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SUMMARY

Strategic preparedness reduces the adverse health impacts of hurricanes and tropical storms, referred to
collectively as tropical cyclones (TCs), but its protective impact could be enhanced by a more comprehen-
sive and rigorous characterization of TC epidemiology. To generate the insights and tools necessary for
high-precision TC preparedness, we introduce a machine learning approach that standardizes estimation
of historic TC health impacts, discovers common patterns and sources of heterogeneity in those health
impacts, and enables identification of communities at highest health risk for future TCs. The model inte-
grates (i) a causal inference component to quantify the immediate health impacts of recent historic TCs at
high spatial resolution and (ii) a predictive component that captures how TC meteorological features and
socioeconomic/demographic characteristics of impacted communities are associated with health impacts.
We apply it to a rich data platform containing detailed historic TC exposure information and records of
all-cause mortality and cardiovascular- and respiratory-related hospitalization among Medicare recipients.
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We report a high degree of heterogeneity in the acute health impacts of historic TCs, both within and across
TCs, and, on average, substantial TC-attributable increases in respiratory hospitalizations. TC-sustained
windspeeds are found to be the primary driver of mortality and respiratory risks.

Keywords: Causal inference; Environmental epidemiology; Extreme weather events; Hurricanes; Latent factor model;
Matrix completion.

1. INTRODUCTION

The US National Oceanic and Atmospheric Administration reports that tropical cyclones (TCs) impose
the largest financial burden of any weather disasters in the United States, costing $945.9 billion since
1980 or roughly $21.5 billion per event (National Oceanic and Atmospheric Administration, 2020). TCs,
which include hurricanes and tropical storms, often bring severe winds, rainfall, and flooding (Shultz
and others, 2005), which can catalyze massive property and infrastructure damage. Due to the diverse
types of hardships that can be set in motion by TC, the full spectrum of human health impacts of TCs
are incompletely understood and unreliably quantified. Extreme weather events are known to cause both
“direct” and “indirect” health impacts. It is well-appreciated that TCs introduce severe risks for accidental
mortality and injuries (Centers for Disease Control and Prevention, 2005; Rappaport, 2014; Rappaport
and Blanchard, 2016; Gong and others, 2007), such as drowning or blunt force trauma from falling debris,
which are known as “direct” TC health impacts, that is, the TC can be clearly and conclusively identified
as a causal mechanism. Direct TC health impacts are generally the focus of post-storm surveillance in the
United States.

TCs can also “indirectly” elevate risk for a range of other adverse health events because, for example,
they often cause power outages (Han and others, 2009; Klinger and Owen Landeg, 2014; Shultz and Galea,
2017), trigger mass evacuations (Lew and Wetli, 1996; Brunkard and others, 2008; Dosa and others,2012),
create psychological stress (Lutgendorf and others, 1995; Lenane and others, 2017), require clean-up
(Centers for Disease Control and Prevention, 2004; Lew and Wetli, 1996), increase exposure to heat and
pollution (Shultz and Galea, 2017), and interfere with normal medical care and medication use (Klinger
and Owen Landeg, 2014; Gray and Hebert, 2007). Post-storm surveillance can hugely underestimate these
indirect health impacts of TCs, as evidenced by Hurricane Maria. While surveillance initially attributed 64
deaths in Puerto Rico to the storm, later epidemiological studies estimated that the storm caused >2000
deaths (Kishore and others, 2018; Santos-Burgoa and others, 2018).

