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SUMMARY

Cluster randomized trials (CRTs) randomly assign an intervention to groups of individuals (e.g., clinics
or communities) and measure outcomes on individuals in those groups. While offering many advan-
tages, this experimental design introduces challenges that are only partially addressed by existing analytic
approaches. First, outcomes are often missing for some individuals within clusters. Failing to appropriately
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adjust for differential outcome measurement can result in biased estimates and inference. Second, CRTs
often randomize limited numbers of clusters, resulting in chance imbalances on baseline outcome predic-
tors between arms. Failing to adaptively adjust for these imbalances and other predictive covariates can
result in efficiency losses. To address these methodological gaps, we propose and evaluate a novel two-
stage targeted minimum loss-based estimator to adjust for baseline covariates in a manner that optimizes
precision, after controlling for baseline and postbaseline causes of missing outcomes. Finite sample sim-
ulations illustrate that our approach can nearly eliminate bias due to differential outcome measurement,
while existing CRT estimators yield misleading results and inferences. Application to real data from the
SEARCH community randomized trial demonstrates the gains in efficiency afforded through adaptive
adjustment for baseline covariates, after controlling for missingness on individual-level outcomes.

Keywords: Clustered data; Cluster randomized trials; Covariate adjustment; Data-adaptive; Double robust;
Group randomized trials; Missing data; Multi-level models; Super Learner; TMLE.

1. INTRODUCTION

In many trials, treatments are randomly allocated to groups of individuals, such as hospitals, schools,
or communities, and outcomes are measured on individuals in those groups. These studies are known
as group or cluster randomized trials (CRTs). They are implemented when the treatment is naturally
delivered to the group or when substantial dependence between individuals within groups is expected
(Hayes and Moulton, 2009; Crespi, 2016; Turner and others, 2017a,b; Murray and others, 2020). CRTs
are rapidly increasing in popularity; a recent review found a 280-fold increase in their use from 1995 to
2015 (Murray and others, 2018). Nonetheless, despite extensive research dedicated to their design and
conduct, this review also concluded only half of CRTs were analyzed appropriately. CRTs can provide
the gold-standard evidence of causality, but they face several methodological challenges.

First, missing participant outcomes occur in over 90% of CRTs (Fiero and others, 2016). When
participants with missing outcomes differ meaningfully from those with measured outcomes, complete-
case analyses yield biased estimates (Rubin, 1976; Robins and others, 1995). This potential for bias is
exacerbated when, as commonly occurs, the cluster randomized intervention, itself, influences outcome
measurement. Suppose, for example, that the cluster-level intervention increases care engagement, which
in turn improves both participants’outcomes and their chances of having that outcome measured (Figure S1
of the Supplementary material available at Biostatistics online). Here, an unadjusted comparison of out-
comes between arms can overestimate or underestimate the treatment effect. Even if key determinants
of missingness, such as care engagement, are measured, standard analytic approaches to CRTs will fail
to control for this bias, because care engagement simultaneously mediates the treatment–outcome rela-
tionship and confounds the missingness–outcome relationship (Robins, 1986; Robins and others, 1995;
Robins and Hernán, 2009).

Second, CRTs often randomize limited numbers of groups; a review found a median of 33 clusters
randomized (Selvaraj and Prasad, 2013). Even when some form of restricted randomization (e.g., pair-
matching) is used, CRTs with few clusters are likely to suffer from chance imbalances between treatment
arms on baseline determinants of the outcome. Adjustment for these covariates and others predictive of the
outcome (hereafter called “covariate imbalance”) can increase statistical power (e.g., Fisher, 1932; Gail
and others, 1996; van der Laan and Rose, 2011; Hayes and Moulton, 2009; Colantuoni and Rosenblum,
2015; Turner and others, 2017b; Murray and others, 2018, 2020). The adjustment approach is often
with an outcome regression, characterizing the expected outcome given the treatment assignment and
covariates. This regression must be a priori-specified to avoid inflating Type-I error rates. Additionally to
avoid over-fitting, a limited number of adjustment variables must be selected from a typically large set of
candidates, risking forced adjustment for variables that prove useless for, or even detrimental to, precision
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Table 1. Description of CRT effect estimators as commonly implemented when outcomes are completely
measured

Unadjusted Compare cluster-level outcomes by treatment arm; commonly implemented as a t-test.
CARE At the cluster-level, compare observed outcomes with those predicted from a regression of the

individual-level outcome on individual- and cluster-level covariates, but not the cluster-level
treatment (Gail and others, 1996; Hayes and Moulton, 2009).

Mixed models Point estimate and inference based the treatment coefficient in a regression of the individual-
level outcome on the cluster-level treatment and individual- and cluster-level covariates; use
random effects to account for dependence of individuals within a cluster (Laird and Ware,
1982).

GEE Point estimate and inference based the treatment coefficient in a regression of the individual-
level outcome on the cluster-level treatment and individual- and cluster-level covariates; use
a working correlation matrix to account for dependence of individuals within a cluster (Liang
and Zeger, 1986).

Augmented-GEE Modification to GEE for the marginal effect (i.e., GEE with only regression coefficients for
the intercept and cluster-level treatment) by including an additional augmentation term for
the outcome regression (i.e., the conditional expectation of the outcome given covariates and
treatment) (Stephens and others, 2012, 2013, 2014).

Hierarchical TMLE Modification ofTMLE for cluster-based exposures; initial predictions of the outcome regression
and propensity score (i.e., conditional probability of treatment given the covariates) are made
by adaptively selecting between individual- or cluster-level specifications (Balzer and others,
2019; Benitez and others, 2021; Supplementary material available at Biostatistics online).

