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SUMMARY

Many studies collect functional data from multiple subjects that have both multilevel and multivariate struc-
tures. An example of such data comes from popular neuroscience experiments where participants’ brain
activity is recorded using modalities such as electroencephalography and summarized as power within
multiple time-varying frequency bands within multiple electrodes, or brain regions. Summarizing the joint
variation across multiple frequency bands for both whole-brain variability between subjects, as well as
location–variation within subjects, can help to explain neural reactions to stimuli. This article introduces
a novel approach to conducting interpretable principal components analysis on multilevel multivariate
functional data that decomposes total variation into subject-level and replicate-within-subject-level (i.e.,
electrode-level) variation and provides interpretable components that can be both sparse among variates
(e.g., frequency bands) and have localized support over time within each frequency band. Smoothness
is achieved through a roughness penalty, while sparsity and localization of components are achieved
by solving an innovative rank-one based convex optimization problem with block Frobenius and matrix
L1-norm-based penalties. The method is used to analyze data from a study to better understand reactions to
emotional information in individuals with histories of trauma and the symptom of dissociation, revealing

∗To whom correspondence should be addressed.

© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

https://orcid.org/0000-0002-1420-8975
https://orcid.org/https://orcid.org/0000-0003-1478-6430


228 J. ZHANG AND OTHERS

new neurophysiological insights into how subject- and electrode-level brain activity are associated with
these phenomena. Supplementary materials for this article are available online.

Keywords: Convex optimization; Functional principal component analysis; Multilevel models; Psychological trauma;
Regularization.

1. INTRODUCTION

Functional principal components analysis (FPCA) is arguably one of the most popular tools for analyz-
ing functional data, providing low-dimensional, parsimonious measures that account for the majority of
variation. There has been growing interest in FPCA for multiple dependent functional processes, such
as when multiple curves are observed for each subject. Depending on the characteristics of the data and
the scientific questions of interest, multiple functional processes are typically analyzed either through
multivariate FPCA, aiming to describe joint variation of different processes (Rice and Silverman, 1991;
Ramsay and Silverman, 2005; Chiou and others, 2014; Happ and Greven, 2018) or through multilevel
FPCA, aiming to characterize variation from repeatedly observed curves with a multilevel hierarchical
structure (e.g., between- and within-subject level principal components) (Crainiceanu and others, 2009;
Di and others, 2009; Greven and others, 2010; Staicu and others, 2010; Zipunnikov and others, 2011;
Shou and others, 2015; Goldsmith and others, 2015; Scheffler and others, 2019).

An increasing number of studies collect and wish to analyze functional data that can be viewed simulta-
neously as multilevel and multivariate. A popular example is from electroencephalography (EEG), which
measures electrical activities that take the form of multiple curves over time, defined over multiple pre-
specified frequency bands, and recorded from multiple locations across the scalp Our motivating example,
which is described in further detail in Section 2, involves the analysis of such data from a study to better
understand biological mechanisms of feelings of numbness and being removed from reality. To illus-
trate these data, Figure 1 displays data from two of four time-varying frequency-band measurements of
brain activity, at 2 of 14 measured locations across the scalp. Such data can be considered multivariate
across frequency-band measures, where we desire a summary of the joint information across the multiple
frequency bands, as well as multilevel across locations, where we consider both whole-brain variability
between participants as well as location-variation within participants.

Although methods for multivariate FPCA and for multilevel FPCA have been individually extensively
studied, and methods for FPCA of other data structures such as longitudinally observed functional data
(Chen and Müller, 2012; Hasenstab and others, 2017; Scheffler and others, 2019) have also been studied,
there is a dearth of methods that are able to jointly deal with both multivariate and repeatedly measured
functional processes. A contribution of this article is the introduction of a method for FPCA of multilevel
multivariate functional data. Specifically, we extend the multilevel decompositions in Di and others (2009)
and Shou and others (2015) to multivariate processes through latent random multivariate subject-specific
processes and replicate-within-subject processes and assume a separable replicate-temporal covariance
structure that can account for correlation among data from the same subject, such as spatial correlation
among data from different locations across the scalp.

The major contribution of this article is the development of an interpretable approach to the PCA
of multiple functional processes that is not only smooth but also localized within time and among
the variates. Existing approaches to conducting FPCA on multivariate functional data are limited in
that they are not localized, or that each component is a nontrivial function of each variate at all time
points. This lack of localization, which is a common issue across most classical procedures for analyzing
functional data, can be problematic in that it obstructs interpretation. The benefit of localized proce-
dures, both for providing scientifically interpretable measures and for improving statistical performance,
have been previously discussed in the context of functional linear regression (James and others, 2009;
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Fig. 1. Illustration of the Blunted and Discordant Affect (BADA) study data: time-varying power in two (theta and
alpha power) of four considered bands at two (AF4, right frontal and T8, right temporoparietal) locations.

Zhao and others, 2012; Zhou and others, 2013) and in the context of univariate FPCA (Chen and Lei, 2015;
Lin and others, 2016). However, to the best of our knowledge, localization for the PCA of multivariate
functional data has yet to be addressed. The problem of conducting an interpretable FPCA for multivariate
processes is considerably more challenging than for univariate, as it needs to allow for localization not
only within time, but also for localization among the variates.