The literature on TC epidemiology has been dominated by single-storm studies (Lew and Wetli, 1996;
Sharma and others, 2008; Kim and others, 2016; Kishore and others, 2018), seeking to quantify the total
excess mortality or morbidity caused by a TC (including both direct and indirect effects). This focus on
single storms is driven by the widely-recognized heterogeneity in TC health impacts. Recently, two large-
scale studies estimated average health effects of all TC exposures in the United States spanning more than
a decade (Yan and others, 2021; Parks and others, 2021). While these studies have revealed fundamental
features of TC epidemiology, the results of single-storm studies may not generalize well, and multi-
storm average health effects are too coarse to explain across-storm variability. Thus these studies have
been unable deliver the targeted yet generalizable insights needed to guide strategic storm preparedness,
which is believed to be one of the most effective tactics for minimizing TC health impacts (Thomalla
and Schmuck, 2004; Shultz and others, 2005; Keim, 2008). A 2020 report by the National Academies
of Sciences, Engineering, and Medicine stressed that in order to strengthen disaster resilience, improve
responses, and quicken recoveries, the United States needs a uniform approach to quantifying disaster-
related mortality and morbidity, as well as new analytical methods to enable estimation of disaster health
impacts and the capacity to implement such methods on population-level data (National Academies of
Sciences, Engineering, and Medicine, 2020).
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The goal of our work is to inform strategic TC preparedness through development and application
of a new modeling approach that (i) standardizes estimation of acute health impacts across past TCs,
(i1) discovers common patterns and sources of heterogeneity in those health impacts, and (iii) enables
identification of communities at highest health risk for future TCs. First, the proposed approach must
incorporate a causal inference component that, when applied to historic data, estimates the excess adverse
health events caused by past TCs (hereafter “health effects” or “health impacts™) at high spatial resolution
in a standardized and transparent fashion. These estimates should capture both direct and indirect effects
and should be adjusted for confounding. A TC’s health impact in a particular community may be influenced
(i.e., modified) by a complex interplay among the features of the storm and the population (Keim, 2008),
and understanding these drivers of heterogeneity is a key aim of our work. Thus, the second component
of our approach is a predictive model relating the community- and TC-specific health impacts to the TC’s
meteorological features and the socioeconomic/demographic features of the community. In addition to
offering unprecedented insights into multi-storm TC epidemiology, this approach allows for community-
specific prediction of the health impacts of an approaching TC with forecasted track and features. The
predictive model could also be used to create general community-level TC health risk profiles based on
a collection of representative future TC exposures. This tool represents a first step toward identifying
communities at highest risk for adverse TC health impacts so that they can be targeted for immediate TC
strategic preparedness and/or long-term efforts to increase resilience.

Building on a rich data set of recent historic US TC exposures and Medicare claims, we introduce
an innovative statistical modeling approach that incorporates both the causal inference and predictive
components described above. Our Bayesian machine learning method jointly fits causal inference sub-
models to estimate the county-specific health effects of each historic TC, then passes these effect estimates
into a predictive sub-model that captures relationships between county and TC features and health impacts.
Leveraging recent advances in causal inference with observational pre/post treatment data, the causal sub-
models employ a matrix completion approach that adjusts for unmeasured, time-varying confounding
under mild assumptions (Athey and others, 2021). By joining the causal and predictive models in a
Bayesian framework, we account for the uncertainty from all components, and predictions made using
this model are accompanied by accurate uncertainty estimates, which are critical to assess their utility.
This method can be widely used for characterizing and predicting the health impacts of extreme weather
and climate events.