CARE: Covariate adjusted residuals estimator
GEE: Generalized estimating equations
TMLE: Targeted minimum loss-based estimation

(Stephens and others, 2013; Balzer and others, 2016; Kahan and others, 2016). Thus, we wish to define
a fully prespecified procedure for CRT analysis that optimizes statistical power through data-adaptive
adjustment of baseline covariates, while rigorously preserving Type-I error control.

In this article, we propose and evaluate a novel estimator that addresses the dual challenges of bias
due to missing outcomes and imprecision due to few randomized units in CRTs. Our approach uses
targeted minimum loss-based estimation (TMLE; van der Laan and Rose, 2011) in two stages: first
at the individual-level to adjust for differential measurement of individual-level outcomes and second
at the cluster-level to improve efficiency when estimating the intervention effect. Therefore, we refer
to our estimator as “Two-Stage TMLE.” To the best of our knowledge, Two-Stage TMLE is the first
semiparametric efficient estimator that adaptively adjusts for both individual-level missingness and for
covariate imbalance in CRTs. It can be applied to estimate a range of causal parameters and under a range of
CRT study designs, including differing randomization schemes (e.g., pair-matched or not) and approaches
to participant follow-up within clusters (e.g., cross-sectional sampling or longitudinal follow-up).

2. BRIEF REVIEW OF CRT METHODS AND OVERVIEW OF THE MOTIVATING EXAMPLE

We provide an overview of existing CRT methods in Table 1 and refer the reader to Benitez and others
(2021) for a detailed review. A simple two-stage approach to account for the dependence of partici-
pants within clusters is to aggregate the individual-level data to the cluster-level and then implement an
effect estimator appropriate for independent data, such as a t-test. Use of an unadjusted effect estimator
in the second stage avoids modeling assumptions and the risk of over-fitting, but by ignoring covari-
ate information is inefficient (e.g., Fisher, 1932; Gail and others, 1996; van der Laan and Rose, 2011;
Hayes and Moulton, 2009; Colantuoni and Rosenblum, 2015; Turner and others, 2017b; Murray and
others, 2018, 2020).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab043#supplementary-data
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In contrast, mixed models and generalized estimating equations (GEE) typically adjust for a number
of baseline individual- and cluster-level covariates, providing an opportunity to improve precision of
effect estimates (Laird and Ware, 1982; Liang and Zeger, 1986). However, neither address the need for a
prespecified approach to select the adjustment variables that optimize efficiency, while preserving valid
statistical inference. Further, both are susceptible to allowing the estimator choice define the effect measure
that is estimated (e.g., GEE with a logistic link yields estimates of the conditional odds ratio) (Hubbard
and others, 2010).

To the best of our knowledge, only three methods generally allow for estimation of marginal effects in
CRTs, while adjusting for individual- and cluster-level covariates. First, in the covariate adjusted residuals
estimator (CARE), cluster-level outcomes are compared with those predicted from an individual-level
regression of the outcome on individual- and cluster-level covariates, but not the cluster-level treatment
(Gail and others, 1996; Hayes and Moulton, 2009). Second, augmented-GEE extends GEE for the mar-
ginal effect by including an “augmentation” term, inspired by the efficient influence function (Stephens
and others, 2012, 2013, 2014). Finally, hierarchical TMLE extends TMLE for estimation of marginal
effects with cluster-based exposures (Balzer and others, 2019; Benitez and others, 2021; overview in
Supplementary material available at Biostatistics online).

With regards to missingness, an unadjusted effect estimator requires the strongest identification assump-
tion: there are no common causes of missingness and outcomes (i.e., the missing-completely-at-random, or
MCAR, assumption holds) (Rubin, 1976). The other methods rely on a weaker identification assumption;
essentially, that the outcome distributions among persons for which the outcome is measured versus miss-
ing are exchangeable conditional on the treatment arm and some subset of measured covariates (Turner
and others, 2017b; Hossain and others, 2017a,b).

Combining augmented-GEE with inverse probability weighting yields a double robust estimator (“DR-
GEE”); it is nearly unbiased if either the outcome regression or the measurement mechanism (i.e., the
conditional probability of outcome measurement given the treatment arm and covariates) is correctly spec-
ified (Prague and others, 2016). To the best of our knowledge, DR-GEE’s methodology and computing
code have been limited to adjustment for baseline variables only. Hierarchical TMLE also offers the poten-
tial for integrated precision gains and double robust adjustment. However, these extensions remain to be
fully studied. Here, we, instead, develop and evaluate Two-Stage TMLE to (i) control for potentially differ-
ential missingness in each cluster separately and (ii) adaptively adjust for covariate imbalance to improve
efficiency when estimating the intervention effect. Before doing so, we present our motivating example.

The SEARCH Study was a pair-matched, pragmatic CRT of 32 communities each with 10 000 persons
in rural Kenya and Uganda (ClinicalTrials.gov: NCT01864603) (Havlir and others, 2019). SEARCH was
designed to evaluate the population-level effects of annual multi-disease testing and universal, patient-
centered treatment for persons with HIV (intervention) versus baseline multi-disease testing and country-
guided treatment (active control) on a range of outcomes including incident HIV, viral suppression among
persons with HIV, hypertension control, and incident tuberculosis (TB).

As with the vast majority of CRTs, outcomes were not measured among all SEARCH participants
and the MCAR assumption was unreasonable for many endpoints. Additionally, despite matching prior
to randomization (Balzer and others, 2015), covariate imbalance was expected; however, it was unclear
a priori which covariates to include in the adjustment set for optimal gains in efficiency. To reduce bias
from missingness on individual-level outcomes and to maximize precision during effect estimation in the
SEARCH Study, we developed Two-Stage TMLE.

