal 0.0 0.0 0.6 20.9 77.9 – – 0.6

Scenario 7
(pT, pE) (0.01, 0.50) (0.02, 0.40) (0.03, 0.30) (0.04, 0.20) (0.05, 0.10)
WT 61.6 (16.0) 27.3 (8.6) 8.9 (3.9) 1.8 (1.3) 0.4 (0.3) 0.0 0.5/12.8 0.0
MTA-RA 82.9 (15.2) 12.4 (5.7) 3.1 (3.9) 3.0 (0.6) 0.2 (0.2) 0.0 0.6/11.8 0.3
L-logit 36.8 (10.8) 30.0 (8.0) 21.2 (5.7) 8.0 (3.3) 1.6 (1.6) 0.0 9.4/12.7 2.5
Iso 55.2 (14.8) 30.3 (9.3) 11.6 (4.1) 2.3 (1.4) 0.5 (0.4) 0.0 0.5/12.7 0.0
BOIN-ET 51.2 (12.1) 27.0 (5.5) 15.1 (3.4) 6.0 (3.3) 0.7 (5.7) 0.0 0.8/10.5 0.0
BAMSf 61.3 (16.7) 27.7 (8.7) 8.6 (3.4) 2.1 (1.0) 0.5 (0.3) 0.0 0.5/13.0 0.0
BAMSa 58.4 (15.8) 29.4 (9.3) 9.7 (3.8) 2.1 (0.8) 0.5 (0.2) 0.0 0.5/13.0 0.0
Optimal 86.8 12.3 0.9 0.0 0.0 – – 0.0

Scenario 8
(pT, pE) (0.25, 0.01) (0.55, 0.55) (0.67, 0.55) (0.87, 0.55) (0.95, 0.55)
WT 22.7 (12.9) 11.3 (6.0) 0.1 (1.0) 0.0 (0.1) 0.0 (0.0) 7.1 7.1/3.9 65.9
MTA-RA 29.4 (10.6) 22.4 (10.9) 0.3 (3.2) 0.0 (0.6) 0.0 (0.0) 14.7 11.3/8.2 47.8
L-logit 87.8 (20.6) 4.0 (5.4) 0.1 (1.9) 0.0 (0.6) 0.0 (0.0) 7.9 9.9/4.6 8.1
Iso 87.0 (17.1) 5.1 (7.2) 0.3 (3.4) 0.0 (0.9) 0.0 (0.1) 11.6 11.4/6.5 7.6
BOIN-ET 3.0 (9.1) 14.2 (9.5) 0.1 (0.9) 0.0 (0.1) 0.0 (0.0) 10.5 8.2/5.9 82.8
BAMSf 5.2 (8.6) 7.9 (8.8) 0.2 (1.1) 0.0 (0.0) 0.0 (0.0) 9.9 7.6/5.4 87.8
BAMSa 5.0 (8.6) 7.5 (8.8) 0.2 (1.0) 0.0 (0.0) 0.0 (0.0) 9.8 7.7/5.4 87.3
Optimal 0.0 0.4 0.0 0.0 0.0 – – 99.6
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and BAMSa differ in the cases where multiple doses have high efficacy response rates, e.g., in scenarios
A1, A6, and A7 in the Supplementary material available at Biostatistics online. In these scenarios, the
fixed-cutoff BAMSf design with δE = 0.35 tends to be trapped in sub-optimal doses more often, because
several sub-optimal doses also have adequate efficacy probabilities. In contrast, under the BAMSa design,
the value of δE is adaptively switched to 0.5 in these scenarios, which leads to more accurate selection
of the OBD. Although the issue of the BAMSf design can be addressed by utilizing a higher cutoff, say
δE = 0.5, BAMSf is still not flexible enough to accommodate all the cases, because the range of the
efficacy probabilities is typically unknown in early-phase trials.

In Supplementary material available at Biostatistics online, we report the simulation results of the
six designs under the 12 additional scenarios in Table S1 of the Supplementary material available at
Biostatistics online. In summary, the proposed BAMS designs perform competitively well in terms of
trial accuracy and efficiency. In most scenarios, BAMS ranks either the first or second, and never does it
yield the worst performance among the six designs in comparison. From the safety perspective, the BAMS
design on average assigns a smaller number of patients to overdoses, which is an additional distinctive and
appealing feature. Moreover, the sensitivity analyses and simulation studies with late-onset outcomes in
Supplementary material available at Biostatistics online further demonstrate that BAMS and TITE-BAMS
are robust to different toxicity–efficacy correlations as well as parameter specifications.