2. METHODS
2.1. Data

The data are described briefly here, detailed descriptions are provided in Section S.1 of the Supplementary
material available at Biostatistics online. All mortalities in the Medicare population and all respiratory
disease hospitalizations, chronic obstructive pulmonary disease (COPD) hospitalizations, and cardiovas-
cular disease (CVD) hospitalizations in the Medicare fee-for-service population are obtained for the period
1999-2015. For our analyses, these are aggregated to create daily county-level counts of each outcome.
To characterize TC exposures, we leverage an open source data platform containing temporally detailed
track and feature data for each Atlantic-basin TC during the period 1999-2015 that came within 250km of
at least one eastern US county. More detail about this data platform, which is made available through the
hurricaneexposuredata R package, is provided in Section S.1.2 of the Supplementary material
and in Anderson and others (2020). For the causal inference component of our model, we classify each
eastern US county as exposed or unexposed to each TC (equivalently treated/control for consistency with
the causal inference literature). Following Yan and others (2021), counties that experience TC maximum
sustained windspeeds of gale force or higher (> 17.4 m/s) at the population mean center are considered
treated for a given TC and all others are controls.
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After designating each county as treated or control for a given TC, we select a set of analytic treated
and control counties for the TC that will be used to estimate its health impacts. To avoid instability in the
analyses, any county, treated or control, is excluded from the analytic set for a given TC if it has Medicare
fee-for-service population size less than 100 or if it experiences 5 or fewer of any of the health events
under study during the TC study period (defined below). Further, among the control counties, we select
as analytic controls only those that fall within 150 miles of at least one treated county (distance computed
between county centroids). Exclusion of controls far from any treated county reduces noise, because vastly
differing climate patterns can lead to seasonal trends in health outcomes that are not comparable across
regions. Hereafter, when we reference the treated/control counties for a given TC, we are referring to
the analytic treated/controls as defined here. We exclude TCs from the analysis entirely if they have no
qualifying treated counties, if the total number of treated and control counties is less than 20, or if the
number of control counties is less than 5.

For each TC and each health outcome, we create a matrix of panel data (Figure 1A), and these are
central to the causal inference component of our model (Athey and others, 2021). The panel data matrix
is composed of rows corresponding to each county in the analytic set for the given TC. Each row contains
a time series of counts of the outcome in that county during the pre-specified TC study period. The TC
study period is composed of a substantial time span prior to the storm, used to establish baseline trends
in health outcomes in treated and control counties, as well as the period during and immediately after
the storm, to estimate acute storm effects. For each TC, we define its study period as beginning 129 days
prior to the TC’s first US approach and ending 11 days after the first approach. The TC’s first approach
is the earliest date that the TC makes its closest approach to an exposed US county/counties. In practice,
when constructing the panel data matrix, each county’s daily counts during the TC study period are
aggregated into two-week cumulative counts, resulting in 10 2-week intervals. This temporal aggregation
is performed because narrower time intervals lead to small counts and instability in the time series for
many counties. We choose to include approximately 4.5 months of pre-TC baseline data because (i) this
provides enough time points to reveal relationships in baseline trends in the health outcomes in treated
vs. control counties while (ii) the time series covers a limited enough period that relationships between
the time trends in treated and control counties would be expected to remain stable. The use of longer time
series may introduce noise by capturing irrelevant long-term changes in relationships in baseline health
across counties.

While Figure 1A is intentionally left general, in our analysis each panel data matrix has 10 columns,
corresponding to the 10 2-week intervals in the TC study period, and the number of rows is determined
by the number of treated and control counties. For each county, we classify each 2-week interval in the
panel data matrix as a control or treatment period. For control counties, all 10 intervals are control periods.
For treated counties, we consider the final 2-week period, beginning 2 days before and ending 11 days
after the TC’s first approach, to be the treatment period, during which we seek to estimate the TC’s health
impacts.

For the predictive component of our model, we also obtain detailed county-specific TC meteorological
features (e.g., maximum sustained windspeed, duration of sustained wind speeds above 20 m/s) and
socioeconomic and demographic characteristics for each TC and each exposed county. These are described
in detail in Section S.1.3 of the Supplementary material.

2.2. Approach

For each health outcome, we construct a model composed of (i) causal inference sub-models for each
TC to estimate the excess health events attributable to it in each impacted county and (ii) a predictive
sub-model that relates these health effects to the TC and county features. We emphasize that each health
outcome is modeled separately, with no transfer of information between the outcome-specific models.
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Fig. 1. Example of panel data structure (A), illustration of matrix completion (B), and visual explanation of our
integrated causal and predictive modeling approach (C).

For the remainder of the section, we focus on the model for a single outcome. To emphasize the broader
applicability of our approach, we present the methods using general notation, making connections back
to our TC data structures for clarity.