3. TWO-STAGE TMLE

In many CRTs, outcomes are assessed through longitudinal follow-up of a closed cohort of participants. In
the SEARCH Study, for example, the primary outcome was the 3-year cumulative incidence of HIV: the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab043#supplementary-data
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Fig. 1. Simplified causal graph to illustrate the challenges of a single stage approach to identifying effects defined by
interventions on both the cluster-level treatment and individual-level measurement mechanism.

proportion of community residents (≥15 years) who were HIV-uninfected at baseline and became infected
with HIV over the 3-year study. To assess the treatment effect on such endpoints, a cohort of participants
who are at risk of the outcome is defined in each cluster. For each participant, let W denote their baseline
covariates, M be their postintervention covariates, � be an indicator of outcome measurement, and Y
be the outcome of interest. The outcome Y is only observed when � = 1. We also observe cluster-level
covariates Ec and the randomly assigned cluster-level intervention Ac. Throughout, superscript c will be
used to distinguish cluster-level variables from individual-level variables.

We denote the observed data structure for a participant as O = (Ec, W , Ac, M ,�,�Y ). In the SEARCH
Study, for example, Ec included baseline HIV prevalence and male circumcision coverage; W included
age, sex, marital status, occupation, education, and mobility; Ac was a community-level indicator of
randomization to the intervention; M was interim HIV testing; � was an indicator of HIV testing at year
3, and Y was an indicator of having a confirmed HIV-positive diagnosis at year 3 testing.

Recall our goal is to simultaneously control for differential missingness on individual-level outcomes,
while estimating the effect of the cluster-level intervention with optimal precision. To do so, we consider an
individual-level counterfactual outcome Y (ac, δ), generated by hypothetical interventions on the cluster-
level treatment (i.e., to “set” Ac = ac) and the individual-level measurement mechanism (i.e., to “set”
� = δ). Identification of a corresponding causal parameter (e.g., E[Y (ac, 1)]) is complicated by clustering
and the missing data equivalent to time-dependent confounding (Figure 1). Instead, in our novel Two-Stage
approach, we separate control for missing outcomes (Stage 1) from evaluation of the intervention effect
(Stage 2). Specifically, in Stage 1, we fully stratify on each cluster, vastly simplifying identifiability and
estimation for the missing data problem (Figure 2). Then in Stage 2, we use the estimates from Stage 1
to evaluate the intervention effect. Our approach allows the missingness mechanism to vary by cluster,
while avoiding specifying complex relationships between individual-level (W , M ,�, �Y ) and cluster-
level variables (Ec, Ac). As detailed below, our Two-Stage approach is also applicable to setting with more
complicated missingness mechanisms, such as right-censoring with survival-type endpoints.

3.1. Stage 1: Identifying and estimating cluster-specific endpoints

For the purposes of controlling for differential outcome measurement, we consider each of the N clusters
separately in Stage 1. Since the cluster-level covariates and treatment (Ec, Ac) are constant within each
cluster, the Stage 1 observed data simplify to O = (W , M ,�,�Y ) and the target causal parameter to
E[Y (δ = 1)]. Then if MCAR held in each cluster or, equivalently, Y (1) ⊥⊥ �, this causal parameter could
be identified as E(Y |� = 1) and consistently estimated as the empirical mean among those measured
within each cluster: Ê(Y |� = 1). We relax this missing data assumption by allowing measurement to
depend on the participant’s baseline and time-varying characteristics (W , M ). Specifically, if Y (1) ⊥⊥ � |
W , M and there is sufficient data support (i.e., the positivity assumption holds), our Stage 1 statistical
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Fig. 2. Simplified causal graph to illustrate how stratifying on cluster in Stage 1 simplifies identification and estimation
of the Stage 1 statistical parameter Y c, corresponding to hypothetical intervention to ensure complete outcome
measurement. The Stage 1 estimates Ŷ c are used to evaluate the intervention effect in Stage 2.

estimand would be

Y c ≡ E
[
E(Y

∣
∣� = 1, W , M )

]
. (3.1)

Within each cluster separately, Y c could be estimated by a variety of algorithms, including inverse-
weighting and G-computation (Horvitz and Thompson, 1952; Robins, 1986). We use TMLE for estimation
of the cluster-specific endpoint Y c, given its asymptotic properties and improved finite sample performance
(e.g., van der Laan and Rose, 2011; Gruber and van der Laan, 2012). Briefly, TMLE combines estimates of
the outcome regression E(Y |� = 1, W , M ) with those of the measurement mechanism P(� = 1|W , M ).
In doing so, TMLE achieves a number of desirable properties, including double robustness: a consis-
tent estimate is attained if either the outcome regression or the measurement mechanism is consistently
estimated. If both are consistently estimated at reasonable rates, TMLE will be efficient. In practice, we
recommend implementing TMLE using Super Learner, an ensemble machine learning algorithm (van der
Laan and others, 2007). Step-by-step implementation for Eq. 3.1 is given in the Supplementary material
available at Biostatistics online. Since we are fully stratifying on cluster, an individual-level TMLE would
be implemented N times to obtain N cluster-specific estimates: Ŷ c = 1

Sc

∑Sc

j=1 Ê
∗(Y

∣∣� = 1, Wj, Mj),

where j indexes the Sc participants in a given cluster and Ê
∗(Y |� = 1, Wj, Mj) denotes the targeted

prediction of the individual-level outcome for participant j in that cluster.