Towards the goal of conducting an interpretable multivariate FPCA, we introduce a novel localized
sparse-variate FPCA (LVPCA). The LVPCA incorporates a roughness penalty to assure smoothness, and
matrix L1 and block-wise Frobenius norm-based penalties to achieve localization within time and variate,
respectively. The use of this combination of penalties can be viewed as a multivariate FPCA analogue of
the vector L1 and block-wise vector L2 norms that are used to achieve within- and between-group sparsity
in high-dimensional regression by the sparse-group Lasso (Simon and others, 2013). There are two main
challenges when incorporating localization or sparsity into a PCA: direct approaches via rank-one pro-
jection matrices provide solutions that, if they exist, are NP-hard and they provide components that are
not orthogonal. The LVPCA overcomes the first issue through the use of the Fantope, which is the convex
hull of rank-one projection matrices and has been adapted to overcome analogous problems in localized
univariate FPCA (Chen and Lei, 2015) and sparse high-dimensional PCA (Vu and others, 2013). The
separation of the smoothness penalty and the localization and sparsity penalties enables the problem to be
embedded into the Fantope and allows the LVPCA to be formulated as a convex optimization problem.
The second issue is overcome through Fantope-deflation, which assures orthogonality of successive com-
ponents. The formulation as a convex optimization problem allows for the development of an alternating
direction method of multipliers (ADMM) algorithm (Boyd and others, 2011) for easy implementation.
For multilevel multivariate FPCA, LVPCA is applied to the MoM estimators of the subject-specific and
replicate-within-subject covariance operators to provide interpretable FPCA at each level.
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The rest of the article is organized as follows. The motivating BADA Study is introduced in Section 2.
A principal components model for multilevel multivariate functional data is presented in Section 3 and an
accompanying estimating procedure is developed in Section 4. The proposed method is used to analyze
simulated data in Section 5 and data from the motivating BADA Study in Section 6. Finally, we discuss
and conclude in Section 7.

2. MOTIVATING STUDY

Data were examined from the Blunted and Discordant Affect (BADA) study, which was conducted to
better understand individual differences in emotional information processing. Multiple psychopathologies
such as depression and post-traumatic stress disorder (PTSD) are characterized by intense repetitive
negative self-thoughts (rumination), which is increasingly well understood. These same conditions are also
characterized by blunted emotional reactions and feelings of distance from the self and reality (dissociation)
in response to negative information, particularly in the presence of chronic trauma or abuse backgrounds.
The neural basis of such blunted reactions are less well understood. As treatments for depression and
PTSD are commonly devoted to reducing negative emotion, if some individuals are already neurally
disengaged or blunted in their responses, this traditional approach may not be beneficial. Thus, the BADA
study examined individuals selected for a variety of psychopathologies, including those with and without
chronic trauma, on tasks that could yield with blunted reactions in vulnerable individuals.

We consider data from N = 106 study participants whose brain activity was recorded via EEG while
ruminating on a negative thought for 10 s. The EEG montage included 14 electrodes placed in selected
locations on the scalp (Figure 4(A)). Data were recorded at 128 Hz. Frequency-band measures, or the
amount of variability within an EEG time series due to osculations within an interval of frequencies,
provide interpretable measures that are used by researchers and clinicians to elucidate neurophysiological
mechanisms. Frequency-band measures are not independent and rather, often have high correlation. We
consider four measures: theta power (4–7 Hz) linked to memory and emotional regulation (Knyazev,
2007), alpha power (8–12 Hz) that reflects relaxation, disengagement, or a lack of cognitive activity
(Davidson and others, 1990), beta power (18–25 Hz) linked to a variety of attentional processes (Neuper
and others, 2009), and gamma power (39–45 Hz) associated with feature integration and fundamental
cognitive processes (Tallon-Baudry and Bertrand, 1999). Additional technical details with regards to data
processing are provided in Supplementary material available at Biostatistics online.

We desire an analysis of these data to address three questions. First, we desire low-dimensional measures
that can be used to describe variability in neurophysiological reactivity in participants while ruminating
on negative thoughts. We are specifically interested in neurally meaningful phenomena that could vary
anywhere throughout the brain (i.e., have different topographies across participants) and across partic-
ipants, but have unique time and frequency-band characteristics. Second, we desire an understanding
of the association between these measures with clinical measures of dissociation, measured through the
square-root transformed score on the Dissociative Experiences Scale (DES) (Bernstein and Putnam, 1986),
in order to better understand neurophysiological mechanisms behind blunted reactions and lack of normal
integration of thoughts, feelings and experiences into the stream of consciousness and memory. Lastly,
blunted affect has been observed in individuals with a history of trauma and the mechanism driving blunted
affect could be different among those with and without a history of trauma (Miniati and others, 2010). We
are interested in understanding the potential role that trauma plays in moderating the relationship between
dissociation and neurophysiology.

3. MODEL

The primary methodological question considered in this article is how to conduct interpretable principal
component analyses that summarize the variability of multilevel multivariate functional data, Yij(t) =

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
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{Y (1)
ij (t), ..., Y (M )

ij (t)}, observed from i = 1, ..., N subjects, with j = 1, ..., J repeated measures taken for
each subject at M variates. In the motivating study, there are N = 106 participants, J = 14 electrodes and
M = 4 frequency band measures. We consider the scenario where curves for each variate from each subject
are observed over a common dense grid of P time points as is typical for EEG data, t1 < ... < tP ∈ T , and
where the design is balanced with an equal number of repeated measures J for each subject. Discussions
with regards to the unbalanced design and to the setting where curves are observed either sparsely or over
different time points are given in Section 7.