2.2.1. Causal inference sub-models In this section, we describe the models that will be used to estimate
the excess health events attributable to historic TCs. These models are applied separately to the data for
each TC, which is part of a larger modularized model fitting scheme described in Section 2.2.2.

We denote the number of TCs in the study by S. In the causal inference sub-models, all data and param-
eters are storm-specific and should be indexed by an s € {1, ...,S}. However, for clarity of presentation,
we suppress these indices and introduce the causal inference concepts in the context of a single arbitrary
TC. Leti = 1, ..., N index the set of treated and control counties and ¢ = 1, ..., T index time intervals, so
that the panel data matrix (Figure 1A) has dimensions N x T, with counties in the rows and times in the
columns.

For a given TC, we assume that all counties are untreated at = 1, and that once treatment begins for
treated counties, they remain treated through t = 7. We let ¥ denote the set of indices of treated counties.
Let D;; be a binary indicator of treatment of county i by the TC at time ¢. Let 7, denote the common time
period when treatment is initiated in treated counties, such that all counties are untreated prior to 7, and
treatment occurs for treated counties at times 7, through 7 (see Figure 1A). While staggered treatment
initiation times can be accommodated in this framework, we focus on a common treatment initiation time
for clarity. Thus, D;, = 1if{(i,t) : i € W,t > Ty}, D;; = 0 otherwise. Collectively, the set ofall # € [Ty, T']
is referred to as the treatment period.

Y, is the observed number of health events for county i at time #, and the panel data matrix of the
outcomes is denoted Y. Following Athey and others (2021), we formalize our causal inference approach
using Rubin’s potential outcomes framework (Rubin, 1974), invoking assumptions given in Section S.3
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of the Supplementary material. In short, in treated counties during treatment, we observe the outcome
that occurs under treatment and we wish to compare it to an estimate of the “counterfactual” outcome
that would have occurred in the absence of treatment. Formally, let ¥;,(0) be the potential outcome in
county i at time ¢ under control. For control counties at all times and for treated counties prior to the
treatment period, Y;,(0) = Y;. For treated counties during the treatment period, we instead observe the
potential outcome under treatment, ¥;,(1) = Y;;. The aim of the causal inference sub-model for each TC
is to estimate the individual excess events (IEE), defined as 6; = ZfZTo [Y;: (1) — Y;;(0)] fori € W. Here,
the word individual refers to individual units of analysis, in our case counties. Because Y;;(1) = Y}, for
{(G,t) :i e W,t > Ty}, our aim is to estimate the counterfactual outcome, Y;;(0).

Both spatial and temporal confounding are possible in studies of the health impacts of TCs. For exam-
ple, coastal TC-prone counties may have wealthier populations and wealth is associated with health.
TCs are also more likely to occur during certain seasons and in certain climate conditions, which may
independently affect health outcomes. With most observational study designs, causal inference analy-
ses rely on the assumption of ignorable treatment assignment conditional on observed confounders (no
unmeasured confounding). To address potential unmeasured confounding, we conceptualize each TC as
a quasi-experiment, that is, a study design with nonrandomized treatment assignment but with pre- and
post-treatment data available. In environmental health studies, quasi-experimental designs are the gold
standard for assessing causality because certain types of unmeasured confounders can be controlled for
by design (Dominici and Zigler, 2017).

Classic methods such as difference-in-differences allow for control for time-invariant unmeasured
confounders. Recent machine learning approaches such as matrix completion (Athey and others,2021) go
further by allowing control for certain types of time-varying unmeasured confounders. This ability to adjust
for time-varying unmeasured confounding is particularly critical in our TC application. Many potential
confounders of TC health effects demonstrate complex seasonal patterns, for example, employment (Krane
and Wascher, 1999), use of homeless shelters (Colburn, 2017), and infectious disease proliferation, but
measurements of these variables are unavailable at the space-time resolution needed.