3.1.1. Stage 1 with survival-type endpoints: When assessing effects on time-to-event outcomes, partici-
pants are followed longitudinally until the occurrence of the event of interest or right-censoring. Examples
of such endpoints in the SEARCH Study included the probability of treatment initiation and the cumula-
tive risk of HIV-associated TB or death due to illness. Our framework also accommodates survival-type
endpoints. Specifically, to account for right-censoring in Stage 1, we would identify a new cluster-specific
endpoint Y c and estimate it using the Kaplan-Meier estimator when censoring is nondifferential or TMLE
when censoring is differential (Petersen and others, 2014; Benkeser and others, 2019).

3.1.2. Stage 1 with endpoints measured in a cross-sectional design: Other endpoints may be assessed
using a cross-sectional design, where participants are measured at a single timepoint at the conclusion of the
trial. In these settings, we may have missingness on the characteristic defining the subpopulation of interest
as well as the outcome of interest. Consider, for example, population-level HIV viral suppression, defined
as the proportion of all HIV-infected persons whose plasma HIV RNA level is suppressed below some limit:
P(Suppressed | HIV+). Both baseline and postbaseline factors impact HIV status and its measurement
as well as viral suppression and its measurement. To handle missingness on both the outcome (viral

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab043#supplementary-data


508 L. B. BALZER AND OTHERS

suppression) and the conditioning set (HIV-positivity), we redefine the outcome as the joint probability of
being HIV-infected and suppressing viral replication, divided by HIV prevalence: P(Suppressed, HIV+)÷
P(HIV+). Again our Two-Stage approach can accommodate this ratio-type endpoint. Specifically, we
would identify estimate (with TMLE) the numerator and denominator separately, and then take their ratio
to estimate a new cluster-specific endpoint Y c in Stage 1 (Balzer and others, 2020).

3.2. Stage 2: Estimation of the effect of the cluster-level intervention

Recall in Stage 1, we stratify on each cluster to identify and estimate a cluster-specific endpoint Y c that
accounts for potentially differential measurement or censoring at the individual-level (e.g., 3.1). Then in
Stage 2, our goal is to use those estimates to evaluate the intervention effect with maximum precision.
Supplementary material available at Biostatistics online provides a detailed discussion of several Stage 2
causal effects, which are all easily identified due to randomization of the cluster-level treatment Ac and
prior control for missingess in Stage 1. For estimation of these effects in Stage 2, the observed data can
be simplified to the cluster-level: Oc = (Ec, W c, Ac, Ŷ c), where Ec represents the baseline cluster-level
covariates; W c denotes summary measures of the baseline individual-level covariates; Ac is an indicator
of randomization to the intervention arm, and Ŷ c is the estimated cluster-specific endpoint from Stage 1.

With these data, a simple estimator of the treatment effect is the average outcome among intervention
clusters Ê(Ŷ c|Ac = 1) contrasted with the average outcome among control clusters Ê(Ŷ c|Ac = 0).
Instead, to obtain a more efficient estimate of the intervention effect (e.g., Moore and van der Laan
(2009); Rosenblum and van der Laan (2010)), we implement a cluster-level TMLE in Stage 2. Briefly, an
initial estimator of the cluster-level outcome regression E(Ŷ c|Ac, Ec, W c) is updated based on an estimate
of the cluster-level propensity score P(Ac = 1|Ec, W c) to achieve a targeted estimator E

∗(Ŷ c|Ac, Ec, W c).
Targeted estimates of the expected outcomes under the intervention E

∗(Ŷ c|Ac = 1, Ec, W c) and under the
control E∗(Ŷ c|Ac = 0, Ec, W c) are generated for all clusters, averaged across clusters, and contrasted. Step-
by-step implementation of TMLE in Stage 2 is given in Supplementary material available at Biostatistics
online.

Unfortunately, it is nearly impossible to a priori-specify the optimal estimators of the outcome regres-
sion E(Ŷ c|Ac, Ec, W c) or the propensity score P(Ac = 1|Ec, W c). Few clusters prohibit the use of Super
Learner. To avoid over-fitting while flexibly selecting the adjustment variables that maximize precision,
we recommend using Adaptive Prespecification in Stage 2 (Balzer and others, 2016). The procedure data-
adaptively selects from a pre-specified set the candidate adjustment variables and, thus, the TMLE that
maximize empirical efficiency. Briefly, we prespecify (i) candidate adjustment variables expected to be
predictive of the outcome, (ii) a loss function corresponding to the squared influence curve for the TMLE
of the target effect, and (iii) a sample-splitting scheme; leave-one-out cross-validation is recommended.
The candidate adjustment variables then define the set of candidate estimators for the outcome regression
and the propensity score based on “working” generalized linear models (GLMs). The procedure data-
adaptively choses the combination of the outcome regression and propensity score GLMs (and thus the
TMLE) with the lowest cross-validated variance estimate. Adaptive Prespecification is an extension of
Collaborative-TMLE using a cross-validation selector to maximize precision in small trials.

In CRTs with few clusters, we recommend limiting the candidate GLMs to a single adjustment covariate.
In CRTs with many clusters, we could also include candidate GLMs adjusting for multiple covariates and
allow the procedure to data-adaptively determine the size of the adjustment set. Simulations mimicking
the real data application (e.g., in sample size N and expected within cluster dependence) can help inform
these choices. Importantly, there is no guarantee that adjusting for more covariates will improve empirical
efficiency. For some CRTs, none of the prespecified covariates will improve precision over the unadjusted
estimator. In this setting, the procedure will select the unadjusted effect estimator.Altogether withAdaptive

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab043#supplementary-data
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Prespecification, decisions about whether and how to adjust for optimal precision gains in Stage 2 are
made with a rigorous procedure that does not compromise Type-I error.