Consider a two-way functional ANOVA model

Yij(t) = μ(t) + ηj(t) + Zi(t) + Wij(t) + εij(t), (3.1)

where μ(t) and ηj(t) are fixed effects. In our motivating example, they represent the overall mean
function and electrode-specific shifts from the overall mean function. The random process Zi(t) is the
zero-mean subject-level deviation from the electrode-specific mean function, with a between-subject
covariance function Kz(t, s) = E[Zi(t)Zi(s)T ]. The random process Wij(t) is the zero-mean corre-
lated electrode-level deviation from the subject-level mean, with a within-subject covariance function
Kw(t, s) = E[Wij(t)Wij(s)T ]. The processes Wij(t) and Zi(t) are assumed to be uncorrelated, and εij(t) is
white noise with mean 0 and variance σ 2.

Within each subject, we assume that the covariance between Wij(t) and Wik(s) at electrode j and k is
separable, and takes the form

E
[
Wij(t)Wik(s)

T
] = ρjkKw(t, s),

where ρjk is the correlation coefficient between electrode-level deviations. Another interpretation for ρjk

is the correlation between observations at electrode j and k beyond the dependency accounted by the
subject-level random process. We assume that ρjk is sparse such that ρjk is nonzero for only a subset of
pairs of electrodes. Two things should be noted. First, sparsity in ρij assures identifiability. If no structure
was assumed on the correlation between Wij and Wik , then it would be unidentifiable with Kz. Second, this
assumption is different than the assumption made in other multilevel principal component models where
within-subject correlation is modeled as a vanishing stationary function of known structural distance
(Staicu and others, 2010). In the analysis of EEG, data from different electrodes from the same subject
are expected to be correlated not only due to the structural spatial location of the electrodes but also due
to functional relationships and networks. Although the spatial distance between different electrodes are
known, functional relationships are not. Thus, we make the nonparametric assumption that ρjk is sparse.

When the processes Zi(t) and Wij(t) are square-integrable, the Karhunen–Loeve expansion allows the
model in 3.1 to be expressed as

Yij(t) = μ(t) + ηj(t) +
∞∑

r=1

ξ z
irφ

z
r (t) +

∞∑
r=1

ξw
ijrφ

w
r (t) + εij(t), (3.2)

where φz
r (t) and φw

r (t) are the rth eigenfunctions of Kz(t, s) and Kw(t, s), respectfully. The principal
component scores ξ z

ir = ∫
t∈T ZT

i (t)φz
r (t)dt and ξw

ijr = ∫
t∈T W T

ij (t)φ
w
r (t)dt are mean-zero random variables

with var(ξ z
ir) = θ z

r , var(ξw
ijr) = θw

r , cov(ξw
ijr , ξ

w
ikr) = ρjkθ

w
r and are uncorrelated otherwise.

The goal of our analysis is to conduct a FPCA by obtaining interpretable estimates of the level-
specific weight functions φz

r and φw
r , which provide a low-dimensional representation of the major modes

of variation, and of the level-specific principal component scores ξ z
ir and ξw

ijr . This FPCA is multivari-
ate in that the weight functions are M -dimensional and it is multilevel in that it provides subject-level
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components to describe subject-average variability and electrode-within-subject-level scores to describe
within-subject variation.

4. ESTIMATION

In this section, we develop a two-stage estimation procedure for conducting interpretable multilevel
multivariate FPCA. The first stage discussed in Section 4.1 obtains MoM estimators of the between-
and within-subject covariances, Kz(t, s) and Kw(t, s). The second stage discussed in Section 4.2 utilizes
a novel penalized decomposition of the level-specific MoM estimator, which we refer to as localized
sparse-variate functional principal component analysis (LVPCA), that produces interpretable components
and weight functions that are smooth as functions of time, sparse among variates, and localized in time
within variates. An optimization algorithm for computing LVPCA is offered in Section 4.3.

4.1. Covariance matrix estimation

To aid computation, we introduce additional notation and vectorize values of the mth variate from electrode
j from subject i as Y (m)

ij = {Y (m)
ij (t1), ..., Y (m)

ij (tP)}T , then concatenate these M vectors to formulate a
PM × 1 vector Yij = {Y (1)T

ij , ..., Y (M )T
ij }T , i = 1, ..., N , j = 1, ..., J . The MP × MP matrices Kz and Kw

are defined using the same concatenation such that the [(m − 1) P + p] , [(	 − 1) P + q] elements of Kz

and Kw are the (m, 	) elements of Kz(tp, tq) and Kw(tp, tq), respectively. Similarly, we vectorize values
of the rth eigenfunction within the mth variate φ(m)

r = {φ(m)
r (t1), ..., φ(m)

r (tP)}T , then concatenate these
M vectors to obtain the rth eigenvector φr = {φ(1)T

r , ..., φ(M )T
r }T . Lastly, we let the MP × NJ matrix

Y = {Y11, ..., Y1J , ..., YN1, ..., YNJ }.
Without loss of generality, we assume that Yij(t) has been demeaned by subtracting the

electrode-specific mean, so that μ(t) + ηj(t) = 0, in order to focus on the estimation of Kz and Kw.
We begin by noting that

E{Yij(t)Yij(s)
T } = Kw(t, s) + Kz(t, s) + σ 2I (t = s)I

E{Yij(t) − Yik(t)}{Yij(s) − Yik(s)}T = 2
[
Kw(t, s)(1 − ρjk) + σ 2I (t = s)I

]
, j �= k .