To estimate the health impacts of a TC in each treated county, we propose an adaptation of the matrix
completion (MC) approach for conducting causal inference with quasi-experiments using panel data
(Athey and others, 2021; Tanaka, 2021; Pang and others, 2021). MC is a machine learning technique
for imputing missing values in a matrix, learning from patterns in observed entries in both the rows and
columns. In our setting, the matrix with missing entries is the matrix of ¥;,(0) values, denoted Y (0). Y (0)
is structured just like the panel data matrix, with missing entries in positions corresponding to the treated
counties during the treatment period (Figure 1A, blue elements missing). Using a low-rank latent factor
representation, MC learns from space-time trends in the non-missing data, that is, the outcomes for (1)
control counties at all time periods and (2) treated counties prior to treatment, to impute the missing Y;:(0).
In this approach, the observed Y;,(1) are treated as fixed and known and are omitted from the MC model.
In settings with normally distributed data, MC can be framed as a low-rank factorization of Y(0) (or of
its expectation), as illustrated in Figure 1B.

Because our outcomes are counts, we generalize the MC approach for causal inference to allow for
count data likelihoods. MC models for count data were developed in other contexts (Gopalan and others,
2014), but do not follow epidemiologic conventions for modeling count data. We instead propose the
following MC model for count data using a log link:

log(E [Yi(0)]) = a + yi + ¥, + U]V, + log(pi) (2.1)
« is a global intercept, y; are county-specific deviations from the global intercept, and v, are time-specific

deviations. V;, is a K-length (K << min(N, T'), unknown) vector of unobserved factors influencing the
Y;,(0) that vary over time but are common to all counties and U; is a K-length vector of the unobserved
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county-specific effects of the V, on ¥;,(0). Together, the V, and U; provide a low-dimensional representation
of the space-time trends in the Y;,(0) (see Figure 1B for an illustration in the case of normally distributed
outcomes). p;; is a scalar population size offset, to allow for rate outcomes. We prespecify K based on
exploratory principal component analyses. Although predictions from the model in (2.1) are identified, the
individual parameters on the right hand side are not identifiable without further constraints. However, even
if constrained to enable identifiability, these parameters are typically slow to converge and often provide
little substantive insight because the estimated latent factors are difficult to interpret. Moreover, commonly
used identifiability constraints (e.g., upper-triangularity of the matrix [Uy, ..., Uy]’) can compromise the
model’s predictive ability. Thus, we recommend leaving the parameters unidentifiable and regarding this
as a black-box model for predicting counterfactual outcomes—such approaches are widely used and
well-validated (Dorie and others, 2019).

We fit the MC models using a negative binomial likelihood and uninformative prior distributions,
collecting MCMC samples using the rstan software package (Stan Development Team, 2020). Explicit
modeling details are given in Section S.2 of the Supplementary material. For a treated county i at post-
treatment time #, we use the above model to collect M MCMC samples from the posterior predictive
distributions of the missing counterfactuals, denoted Yiﬁ”‘) (0) form = {1, ..., M}, and use those to construct
M posterior samples of the IEE, as 6" = ZIZTO {Y,«, -y (0)} forie w.

The formal causal identifying assumptions for this model, originally specified by Pang and others
(2021) are provided in Section S.3 of the Supplementary material. Under these assumptions, the U]V,
should capture all space-time trends in the Y;(0), including trends induced by time-varying confounders.
Thus the resulting IEE can be identified, assuming trends in confounders do not change differentially in
treated units (relative to controls) post-treatment.

In practice, both the excess number of events and the excess rate of events (per unit population) are
of interest for understanding the epidemiology of extreme weather events. Thus we define the individual
excess rate as 6 = 100 000 x (6;/p;r). We also define TC-specific excess events as the cumulative excess
events across all counties impacted by a TC, and TC-specific excess rate as the excess rate across all
impacted counties. To compare with existing literature and evaluate overall health burdens, we also wish
to summarize the estimated health effects across our entire study. To this end, we define the total excess
events (TEE) for the full study to be the cumulative TC-attributable excess events summed over all TCs and
counties, and the average excess rate (AER) to be the average of the excess rates across all county-level TC
exposures in the study. Formal definitions of each estimand are given in Table S.3 of the Supplementary
matefia)l. Posterior samples of these quantities can be constructed through simple transformations of
the 6,™.