3.3. Statistical inference for Two-Stage TMLE

Now we have a point estimate of the intervention effect and are ready to obtain statistical inference, which
occurs at the cluster-level. Under the following conditions, detailed in Supplementary material available at
Biostatistics online, Two-Stage TMLE ψ̂ is an asymptotically linear estimator of the intervention effectψ ,
meaning that ψ̂−ψ = 1

N

∑N
i=1 ICi+RN , where ICi is the cluster-level influence curve and RN = oP(N −1/2)

is the remainder term, going to zero in probability (van der Vaart, 1998):

(1) Stage 1 estimation of the cluster-level outcomes Ŷ c provides negligible contribution to RN ;
(2) Stage 2 estimators of the cluster-level outcome regression and the cluster-level propensity score

satisfy the usual regularity conditions (e.g., Moore and van der Laan, 2009).

The second condition is automatically satisfied when Adaptive Prespecification is used to select among
GLMs for the outcome regression E(Ŷ c|Ac, Ec, W c) and the known propensity score P(Ac = 1|Ec, W c).
However, to satisfy the first condition we need (i) the Stage 1 estimators of the individual-level outcome
regression and the individual-level measurement mechanism to converge to their targets at fast enough
rates, (ii) the within cluster dependence to be weak enough that the Central Limit Theorem applies in cluster
size Sc

i , and (iii) the cluster size is large relative to the total number of clusters (i.e., N/min(Sc
i ) → 0;

Supplementary material available at Biostatistics online).
While these are asymptotic requirements, the Stage 1 conditions highlight the importance of having

sufficiently sized clusters to support our missing data assumptions and to allow for flexible estimation of
the individual-level outcome regression and measurement mechanism in Stage 1. Small cluster sizes may
force us to rely on strong identifiability assumptions (e.g., MCAR within each cluster or only dependent on
a single covariate) and strong estimation assumptions (e.g., the probability of being measured is accurately
described by a main terms logistic regression). Such assumptions may or may not be reasonable in a given
application. Larger cluster sizes, however, permit the use TMLE with Super Learner to flexibly adjust
for the baseline and time-dependent covariates influencing outcomes and measurement in each cluster in
Stage 1. TMLE is also double robust, providing a consistent estimate of the cluster-specific endpoint Y c

if either the individual-level outcome regression or measurement mechanism is consistently estimated.
Altogether, the requirements for valid statistical inference are not unique to our proposed approach; they
apply to other two-stage estimators (e.g., a t-test on the mean outcome among those measured). In all cases,
if the cluster-level endpoints Y c are estimated poorly in Stage 1, we are risk of biased point estimates
and misleading conclusions in Stage 2. Simulations, below, explore the finite sample performance of
Two-Stage TMLE under challenges commonly faced by CRTs: few clusters of modest size, correlated
outcomes within clusters, and differential outcome measurement.

When the above conditions hold, the limit distribution of the standardized estimator is normal with
mean 0 and variance given by the variance of its influence curve. For the treatment-specific meanψ(ac) =
E[E(Y c|Ac = ac, Ec, W c)], for example, the influence curve for Two-Stage TMLE is approximated as

ˆIC(ac) = I(Ac = ac)

P̂(Ac = ac|Ec, W c)
[Ŷ c − Ê

∗(Ŷ c|Ac = ac, Ec, W c)] + Ê
∗(Ŷ c|Ac = ac, Ec, W c)− ψ̂(ac).

We obtain a variance estimate with the sample variance of the estimated influence curve divided by the
number of independent units N . Then using the Student’s t-distribution with N −2 degrees of freedom as a

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab043#supplementary-data
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finite sample approximation to the normal distribution (Hayes and Moulton, 2009), we can construct Wald-
Type 95% confidence intervals and conduct hypothesis testing. Additionally, through the Delta Method,
we can derive the influence curve and variance estimator for the intervention effect on any scale of interest.
For the absolute effect ψ(1) − ψ(0), the estimated influence curve for TMLE would be ˆIC(1) − ˆIC(0).
For the relative effectψ(1)÷ψ(0), we would apply the Delta method on the log-scale (Moore and van der
Laan, 2009). This approach to statistical inference also applies when the treatment is randomized within
matched pairs of clusters (Supplementary material available at Biostatistics online).

4. SIMULATION STUDY

We examine the finite sample performance of our proposed estimator using simulations to incorporate
common CRT challenges, such as few randomized clusters and differential missingness. Specifically,
we focus on a setting with N = 30 clusters and where within each cluster, the number of individual
participants is sampled with equal probability from {100, 150, 200}. In these simulations, both baseline
and postbaseline covariates impact measurement of individual-level outcomes.Additional simulations and
computing code are given in the Supplementary material available at Biostatistics online.

4.1. Data generating process

For each cluster i = {1, . . . , N }, we independently generate the cluster-specific data as follows. First, three
cluster-level, latent variables are independently generated as U1c ∼ Unif (−1, 1), U2c ∼ Unif (−1, 1),
and U3c ∼ Norm(0, 1). Then, two individual-level covariates (W 1, W 2) are drawn independently from
normal distributions with cluster-specific means: W 1 ∼ Norm(U1c, 0.5) and W 2 ∼ Norm(U2c, 0.5).
We set the observed cluster-level covariates (E1c, E2c) to be the empirical mean of their individual-level
counterparts. The cluster-level intervention Ac is randomly allocated within pairs of clusters matched on
U3c.