The estimation procedure depends on an initial unbiased estimator of the within-subject correlation ρ̂jk .
Details with regards to the estimation of ρ̂jk are provided in Supplementary material available at Biostatis-

tics online. Define the matrices Fz = Kw + Kz + σ 2I and Fw = cKw + σ 2I , where c = J− 1
J
∑J

j=1
∑J

k=1 ρ̂jk

J−1 .
The explicit MoM estimators of Fz and Fw are given by

F̂z = 1

NJ

N∑
i=1

J∑
j=1

YijY
T
ij

F̂w = 1

2NJ (J − 1)

N∑
i=1

J∑
j=1

∑
k �=j

(Yij − Yik)(Yij − Yik)
T .

The covariance estimators can then be obtained as K̂z = F̂z − 1
c F̂w, K̂w = 1

c F̂w.
If there is no measurement error, K̂z and K̂w are consistent estimators of Kz and Kw. In the presence of
noise, as in our case, the off-diagonal terms are consistent estimators, but there exists a nugget effect
on the diagonal. This nugget effect will be explicitly accounted for through a smoothing penalty when
estimating eigenvectors.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
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4.2. LVPCA: localized sparse-variate functional principal component analysis

In the second stage, we obtain interpretable principal component and weight function estimates at each
level via LVPCA individually for the matrices K̂z and K̂w obtained in the first stage. To ease notation, in
this and following sections, we will use K and φ to represent an estimated covariance function and its
eigenvector, which can represent either the between-subject quantities K̂z and φ̂z or the within-subject K̂w

and φ̂w.

4.2.1. Methodological motivation As previously discussed, many approaches for conducting a multi-
variate FPCA have been developed. To motivate the proposed LVPCA, here we discuss one such approach
introduced by Rice and Silverman (1991) where the roughness across each variate of the eigenvectors is
penalized. Formally, given a tuning parameter β, the first eigenvector is estimated by maximizing φT Kφ

such that ‖φ‖12 = 1 and φT Dφ ≤ β, where ‖φ‖12 = (φT φ)1/2 is the L2 vector norm and D is a roughness
matrix penalizing the sum of squared second differences across time. Specially, D is the PM × PM block
diagonal matrix with mth block Dm = QT Q, and Q is the (P − 2) × P matrix where Qpq = 1 when
q ∈ {p, p + 2}, Qpq = −2 when q = p + 1, and is zero otherwise.

It will be advantageous to consider two additional formulations of this estimator. The first, which was
used by Rice and Silverman (1991) and allows for the estimator to be computed from a simple singular
value decomposition, can be obtained through Lagrange multipliers by maximizing the equivalent problem
φT (K − γ D)φ such that ‖φ‖12 = 1 for some smoothing parameter γ > 0. Alternatively, this problem can
also be expressed as maximizing 〈K − γ D, φφT 〉22 such that ‖φ‖12 = 1, where 〈A, B〉22 = trace(AT B).
This last formulation will facilitate the convex relaxation of the problem when localization is introduced,
assuring the existence of a solution and enabling efficient computation.

The estimated eigenfunctions previously described are smooth, but not localized, either in time or among
variates, in the sense that the estimated eigenfunction at every time point within each variate is nonzero
with probability 1. An intuitive approach for obtaining localized estimates of the first eigenfunction is to,
in a manner similar to the sparse-group Lasso (Simon and others, 2013), use a combination of L1 Lasso
and L2 group-Lasso penalties to maximize

〈K − γ D, φφT 〉22 − α

M∑
m=1

√
P‖φ(m)‖12 − λ‖φ‖11 s.t. ‖φ‖12 = 1,

where ‖φ‖11 = ∑M
m=1

∑P
p=1

∣∣φ(m)(tp)
∣∣ is the L1 vector norm. The tuning parameters λ > 0 and α > 0

control the degree of within- and between-variate localization, respectively. γ , λ, and α can be selected
either through cross-validation to obtain an accurate estimate or by requiring more sparsity with some
sacrifice of the fraction of variance explained (FVE). Details for tuning parameter selection are provided
in Section 1.2 of the Supplementary material available at Biostatistics online.

4.2.2. Penalized deflated Fantope estimation Unfortunately, the previously considered problem is
non-convex, it is not clear if or when a solution exists, and if a solution existed, it would be compu-
tationally intractable. A computationally tractable and consistent approach can be formulated through a
convex relaxation. Approaches for conducting penalized PCA that consider problems embedded within
the convex hull of projection matrices have been explored for sparse PCA of high-dimensional multivariate
data (Lei and others, 2015) and for localized PCA of univariate functional data (Chen and Lei, 2015).
Here, we extend this approach to our setting of localized sparse-variate PCA of multivariate functional
data.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
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Rather than attempting to maximize the objective function over the space of rank-one projection
matrices of the form φφT , we can maximize an analogous objective function over the convex hull of
rank-one projection matrices, or over the Fantope F = {H : 0 ≤ H ≤ I , trace(H ) = 1}, where A ≤ B
means B − A is positive semidefinite for symmetric matrices A and B. Formally, we define our estimate
as the first eigenvector of the matrix Ĥ ∈ F that maximizes

〈K − γ D, H 〉22 − α

M∑
m,	=1

P‖H (m,	)‖22 − λ‖H‖21,

where H (m,	) is the (m, 	)thP × P submatrix of H and ‖H‖21 is the L1 matrix norm that is the sum of the
absolute values of all elements.