4. TRIAL APPLICATION

For illustration, we apply the proposed BAMS to redesign the aforementioned phase I/II clinical trial
for dose finding of acadesine in patients with CLL (Van Den Neste and others, 2013; ClinicalTrials.gov
identifier: NCT00559624). In the trial, five doses were considered: {50, 83.5, 139.5, 210, 315} mg/kg.
Severity of adverse events or toxicity was scored according to the National Cancer Institute Common
Terminology Criteria for Adverse Events Version 3.0, and adverse events with grade ≥3 in severity were
considered as DLTs. The primary efficacy outcome was complete response (CR), and the goal was to
determine the MTD and OBD of acadesine.

At such an early stage of drug development, the prior information on the dose–response curves was
very limited. It would be difficult to prespecify parametric models to capture the true response profiles,
while the proposed BAMS design may well serve this purpose due to its robust feature. The target toxicity
probability of the MTD was set at φT = 30%, and the response rate of the OBD of acadesine should be
greater than φE = 25%. We implement the BAMSa design with design parameters (N ∗, δT, ε, cT, cE) =
(12, 0.15, 0.05, 0.05, 0.10), which are the same as those used in Section 3. We assume a total of 30
patients with a cohort size of three to be enrolled into the study, and use hypothetical data to illustrate
the dose transition of the BAMSa design. From the first to the tenth cohort, the hypothetical data are
given by (j, mj, yTj, yEj) = {(1, 3, 0, 0), (2, 3, 0, 0), (3, 3, 0, 1), (4, 3, 2, 1), (4, 6, 2, 2), (5, 3, 2, 0), (4, 9, 2, 3),
(4, 12, 3, 4), (3, 6, 0, 2), (4, 15, 3, 7)}.At the beginning of the trial, a prephase stage is initiated to accelerate
dose escalation, i.e., we escalate one dose level of acadesine until the first DLT or CR is observed. On the
basis of this escalation rule, dose levels 1, 2, and 3 are sequentially tested on the patients until one CR
(but no DLT) is observed at dose level 3. Thus, the main dose-finding phase starts from the fourth cohort.
Figure 2 shows the posterior model probabilities at each decision-making time. After treating the first
three cohorts, the posterior model probabilities of MTk are (0.00, 0.00, 0.02, 0.24, 0.34, 0.40), and those
of MEk are (0.03, 0.04, 0.22, 0.38, 0.35). Although dose level 5 is safe according to the toxicity data, it
does not achieve the highest efficacy. Therefore, our dose-finding rule recommends dose level 4 for the
next cohort. As another example, after cohort 8, a total of 12 patients have been treated at dose level 4,
leading to an estimated efficacy probability of 0.33. According to the data-adaptive model specification
of BAMSa, the exploratory cutoff is increased to δE = 0.5. As shown in Figure 2, the posterior model
probabilities of MEk are immediately updated to (0.01, 0.04, 0.56, 0.27, 0.13), resulting in de-escalation
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Fig. 2. Based on the hypothetical data accumulated up to cohorts 3–10 (after the prephase) in the redesigned acadesine
trial, panel (a) shows the posterior probability for toxicity model MTk , k = 1, . . . , 5, which specifies dose level k is
the highest dose with a toxicity probability below φT = 0.30. Because the posterior probability for MT0 is visually
indifferent from 0, it is omitted from the plot. The dashed horizontal line corresponds to 1−δT = 0.85. This shows that
the highest admissible doses jmax

Tn are levels 5, 4, 5, 4, 4, 4, 4, 4, respectively. Panel (b) shows the posterior probability
for efficacy models MEk , which specifies dose level k yields a higher efficacy probability than other doses. The most
efficacious doses jmax

En are levels 4, 5, 5, 4, 4, 3, 4, 4, respectively. As the estimates of the highest admissible doses and
the most efficacious doses are more meaningful when the trial has accumulated a moderate number of cohorts, only
the values after the 3rd cohort (i.e., the start-up phase) are reported.
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to dose level 3. Such a de-escalation decision is sensible, because dose level 3 has been tried by fewer
patients yet possesses the same efficacy probability as dose level 4. Assigning more patients to promising
doses but tested inadequately can increase the accuracy of OBD identification.