The individual-level mediator M is generated as an indicator that UM ∼ Unif (0, 1) is less than the
logit−1{−1 + 2Ac + W 1 + W 2 + 0.2(1 − Ac)(E1c + E2c)+ 0.25U3c}. The underlying, individual-level
outcome Y is generated as an indicator that UY ∼ Unif (0, 1) is less than logit−1(1 − 2.5Ac + 4M +
0.5W 1+0.5W 2+0.2E1c +0.2E2c +0.25U3c). Finally, individual-level measurement is generated as an
indicator that U� ∼ Unif (0, 1) is less than Aclogit−1(3−3M −0.5W 1−0.5W 2)+ (1−Ac)logit−1(−2+
3M + 0.5W 1 + 0.5W 2). Thus, the measurement mechanism is highly differential by treatment arm with
a mean of 70% measured in the intervention arm and 43% in the control arm. The observed outcomes Y
are set to missing for individuals with � = 0.

We also generate the counterfactual mediators and outcomes by setting the cluster-level treatment
Ac = ac and preventing missingness (i.e., setting � = 1). The cluster-level, counterfactual outcome
Y c(ac) is the average of the individual-level, counterfactual outcomes within each cluster. We generate
a population of 5000 clusters and calculate the true value of the treatment-specific, population means
E[Y c(ac)] for ac = {0, 1}, their difference, and their ratio.

4.2. Estimators compared in the simulation study

We compare a variety of estimators commonly implemented in CRTs. We consider four complete-case
approaches, in which the data are subset to exclude participants with missing outcomes (i.e., those with
� = 0): an unadjusted estimator, CARE, mixed models, and GEE. We also implement two approaches
which use data on all participants: DR-GEE and our Two-Stage TMLE.

For the unadjusted approach, we first aggregate the individual-level outcomes Y to the cluster-level Ŷ c

by taking the empirical mean among those measured (i.e., � = 1) and then contrast the average cluster-
level outcomes Ŷ c by treatment arm Ac with inference from the t-distribution. For CARE, we pool data

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab043#supplementary-data
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across clusters and run logistic regression of the individual-level outcome Y on the baseline covariates
(W 1, W 2, E1c, E2c); calculate the residuals by taking the difference between the cluster-level outcomes
Ŷ c (the empirical mean among those measured) and those predicted from the previous regression, and
finally use a t-test to compare the residuals by arm.

In mixed models and GEE, we again pool data across clusters and fit a log-linear regression of the
individual-level outcome Y on the cluster-level treatment Ac and baseline covariates (W 1, W 2, E1c, E2c).
In DR-GEE, we also estimate the measurement mechanism with a pooled logistic regression of � on
(W 1, W 2, E1c, E2c, Ac) and the augmentation terms with arm-specific log-linear regressions of Y on
(W 1, W 2, E1c, E2c). To account for within cluster dependence, we include a random cluster-specific
intercept in mixed models and use an independent working correlation matrix in the GEEs. For mixed
models, GEE, and DR-GEE, the default settings of lme4, geepack, and CRTgeeDR packages are used
for standard error estimation, respectively.

For Two-Stage TMLE, we first implement an individual-level TMLE within each cluster separately to
estimate the cluster-specific endpoint Y c ≡ E

[
E(Y | � = 1, W 1, W 2, M )

]
. In these TMLEs, the outcome

regression and the measurement mechanism are estimated using Super Learner to combine predictions
from main terms logistic regression, generalized additive models, and the empirical mean. In Stage 2, we
compare these cluster-specific estimates Ŷ c by treatment arm using a cluster-level TMLE with Adaptive
Prespecification to select the optimal adjustment variables from {E1c, E2c, ∅} and with inference via the
estimated influence curve (Section 3.3).

4.3. Simulation results

The average coefficient of variation was 0.24 in the intervention arm and 0.17 in the control arm, reflecting
expected levels of dependence between individual-level outcomes within clusters (Hayes and Moulton,
2009). The true values of the risk difference and risk ratio were −9.1% and 0.88, respectively. For both
effects, Table 2 summarizes estimator performance when “breaking the matches” (i.e., ignoring the pair-
matching scheme used for treatment randomization) and when preserving the matches. The exception is
for DR-GEE, because to our knowledge, there does not yet exist an extension of DR-GEE for pair-matched
CRTs.

Focusing first on estimators of the risk difference (true value = −9.1%), we see that t-test, which does
not adjust for covariates, is highly biased, as expected given the differential measurement process. On
average, it grossly overestimates the effect by 22.9% and attains confidence interval coverage of <1%.
By adjusting for covariates, CARE is less biased, but still overestimates the intervention effect by 12.7%
when breaking the matches and by 9.9% when preserving the matches. The corresponding confidence
interval coverages are much less than the nominal rate: 7.8% and 40.4%, respectively. In contrast, the bias
of Two-Stage TMLE is low (<1%) and confidence interval coverage is good (>95%). Also as predicted
by theory (Balzer and others, 2015), more power is achieved when preserving (57.4%) versus breaking
the matches (52.8%).