This approach produces estimates of the first eigenfunction, but we also desire estimates of higher-order
eigenfunctions and require the collection of estimated eigenfunctions to be orthogonal. This can be easily
achieved within the Fantope framework via successive Fantope-deflation. The deflated Fantope around a
projection matrix � is defined as D� = {H : H ∈ F , 〈H , �〉22 = 0}. Formally, define �̂0 as a matrix of
zeros and successively estimate φ̂r for each r = 1, ..., R as

Hr = argmax
H∈D

�̂r−1

{〈K − γ D, H 〉22 − α

M∑
m,	=1

P‖H (m,	)‖22 − λ‖H‖21}

φ̂r = first eigenvector of Hr

�̂r = �̂r−1 + φ̂rφ̂
T
r .

(4.3)

Once the eigenvectors are obtained, scores ξ can be obtained through the best linear unbiased predictor
(BLUP) and eigenvalues θ through empirical moments of the scores. Details for the estimation of ξ and
θ are provided in Section 1.3 of the Supplementary material available at Biostatistics online.

4.3. Optimization using ADMM

The first step in our procedure (4.3) is a convex optimization problem. However, the deflated Fantope
constraint makes it difficult to directly employ block-wise subgradient strategy on the penalty terms. To
solve this problem, we use the ADMM algorithm to separate the penalty terms and the deflated Fantope
constraint. Define ID

�̂r−1
= 0 if H ∈ D�̂r−1

and ∞ otherwise, the augmented Lagrangian with auxiliary

parameter τ > 0 is of the form Lτ (H , A, C) = ID
�̂r−1

(H ) − 〈K − γ D, H 〉22 + α
∑M

m,	=1 P‖A(m,	)‖22 +
λ‖A‖21 + τ

2 (‖H − A + C‖2
22 − ‖C‖2

22). Letting Sb(B) be the element-wise soft-thresholding operator such
that, for each element B[i,j] of a matrix B, Sb(B)[i,j] = sign(B[i,j])(|B[i,j]| − b)+, and letting PD�

(B) =
argmin

E∈D�

‖B − E‖2
22 be the Frobenius projection operator, a closed form of which is given in Supplemental

Material, this can be solved through Algorithm 1.

5. SIMULATION

To better understand the empirical performance of the multilevel LVPCA, we conducted simulations based
on the following model:

Yij(tp) =
R1∑

r=1

ξ z
irφ

z
r (tp) +

R2∑
r=1

ξw
ijrφ

w
r (tp) + εij(tp), (5.4)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
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Algorithm 1: Penalized deflated Fantope estimation using ADMM
Initialization A(0) = 0, C(0) = 0, v = 0, 1, 2, ...
repeat

H(v+1) = PD
�̂r−1

(
A(v) − C(v) + K − γ D

τ

)

A(m,	)
(v+1) =

(
1 − αP/τ

‖Sλ/τ (H
(m,	)
(v+1) + C(m,	)

(v) )‖22

)
+

Sλ/τ

(
H (m,	)

(v+1) + C(m,	)
(v)

)
C(v+1) = C(v) + H(v+1) − A(v+1)

until max
(∥∥H(v+1) − A(v+1)

∥∥2

22
, τ 2

∥∥A(v+1) − A(v)

∥∥2

22

)
≤ ω;

return H(v+1)

where ξ z
ir ∼ N (0, θ z

r ), ξw
ijr ∼ N (0, θw

r ), cov(ξw
ijr , ξ

w
ikr) = ρjkθ

w
r , εij(t) ∼ N (0, σ 2), and tp = (p − 1)/

(P − 1), i = 1, ..., 100, j = 1, ..., 5, p = 1, . . . , 100. M = 3 variates. The true eigenvalues are taken
as θ z

r = θw
r = 0.5r−1, r = 1, 2, 3, the true correlation coefficient as ρjk = 0.5 when j = k ± 1, ρjk =

0.3 when j = k ± 2, and is zero otherwise, and the noise as σ 2 = 1. The true eigenfunctions are
displayed as black lines in Figure 2. To evaluate the relative contributions of the localization and sparsity
penalties, and of the estimation of within-subject correlation, we consider eight estimation procedures
denoted as: (α̂, λ̂, ρ̂), (α̂, 0, ρ̂), (0, λ̂, ρ̂), (0, 0, ρ̂), (α̂, λ̂, 0), (α̂, 0, 0), (0, λ̂, 0), (0, 0, 0). The first procedure
(α̂, λ̂, ρ̂) corresponds to the proposed LVPCA with α, λ, and γ selected by 5-fold cross-validation, and ρ

estimated as described in Appendix A.3 of the Supplementary material available at Biostatistics online.
Other procedures restrict one or more of α̂, λ̂, or ρ̂ to 0.

Figure 2 displays estimated eigenfunctions φz
r and φw

r , r = 1, 2, 3, from one simulated data set. The
eight rows correspond to the eight methods. The solid black lines are the true eigenfunctions, green
lines indicate estimated zero elements and red lines indicate estimated nonzero elements. Visually,
in the top row of Figure 2, it can be seen that the proposed LVPCA, which includes within-variate
localization, between-variate sparseness penalties and accounting for within-subject correlation between
electrode-specific deviations, leads to favorable recovery of eigenfunctions. Removing either penalty
appears to potentially increase bias and select more nonzero elements of φz

r than the truth. Failing to
adjust for within-subject correlation between electrode-specific deviations can negatively affect the accu-
racy of the shape of φ̂z

3, since the between-subject variation is contaminated by the within-subject variation,
specifically φ̂z

3 is contaminated by φ̂w
1 . This trend is further quantified in Table 2, where we report the median

of the errors ‖φ − φ̂‖2, as well as in Table 3, where we report the median specificity and sensitivity (pro-
portion nonzero/zero elements correctly estimated as nonzero/zero). The proposed LVPCA outperforms
the other methods in eigenvector estimation particularly for the higher-level of the hierarchy, and also has
the highest specificity among all the methods, and a reasonable level of sensitivity. This result demon-
strates the advantage of the proposed LVPCA, which combines localization and between-variate sparsity
penalties, in terms of both estimation and variable selection.