2.2.2. Bayesian modularization In a classic Bayesian framework, a full likelihood is specified for the
data, and the model components are fit jointly, permitting unrestricted information flow. However, in
many real-world contexts, there is a need to propagate uncertainty between model components with-
out allowing information to flow bi-directionally between all model components. This may be due to
philosophical considerations, as in the case of Bayesian propensity score methods (McCandless and
others, 2010; Zigler and others, 2013), or practical considerations, as complex models fit jointly may
require prohibitive computation times or suffer from poor mixing. Of particular relevance, in com-
plex model settings, one “suspect” model component may contaminate and adversely impact all other
model components when sampling from the full posterior (Liu and others, 2009). These concerns have
given rise to a literature on Bayesian modularization, in which information flows between certain sub-
models weakly or not at all (Liu and others, 2009; Lunn and others, 2009; Plummer, 2015; Jacob and
others, 2017). This is typically achieved by simplifying or ignoring some components of the posterior
distribution.
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We modularize our models in a manner that prevents information flow between the causal inference
sub-models for each TC (as described above) yet allows information to flow uni-directionally from the
causal models into the predictive model. This enables uncertainty in the TC health effect estimates to be
accounted for when fitting the predictive model but does not allow the predictive model to inform the
causal effect estimates. Explicit details are provided in Section S.4 of the Supplementary material. This
modularization approach is motivated by both philosophy and computational feasibility. Primarily, we
wish to prevent information from the predictive model from influencing the causal models. In our context,
the predictive model is regarded as a “suspect” model component, because we do not anticipate that it
corresponds to any “true” data generating mechanism, we only contend that it may provide insight into
associations between TC health impacts and observed TC/county features, which may aid in identifying
future high-risk communities. Because we are doubtful that the predictive model represents any true
model, whereas we are confident in the ability of the causal models to accurately estimate counterfactuals
under mild assumptions, we prefer to modularize in order to avoid contaminating the results of the causal
models with information from the predictive model. Moreover, because the causal and predictive models
imply incompatible data generating and confounding mechanisms for the Y;(0) (see Section S.4 of the
Supplementary material), allowing the predictive model to inform the causal model would obscure the
identifying assumptions needed to obtain causal effect estimates.

The absence of shared parameters or hierarchical structures across causal models (alongside the iden-
tifying assumptions in Section S.3 of the Supplementary material) prevents information sharing and de
facto modularizes the causal models across TCs. Because our causal modeling approach is computation-
ally intensive and involves many unidentifiable parameters, modularization across TCs is practical, as it
improves mixing and reduces computation time by enabling parallel model-fitting. Moreover, because all
parameters in the causal models are intended to capture unmeasured confounding structures that may be
unique to each TC, sharing or shrinking these parameters across models may reduce model flexibility and
compromise confounding adjustment (Hahn and others, 2018).

2.2.3. Predictive sub-model We develop a predictive model for each health outcome that captures the
relationship between the county-specific TC health effects and the features of the TC and county (i.e.,
characterizing how such features modify TC health impacts). For clarity in this section, we reintroduce
the storm-specific indices, but continue to focus on a single outcome-specific model. We let Qf”” be the
individual excess rate posterior sample ;" for TC s, and W, be the set of indices of treated counties for
TC s. Then, for a single fixed posterior draw m, we collect a posterior sample of the parameters 8 from
the (outcome-specific) predictive model:

{0:" = gX B) |s € {1,... S}, i € W),
where X; is a vector of predictors, that is, modifiers, of the county-specific TC effects, and g() is an
unspecified function parameterized by a vector of global parameters 8. In practice, g() could take the form
of any Bayesian predictive model. We recommend selecting g() based on cross-validation performance.
We repeat this sampling with each 6, to obtain posterior samples {8, ..., 8"} (Figure 1C).