Now focusing on estimators of the risk ratio (true value = 0.88), both mixed models and GEE overes-
timate the effect, preventing accurate inference. The confidence interval coverage is 5.6–7.0% for mixed
models and 1.2–4.8% for GEE. These estimators are expected to be unbiased when there are only baseline
causes of missingness and the outcome regressions are correctly specified. Here, there are postbaseline
causes of missingness, which are simultaneously mediators of the treatment–outcome relationship. DR-
GEE is expected to reduce bias due to missing outcomes by incorporating weights corresponding to the
measurement mechanism, and this is seen when there are only baseline causes of missingness (Table S1 of
the Supplementary material available at Biostatistics online). However, extensions of DR-GEE to handle
postbaseline causes of missingness do not yet exist, and in the main simulations, DR-GEE attains <1%
confidence interval coverage for the risk ratio (Table 2).
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Table 2. Over 500 simulated trials, the performance of CRT estimators when missingness depends on
baseline and post-baseline variables. Results are shown when the target of inference is the risk difference
(RD; top 3 rows), when the target is the risk ratio (RR; bottom 4 rows), when breaking the matches during
analysis (left), and when preserving the matches during analysis (right)

Breaking the matches Keeping the matches

p̂t Bias σ σ̂ CI Power p̂t Bias σ σ̂ CI Power

For the risk difference (true value RD = −9.1%)
t-test −32.0 −22.9 0.048 0.050 0.8 100.0 −32.0 −22.9 0.048 0.047 0.6 100.0
CARE −21.8 −12.7 0.037 0.037 7.8 100.0 −19.0 −9.9 0.049 0.040 40.4 98.0
TMLE −9.8 −0.7 0.038 0.046 98.8 52.8 −9.9 −0.8 0.037 0.043 96.6 57.4
For the risk ratio (true value RR = 0.88)
Mixed 0.7 −0.2 0.049 0.069 7.0 100.0 0.7 −0.2 0.050 0.065 5.6 100.0
GEE 0.7 −0.2 0.049 0.056 4.8 100.0 0.7 −0.2 0.055 0.036 1.2 99.8
DR-GEE 0.7 −0.2 0.049 0.054 0.2 100.0
TMLE 0.9 −0.0 0.051 0.063 98.4 52.6 0.9 −0.0 0.051 0.058 96.8 57.8

p̂t: average point estimate (in % for the RD).
Bias: average deviation in the point estimates versus true effect (in % for the RD).
σ : standard deviation of the point estimates (on log-scale for RR).
σ̂ : average standard error estimate (on log-scale for RR).
CI: proportion of 95% confidence intervals containing the true effect (in %).
Power: proportion of trials correctly rejecting the false null hypothesis (in %).

In contrast, Two-Stage TMLE is essentially unbiased and achieves good confidence interval coverage
(>95%) for the risk ratio. Again, more power is achieved when keeping (57.8%) versus breaking the
matches (52.6%). In further simulation studies given in the Supplementary material available at Biostatis-
tics online, Two-Stage TMLE also performs well with fewer clusters and maintains nominal Type-I error
control when there is no effect. Finally, including the mediator M in the adjustment set of the exist-
ing methods does not improve their performance. (Table S2 of the Supplementary material available at
Biostatistics online).

5. APPLICATION TO THE SEARCH STUDY

The results of the SEARCH Study have been previously published in Havlir and others (2019); here,
we focus on the efficiency gains from adjusting for covariate imbalance in Stage 2, after adjusting for
individual-level missingness in Stage 1. For select endpoints, we describe the estimator implementation
and then compare point estimates and inference for the intervention effect when using TMLE withAdaptive
Prespecification versus the unadjusted effect estimator in Stage 2.

As previously discussed, the primary outcome in the SEARCH Study was the 3-year cumulative HIV
incidence, measured in each community through a cohort of residents who were aged 15+ years and HIV-
uninfected at baseline. The pre-specified primary approach was Two-Stage TMLE to assess the effect on the
relative scale and keep the matched pairs. In Stage 1, we estimated the community-specific, cumulative HIV
incidence Y c with TMLE adjusting for possibly differential capture of final HIV status. These individual-
level TMLEs used Super Learner to combine predictions from penalized regression, generalized additive
models, main terms regression, and the empirical mean. In Stage 2, the intervention effect was estimated
with a community-level TMLE using Adaptive Prespecification to select the optimal adjustment set from
baseline HIV prevalence, baseline male circumcision coverage, or nothing (unadjusted).

A similar approach was taken for all secondary endpoints, including the incidence of HIV-associated
TB or death due to illness, hypertension control among adults (30+ years) with baseline hypertension, and

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab043#supplementary-data
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Table 3. For selected endpoints in the SEARCH Study, point estimates, 95% confidence intervals, and
efficiency comparisons when estimating the intervention effect in Stage 2 with the unadjusted estimator
and with TMLE using Adaptive Prespecification. All approaches adjusted for individual-level missingness
in Stage 1.

Breaking the matches Keeping the matches

Stage 2 Effect (95% CI) Efficiency Effect (95% CI) Efficiency

HIV incidence Unadjusted 0.98 (0.66, 1.45) 1 0.98 (0.78, 1.24) 3.1
TMLE 0.96 (0.73, 1.26) 2.1 0.96 (0.8, 1.17) 4.6

TB incidence Unadjusted 0.79 (0.64, 0.98) 1 0.79 (0.69, 0.92) 2.2
TMLE 0.8 (0.67, 0.95) 1.4 0.8 (0.69, 0.91) 2.6

Hypertension control Unadjusted 1.19 (1.1, 1.3) 1 1.19 (1.11, 1.28) 1.7
TMLE 1.18 (1.1, 1.26) 1.6 1.19 (1.11, 1.27) 1.8

Viral suppression Unadjusted 1.15 (1.11, 1.2) 1 1.15 (1.11, 1.2) 1
TMLE 1.16 (1.13, 1.2) 1.1 1.15 (1.11, 1.2) 1

Efficiency: Variance estimate for the unadjusted effect estimator breaking the matches used for randomization,
divided by the variance estimate of another approach (e.g., TMLE with Adaptive Prespecification, keeping
the matches used for randomization).

population-level HIV viral suppression (HIV RNA<500 copies/mL). When assessing the impact on TB
or death due to illness, we used the Kaplan-Meier method in Stage 1 to estimate the 3-year risk in each
community, separately; we censored at death due to other causes, outmigration, and study close. When
assessing the impacts on hypertension control and HIV viral suppression, we implemented individual-
level TMLEs in Stage 1 to adjust for baseline and time-varying causes of missingness. For all secondary
endpoints, we used a community-level TMLE with Adaptive Prespecification to assess the intervention
effect in Stage 2.