In terms of estimation of subject- and electrode-level eigenvalues, the four methods that adjust for
within-subject correlation between electrode-specific deviations can recover eigenvalues with relatively
little bias; median bias for these methods ranged from −0.006 to 0.022. On the contrary, the four methods
without adjusting for within-subject correlation over-estimate θ z

3 , with median bias ranging from 0.082

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
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Fig. 2. True (black solid) and estimated (green and red dot) eigenfunctions from one simulated data set by the
described eight estimation procedures. Solid black lines are the true eigenfunctions, green lines indicate estimated
zero elements, and red lines indicate estimated nonzero elements.

Table 1.True eigenfunctions in the simulation setting presented in Section 5.The function
Bb(t) is the bth cubic B-spline basis on [0, 1], with 16 equally spaced interior knots, and
(t)+ = t when t ≥ 0 and is zero otherwise.

m = 1 m = 2 m = 3

φz
1(t) B4(t) 0 0

φz
2(t) 0 B7(t) 0

φz
3(t) 0 0

√
2 sin(2π t)

φw
1 (t) 0 B9(t) 0

φw
2 (t) 0 0 B12(t)

φw
3 (t)

√
2 cos

[
π(t − 3

4 )
]
(t − 3

4 )+
√

2 cos
[
π(t − 3

4 )
]
(t − 3

4 )+
√

2 cos
[
π(t − 3

4 )
]
(t − 3

4 )+

to 0.088, and highly underestimate θw
1 , θw

2 , and θw
3 , with median bias ranging from −0.290 to −0.072.

This can be attributed to part of the within-subject variation is mistakenly counted as between-subject
variation. Additional details including empirical performance in estimating principal component scores,
noise level and within-subject correlation, boxplots of estimated eigenvalues, as well as simulation results
for additional settings are provided in Section 3 of the Supplementary material available at Biostatistics
online. The primary factor affecting run time is M × P, with N and J having little relative effect. In
our simulations, the mean run time for the proposed procedure including automated tuning parameter

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
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Table 2. Median errors ‖φ − φ̂‖2 for φz
r , φw

r , r = 1, 2, 3 (with median absolute deviations
in parenthesis) over 200 simulation runs.

φz
1 φz

2 φz
3 φw

1 φw
2 φw

3

(α̂, λ̂, ρ̂) 0.49 (0.15) 0.91 (0.41) 2.18 (1.15) 0.34 (0.04) 0.41 (0.04) 0.66 (0.10)
(α̂, 0, ρ̂) 0.60 (0.15) 1.89 (0.68) 2.54 (1.50) 0.66 (0.08) 1.11 (0.11) 0.91 (0.10)
(0, λ̂, ρ̂) 1.25 (0.31) 0.96 (0.44) 3.49 (1.13) 0.41 (0.09) 0.41 (0.05) 0.60 (0.09)
(0, 0, ρ̂) 2.67 (0.78) 3.89 (1.00) 4.46 (1.23) 1.43 (0.43) 2.14 (0.58) 1.57 (0.44)
(α̂, λ̂, 0) 0.48 (0.14) 1.09 (0.62) 23.14 (1.56) 0.33 (0.03) 0.42 (0.05) 0.66 (0.10)
(α̂, 0, 0) 0.61 (0.15) 3.46 (1.73) 11.71 (5.99) 0.66 (0.08) 1.11 (0.11) 0.90 (0.09)
(0, λ̂, 0) 1.30 (0.37) 1.19 (0.72) 15.15 (8.45) 0.42 (0.09) 0.41 (0.05) 0.60 (0.09)
(0, 0, 0) 3.02 (0.88) 5.52 (1.71) 12.73 (4.39) 1.43 (0.43) 2.14 (0.58) 1.57 (0.44)

Table 3. Median of specificity (proportion of zero elements correctly estimated as zero)
and sensitivity (proportion of nonzero elements estimated as nonzero) for φz

r , φw
r , r =

1, 2, 3, over 200 simulation runs.

Specificity Sensitivity

φz
1 φz

2 φz
3 φw

1 φw
2 φw

3 φz
1 φz

2 φz
3 φw

1 φw
2 φw

3

(α̂, λ̂, ρ̂) 0.99 0.99 1.00 0.99 1.00 0.75 0.87 0.83 1.00 0.92 0.92 0.85
(α̂, 0, ρ̂) 0.75 0.73 1.00 0.73 0.73 0.01 1.00 1.00 1.00 1.00 1.00 1.00
(0, λ̂, ρ̂) 0.97 1.00 0.03 1.00 1.00 0.75 0.71 0.83 1.00 0.76 0.80 0.85
(0, 0, ρ̂) 0.02 0.01 0.02 0.02 0.02 0.01 1.00 1.00 1.00 1.00 1.00 1.00
(α̂, λ̂, 0) 0.99 0.98 0.86 1.00 1.00 0.74 0.87 0.88 0.56 0.88 0.92 0.85
(α̂, 0, 0) 0.75 0.73 0.50 0.73 0.73 0.01 1.00 1.00 1.00 1.00 1.00 1.00
(0, λ̂, 0) 0.97 0.99 0.82 1.00 1.00 0.75 0.71 0.79 0.91 0.76 0.80 0.85
(0, 0, 0) 0.02 0.01 0.02 0.02 0.02 0.01 1.00 1.00 1.00 1.00 1.00 1.00

selection with P = 100 and M = 3 using R Version 3.4 and Windows 10 on a desktop computer with a
3.6 GHz Intel Core i7 processor and 8 GB RAM is 3 min, while the data analysis of the motivating study
in Section 6 where M = 4 and P = 143 took approximately 25 min.