Si

2.2.4. Prediction for future TCs  Using the posterior samples 8™, we can draw corresponding posterior
predictive samples of the health effect, 9:6(@, for any set of predictor values X.y. To use the model for
county-level prediction of the health impacts of a specific approaching TC, X, could be defined as the
forecasted meteorological characteristics of the TC and socioeconomic and demographic characteristics
of each county on its expected path. The predicted health impacts and uncertainties for each county can be

used to identify counties at highest health risk. Alternatively, to create a long-term TC health risk profile
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for a county, many different X, vectors could be created using the meteorological characteristics of a
collection of hypothetical, representative TC exposures, as well as the socioeconomic and demographic
characteristics of the county. The resulting set of predictions can be summarized to give insight into future
TC health risks the community may face, in both expected and extreme TC scenarios.

3. RESULTS
3.1. Causal analysis

Fifty-three TCs and 2135 corresponding county-level TC exposures occurring during the period 1999—
2015 are included in our analysis. In Table S.4 of the Supplementary material, we provide the name
and year of each TC included in our study, the number of treated and control counties used in its causal
model, and the rate of each health outcome among the treated and controls during the TC study period.
Figure S.8 of the Supplementary material maps the number of TC exposures by county. Coastal counties
in the Carolinas and the Gulf Coast region are repeatedly exposed, with some receiving as many as 15
TC exposures during our 17-year study period. For a discussion of the possible impacts of TC-related
population displacement on our analyses, see Section S.5 of the Supplementary material.

We apply the MC models for each TC and health outcome with K = 4 factors. K = 4 was chosen
because exploratory principal component analyses revealed that 4 factors explained around 70% of the
variance in the Y(0) matrices (Section S.6 of the Supplementary material). This selection allows for
preservation of critical variance without overfitting. We run the causal models using two MCMC chains,
collecting 1000 post-burn-in samples from each. Traceplots of the Y,-ﬁ”’) (0) indicated convergence.

Recall that our analysis defines the treatment period as only the final 2-week time interval (beginning
2 days prior to the storm’s first approach and ending 11 days after). Thus, the IEE for county i exposed
to TC s, can be expressed simply as 0;; = Y;7(1) — Y;7(0), that is, the excess health events attributable
to the TC at time 7. For each of the four health outcomes, we have generated posterior samples of the
IEE for each county impacted by each TC. We use these to construct posterior samples of the excess rates
and the summary quantities described in Section 2.2.1. Hereafter, we refer to the posterior means for each
parameter as the “estimates” from our models. Figure 2 and Figure S.9 of the Supplementary material
show the county-specific and TC-specific excess rate estimates, respectively, for all TCs that impacted
> 25 counties. Figure S.10 of the Supplementary material and Figure 3 display the county-specific and
TC-specific excess event estimates, respectively. These results illustrate the heterogeneity in TC health
effects across counties and across storms.

We find that, on average, a county’s mortality rate increases slightly, though not significantly, during
the 2-week treatment period, compared to the mortality rate expected in the absence of TC (AER: 2.58,
95% CI [—1.69 to 6.56]; TEE: 1228.86, 95% CI [—608.20 to 2731.07]). TC exposures cause larger and
significant increases, on average, in respiratory hospitalizations (AER: 8.58 [4.34 to 11.86]; TEE: 2926.18
[1808.97 to 3940.02]) and COPD hospitalizations (AER: 4.57 [2.13 to 6.79]; TEE: 1532.80 [969.95 to
2106.10]). For each of these outcomes, we note that Hurricanes Katrina and Rita, which impacted largely
overlapping sets of counties in the same year (2005), produced some of the largest adverse impacts (on both
the excess event and the rate scale). We find that Hurricane Sandy caused huge increases in these outcomes
specifically on the excess events scale, which is likely attributable to its impacts on the densely populated
New York City area. Moreover, for each of these outcomes, Figure 2 and Figure S.10 of the Supplementary
material suggest that counties experiencing higher TC windspeeds may be at increased risk.