At the end of the trial, we have assigned 3, 3, 6, 15, and 3 patients respectively to dose levels 1, 2,
3, 4, and 5, and have observed five DLTs and ten CRs from these 30 patients. No dose is eliminated
due to excessive toxicity or futility throughout the trial. The posterior model probabilities for toxic-
ity are (P(MT0|DN ), . . . , P(MT5|DN )) = (0.00, 0.00, 0.00, 0.08, 0.77, 0.15), and those for efficacy are
(P(M̃E1|DN ), . . . , P(M̃E5|DN )) = (0.01, 0.04, 0.28, 0.55, 0.13). According to our dose selection rule,
dose level 4 is finally identified as the MTD as well as the OBD, which not only is tolerable but
also has an optimal therapeutic effect. The posterior estimates of the toxicity and efficacy probabili-
ties can be obtained via Bayesian model averaging, (p̄T1, . . . , p̄T5) = (0.01, 0.03, 0.07, 0.19, 0.58) and
(p̄E1, . . . , p̄E5) = (0.08, 0.15, 0.33, 0.40, 0.22). The estimated toxicity and efficacy curves in Figure S8 of
Supplementary material available at Biostatistics online further confirm the optimality of dose level 4.

It is worth noting that the toxicity rate at dose level 5 is estimated as p̄T5 = 0.58. Albeit being
likely ove-toxic, it is computed based on a small sample size of three subjects only and thus associated
with a high estimation uncertainty. Compared with the point estimate, the posterior model selection
procedure can appropriately quantify such a high uncertainty: dose level 5 has a posterior model probability
P(MT5|DN ) = 0.15, the same as the decision boundary δT = 0.15. Although the choice of δT = 0.15
rules out dose level 5 in the admissible set ÂT(DN ), it should be cautious to interpret this dose as an
overly toxic level. This is because a slightly larger value of δT, namely > 0.15, would retain dose level
5 back in ÂT(DN ). Based on the CRM with the skeleton probabilities (0.10, 0.20, 0.30, 0.40, 0.50),
the final estimated toxicity rates are (0.02, 0.07, 0.13, 0.20, 0.30), and hence dose level 5 is deemed as
acceptable. On the other hand, if dose level 5 has a sample size of 15 subjects and 10 DLTs, its posterior
model probability P(MT5|DN ) would then be as low as 0.003, and surely such a dose level would be
excluded from the admissible set and deemed as excessively toxic. This example further demonstrates the
advantages of using posterior model probabilities in decision making, because not only does it consider
the magnitude of the point estimate but it also accounts for the associated uncertainly in the estimation.

5. CONCLUDING REMARKS

We have proposed an adaptive phase I/II dose-finding design for determination of the OBD based on a
Bayesian model selection framework. Our BAMS design does not require estimation of the underlying
dose–response curves in contrast to the conventional methods. The BAMS design continually estimates
the posterior model probabilities by incorporating all the available data. The prespecified curve-free (or
nonparametric) models have meaningful interpretations of quantifying all possible profiles of the OBD.
The adoption of the model selection scheme makes the BAMS design easy to implement. Due to the
curve-free nature of the proposed design, it inherits the robustness property with respect to different
dose–toxicity and dose–efficacy relationships. We have demonstrated the desirable performance of our
design from both theoretical and numerical perspectives. Furthermore, the TITE-BAMS design can
deal with late-onset responses by using the follow-up data to accelerate the trial without performance
deterioration.

Upon a careful assessment of the operating characteristics of the design, it is worth emphasizing that the
proposed design cannot achieve the optimal performance universally under all scenarios with a fixed set of
design parameters. Specifically, when multiple (say ≥ 2) DLTs are observed among the first cohort of three
patients at the optimal dose level jOBD which has a toxicity probability pTjOBD = φT, the proposed design
tends to assign relatively more patients to lower dose levels due to safety considerations. According to the
proof of Theorem 2.1, as long as the OBD has not been eliminated by the dose-elimination rule, there is a
positive probability to explore this “ambiguously toxic” dose in the subsequent dose assignment. However,
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in some circumstances, such a turn-around probability might be relatively small under our default setting.
As a result, a lower, suboptimal dose level tends to be selected more often. This issue can be resolved by
elevating the value of the posterior probability cutoff δT, which needs to be further discussed with clinical
investigators. Nonetheless, it is worth noting that such cases rarely happen in practice. For example, with
pTjOBD = φT = 0.3, the probability that three (or two) DLTs are observed among the first three patients at
such a dose level is only 0.027 (or 0.189). Moreover, the simulation results (e.g., scenarios A6 and A11 in
Supplementary material available at Biostatistics online) indicate that in comparison with other designs,
the proposed design still performs competitively in terms of the OBD selection percentage and patient
allocation.

SUPPLEMENTARYMATERIAL

Supplementary material is available at Biostatistics online.
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