6. APPLICATION TO THE BADA STUDY

We applied the proposed methodology to analyze brain reactivity while ruminating on a negative thought
from the participants in the BADA study described in Section 2. These data are available from the
corresponding author upon request. EEG data considered for each of the i = 1, . . . , N = 106 study
participants are of the form Y (m)

ij (tp) for m = 1, . . . , 4 frequency bands (theta, alpha, beta, and gamma),
at j = 1, . . . , J = 14 electrodes (locations displayed in Figure 4(A)). Data were pre-centered around
each electrode at each time point to remove fixed effects. In Section 6.1, LVPCA was conducted on both
the between-subject and within-subject levels to elucidate variability in neurophysiological activity in
patients while ruminating on negative thoughts. Then, in Section 6.2, regression analyses were conducted
using the scores obtained from the LVPCA to quantify associations between brain activity and clinical
dissociation, and for assessing moderation of this relationship by a history of trauma.
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Fig. 3. Estimated subject-level (top row) and electrode-level (bottom row) eigenfunctions for the BADA Study. Green
lines indicate estimated zero elements and red lines indicate estimated nonzero elements.

6.1. LVPCA

Four principal components at both within- and between-subject levels were selected to account for 75%
of total variation (Figure 3). The top four subject-level principal components explain 83.6% of the total
between-subject variation. The first estimated subject-level eigenfunction φz

1(t) explains 45.8% of the
variation. It is localized within each variate, being zero for each frequency band in the first 3 s of the trial,
with an emphasis on alpha power. The second estimated subject-level eigenfunction φz

2(t), accounting
for 18.1% of the variation, is sparse among bands and is a measure of total theta power, with greatest
emphasis given to power in the middle of the trial. The third component φz

3(t) is a contrast between beta
and gamma power compared to alpha power. The fourth eigenfunction φz

4(t) is a contrast in theta power
at the beginning and end of the trial.

Subject-level eigenfunctions represent the major directions of subject-specific deviation from the overall
mean power function. It is not entirely unexpected that they are largely driven by theta and alpha power.
Participants were observed while ruminating on a negative memory. Theta power has been linked to
memory (Knyazev, 2007), and alpha power has been associated with a lack of emotional regulatory
control (Klimesch, 2012), two processes underlying rumination.

The electrode-level components represent ways individual participants vary from population mean and
subject-specific whole-brain responses to rumination at specific electrodes. Estimated mean topologies of
responses to the rumination instruction across all frequency bands η̂j(t) are displayed in Section 2.4.2 of
the Supplementary material available at Biostatistics online. The top four estimated electrode-level princi-
pal components explained 71.5% of the total within-subject variation. All four estimated components are
sparse among frequency bands. The first estimated electrode-level eigenfunction φw

1 (t) is a positive func-
tion of beta and gamma power, or of high-frequency power. Rapidly increasing sustained high-frequency
activity could represent effortful cognition associated with trying to ruminate or to regulate emotional
reactions. The estimated second and third electrode-level eigenfunctions φw

2 (t) and φw
3 (t) are positive

functions of theta and alpha power, respectively. The fourth estimated electrode-level eigenfunction φw
4 (t)

is a positive function of gamma and a negative function of beta power, which could reflect emotional
engagement or feature binding.

6.2. Association between principal component scores and dissociation

Since the principal component scores are correlated, we fit individual regression models for each principal
component so that results can be interpreted marginally. In total, there are 60 principal component scores

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
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Table 4. Coefficients, standard errors, and adjusted p-values from univariate models with
significant interaction effects and borderline significant trend of interaction effects.

Score Trauma Score × Trauma

β1 (SE) p-value β2 (SE) p-value β3 (SE) p-value

ξ z
2 0.65 (0.56) 0.999 1.66 (0.25) <0.001 −2.67 (0.89) 0.027

ξw
1, O1 1.01 (0.40) 0.098 1.62 (0.25) <0.001 −1.73 (0.59) 0.036

ξw
3,FC6 −0.43 (0.39) 0.27 1.68 (0.26) <0.001 2.10 (0.80) 0.082

ξw
3,F8 −0.31 (0.40) 0.45 1.74 (0.26) <0.001 2.21 (0.84) 0.082

per subject: the four subject-specific scores ξ z
ir together with the 14 × 4 = 56 subject-electrode-specific

scores ξw
ijr , r = 1, . . . , 4, j = 1, . . . , 14. All reported p-values are adjusted to control the false discovery

rate (FDR) at 0.05 with the adaptive group Benjamin and Hochberg procedure (details in Section 2.2 of
the Supplementary material available at Biostatistics online).