As shown in Table 3, the point estimates of the intervention effects are similar, but the precision gains
from the Stage 2 approach are notable. Here, “efficiency” is the variance of the unadjusted effect estimator
breaking the matches divided by the variance of an alternative approach. For the primary endpoint (HIV
incidence), we see precision gains when keeping versus breaking the matches; specifically, the unadjusted
effect estimator is 3.1-times more efficient in the pair-matched analysis.As expected, TMLE withAdaptive
Prespecification keeping the matches is the most efficient approach and 4.6-times more efficient than the
standard approach.

Similar results are seen for the incidence of HIV-associated TB and hypertension control (Table 3).
TMLE using Adaptive Prespecification and keeping the matches is ≈2-times more efficient than the
unadjusted effect estimator ignoring the matches. In contrast, minimal gains in efficiency are seen when
evaluating the effect on HIV viral suppression. This is because the adaptive approach used in TMLE
defaults to the unadjusted effect estimator when adjustment does not improve precision. In this scenario,
controlling for the baseline prevalence of viral suppression or the proportion of youth (15–24 years)
with HIV did not improve precision over the unadjusted effect estimator. However, we note that assuming
MCAR and relying on the unadjusted estimator in Stage 1 resulted in vast over-estimation of this endpoint in
the intervention arm (85.2% vs. 79.0%) and control arm (75.8% vs. 67.8%) (Table S5 of the Supplementary
material available at Biostatistics online).

6. DISCUSSION

Cluster randomized trials (CRTs) are essential for assessing the effectiveness of interventions delivered
to groups of individuals (e.g., clinics or communities). There have been notable advances in the design
and conduct of CRTs (e.g., Turner and others, 2017a,b; Murray and others, 2018, 2020). However,
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substantial challenges remain and threaten the quality of evidence generated by CRTs. Regardless of
best intentions, most CRTs are prone to differential measurement of individual-level outcomes and to
covariate imbalance. In this paper, we proposed and evaluated a novel approach, Two-Stage TMLE, to
address the dual challenges of bias due to missing individual-level outcomes and imprecision due to few
randomized units (i.e., clusters). In Stage 1, an individual-level TMLE is implemented within each cluster
separately to estimate a cluster-specific endpoint Y c, which appropriately controls for missingness on
participant outcomes. Fully stratifying on the cluster simplifies identification and allows the missingness
mechanism to vary by cluster. In Stage 2, the treatment effect is estimated with a separate, cluster-level
TMLE to compare the cluster-level endpoints Ŷ c, estimated from Stage 1. Adaptive Prespecification is
used in Stage 2 to flexibly select from a pre-specified set the adjustment variables and, thus, the TMLE that
maximize precision (Balzer and others, 2016). Statistical inference is based on the estimated influence
curve and the Student’s t-distribution. Finite sample simulations demonstrated the potential for Two-Stage
to overcome the shortcomings of existing CRT methods, especially when there are post-baseline causes of
missingness. Application to real data from the SEARCH Study demonstrated the precision gains attained
through adaptive adjustment in Stage 2.

To the best of our knowledge, Two-Stage TMLE is the first CRT estimator that simultaneously addresses
bias due to individual-level missingness and improves efficiency through adaptive adjustment for covariate
imbalance, in a fully prespecified manner. The approach is applicable to a wide range of measurement
schemes (e.g., single cross-sectional sample, repeated cross-sectional sampling, and longitudinal follow-
up) and endpoint types (e.g., binary, continuous, time-to-event outcomes). The approach is also applicable
to a wide range of causal parameters (e.g., population, conditional, and sample effects) and scales of
inference (e.g., absolute or relative measures). Additionally, Two-Stage TMLE should naturally generalize
to hierarchical data settings with a nonrandomized, cluster-level exposure. In such an observational setting,
the cluster-level TMLE implemented in Stage 2 would focus on confounding control, as opposed to
efficiency improvement. However, the asymptotic properties and finite sample performance of such an
estimator remain an area of future work.

Altogether, Two-Stage TMLE alleviates, but does not fully resolve, the challenges that arise from
missing data in CRTs. Stage 1 uses TMLE with machine learning to flexibly adjust for baseline and
time-dependent causes of missingness and, as a plug-in estimator, provides more stability under strong
confounding or rare outcomes. However, adjustment for missingness in Stage 1 occurs within each cluster
separately, limiting the breadth and flexibility of adjustment when the cluster-specific outcome is rare or the
cluster-specific sample size is small (e.g., in subgroup analyses). This highlights a challenge commonly
occurring in finite samples: we must balance the strength of our assumptions for identifiability (e.g.,
MCAR vs. MAR) and for estimation (e.g., parametric regressions vs. Super Learner) with limited data
support. In CRTs with very small cluster sizes and highly differential measurement, a single stage TMLE
is likely to be more appropriate. However, such an TMLE does yet not exist and is an area of future work.
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