Let Yi be the square root transformed DES score, Vi be an indicator variable for a history of trauma, and
Xi be a principal component score for subject i. We fit the linear regression model E (Yi) = β0 + β1Xi +
β2Vi +β3XiVi through least squares individually for each of 60 principal component scores. The coefficient
β1, which quantifies the association between principal component score and square root transformed DES
score among participants without a history of trauma, was not statistically significant for any of the principal
component scores. The coefficient β2, which is the main effect of trauma, was statistically significant and
positive for all principal component scores adjusting for multiple comparisons. This is not unexpected,
since dissociation is more common among those with a history of trauma. There were two principal
component scores with significant interactions after adjusting for multiple comparisons, indicating that
the relationship between brain activity and dissociation is moderated by trauma: one subject-level and
one electrode-level. Table 4 displays estimates from the two models with significant interactions and two
models with borderline significant trend of interaction effects. Estimates from all 60 models are provided
in Section 2.3 of the Supplementary material available at Biostatistics online, as well as scatter plots of
principal component scores vs. transformed DES for the models presented in Table 4.

Among the four subject-level principal component scores, the sole model with a significant interaction
was ξ z

2 . For this component, the adjusted p-value of β1 of 0.999 suggests no association between the score
and dissociation in people without a history of trauma, while β̂1 + β3 = −2.02 with adjusted p-value
0.028 indicates a negative association in people with a history of trauma. More specifically, recalling that
the estimated second subject-level component is a measures of whole-brain theta power, if a person has a
history of trauma, the higher his/her theta power, the lower their expected dissociation level. Theta power
is associated with memory and emotional control and has been shown to be elevated in participants with
a history of PTSD (Bangel and others, 2017). This result may suggest that during instructed rumination,
if a person has a history of trauma, not engaging memory related circuitry, perhaps failing to reinvoke
trauma recollections, even when a person wants to, may involve dissociation. In the absence of a trauma
history, dissociation during rumination may be due to processes other than intensive memory recall, and
thus theta power is not so strongly related to dissociation. However, it should be noted that whole-brain
theta variability may also represent noise sources (Kappel and others, 2017; Zeng and others, 2013;
Jansen and others, 2012) from outside the brain (e.g., movement). Further study is needed to confirm if
the moderating effect of trauma on the relationship between dissociation and this score is due to neural
processes, or the result of a confounding artifact.

Figure 4 displays the adjusted p-values of the interaction effects for the 1st and 3rd electrode-level
components at the 14 locations of the brain. The 2nd and 4th components have no effect near significant,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab018#supplementary-data
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Fig. 4. (A) Locations of the 14 electrodes on the brain. (B) Adjusted p-values for the interaction effect of electrode-
level PC 1 and PC 3 scores across 14 electrodes displayed on their corresponding locations. White color indicates
locations with p-value < 0.05.

therefore they are not shown. The model with the 1st principal component score ξw
1 at electrode O1 has a

significant interaction effect with a history of trauma on dissociation. Specifically, among patients without
a history of trauma, β̂1 = 1.01 suggests elevated beta and gamma power within the occipital cortex relative
to the rest of the brain has a trend of being associated with increased dissociation, though the adjusted
p-value is not significant (adjusted p-value = 0.098). However this association is significantly different
(adjusted p-value = 0.036) among patients with a history of trauma, where elevated beta and gamma
power within the occipital cortex relative to the rest of the brain has a negative effect on dissociation
with β̂1 + β3 = −0.72. The reason for an occipital distribution of beta and gamma power is not clear
but may suggest that failure of cognitive concentration and regulation of emotional reactions may involve
dissociation among individuals with a history of trauma, while this association may have an opposite effect
in the absence of trauma history. Other scores that have different directions of associations include ξw

3 at
electrode FC6 and F8. Although such differences are not significant after adjusting for multiple testing
(adjusted p-value = 0.082), it is worth noticing that elevated alpha power within the right frontal cortex
relative to the rest of the brain has a trend of positive effect on the increased dissociation in patients with
a history of trauma (β̂1 + β3 = 1.90), which did not appear among patients without a history of trauma
(β̂1 = −0.31, adjusted p-value = 0.45).

7. DISCUSSION

This article introduces a novel approach to conducting interpretable principal component analysis on
multilevel multivariate functional data. The proposed localized sparse-variate FPCA (LVPCA) is combined
with a multilevel covariance decomposition to provide subject-level and replicate-within-subject-level
components that can be both sparse among variates as well as localized in time. The method was moti-
vated by a study to uncover subject- and electrode-level brain activity that elucidates neurophysiological
mechanisms connected to the phenomena of trauma patients shutting down when presented with emotional
information.

The proposed method can be easily reduced to useful special cases and generalized to handle more
complicated data structures. By restricting α = 0 and/or λ = 0, the method reduces to localized FPCA,
sparse-variate FPCA or FPCA without any localization. When J = 1 or m = 1, the method reduces to
FPCA on single level or univariate functional data. The proposed method together with all the special cases
are implemented into an R package “LVPCA” to facilitate future research. The method can be extended by
incorporating other penalty terms to take into account special structures induced by biological information
(Beer and others, 2019). Further, the method can be generalized from two-way to multiway, nested or
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crossed study designs, as introduced in Shou and others (2015). If the design is unbalanced with different
number of repeated measures per subject, we can modify the covariance estimators by including only
available (Yij − Ynk)(Yij − Ynk)

T as each of the cross-products independently contributes a same estimator
when estimating the between- and within-subject covariance.

Finally, in our motivating example, curves were observed over a common dense grid of P time points.
When curves are observed over different time grids, presmoothing can be used to obtain data over a
common grid of time points (Ramsay and Silverman, 2005). If each subject is only observed over a sparse
collection of random time points, a direct smoothed covariance estimator for sparse functional data (Yao
and others, 2005) could be used in lieu of the sample covariance and smoothing penalization component
of the proposed procedure.

8. SOFTWARE

Software in the form of R code, together with a sample input data set, is available at
https://github.com/juz30/MLVPCA.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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