For CVD, we find that hospitalization rates on average decrease during the 2-week period surrounding
TC exposure (AER: —5.01 [—9.87 to —0.30]; TEE: —977.99 [—2246.53 to 222.10]). Previous studies
have found decreases in CVD hospitalizations on the day of the storm but increases 2—3 days later (Yan
and others, 2021; Parks and others, 2021). This finding is likely attributable in part to the fact that our
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Fig.2. County-level excess rate estimates for mortality (A), respiratory hospitalizations (B), COPD hospitalizations
(C), and CVD hospitalizations (D) for TCs that impacted >25 counties. The county excess rate is the estimated rate
of excess events (per 100 000) in the county due to the TC. Distant outliers are cropped out for readability. Bolded
TC labels indicate storm names that were subsequently retired—retirement occurs when a TC is so destructive that
reusing the name is considered to be insensitive (National Hurricane Center, 2020).

hospitalization metric captures all inpatient hospitalizations, including planned procedures. The danger
associated with venturing out during or immediately after a TC may motivate people to cancel planned
procedures or treatment for chronic disease, so, even if emergency CVD hospitalizations increased during
the TC exposure period, this may be outweighed by a decrease in non-emergency CVD hospitalizations.

3.2. Predictive analysis

The full set of candidate predictors is given in Section S.1.3 of the Supplementary material. We conduct
predictive model selection using cross-validation as described in Section S.7 of the Supplementary mate-
rial. The selected predictive model (common across health outcomes) is a Bayesian linear model with a
spline on windspeed and year, with the remaining TC-related and socioeconomic/demographic predictors
included as linear terms. For interpretability, we also provide results from a Bayesian linear regression
model without the windspeed spline.
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Fig. 3. TC-specific excess events estimates and 95% predictive intervals for mortality (A), respiratory hospitalizations
(B), COPD hospitalizations (C), and CVD hospitalizations (D) for TCs that impacted >25 counties. The TC-specific
excess events is the sum of excess event estimates across all counties impacted by the TC. Bolded TC labels indicate

storm names that were subsequently retired—retirement occurs when a TC is so destructive that re-using the name is
considered to be insensitive (National Hurricane Center, 2020).

We fit the modularized Bayesian models and obtain 1000 post-burn-in samples of the predictive model
parameters. Tables S.5 and S.6 of the Supplementary material give the posterior means and 95% credible
intervals for the predictive model coefficients. To illustrate the importance of propagating uncertainties
from the causal to predictive modules of our model, we also overlay our predictive model estimates
and 95% Cls with those obtained by implementing the causal and predictive models separately without
propagating uncertainty (Figure S.11 of the Supplementary material), that is, the causal models are fit to
obtain posterior means of the causal effects, and the predictive model is fit to those posterior means.

In Figure 4, we show the windspeed splines and 95% credible intervals for each outcome. For each
outcome, Table S.6 of the Supplementary material indicates that maximum sustained windspeed has the
strongest association with health impacts, among the predictors considered. The splines illustrate that,
as windspeeds increase beyond 30 m/s, we observe a sharp increase in TC-attributable mortality and
respiratory and COPD hospitalizations. While we generally find a similar trend for windspeed and CVD
hospitalizations, the relationship is weaker and more variable.
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Fig. 4. Relationship between maximum sustained windspeed and county-level excess rates per 100 000 of mortality
(A), respiratory hospitalizations (B), COPD hospitalizations (C), and CVD hospitalizations (D).

We also find that TC-attributable respiratory hospitalizations are positively associated with the duration
of sustained windspeeds above 20 m/s (Table S.5 of the Supplementary material). For respiratory and
COPD hospitalizations, we observe a negative association with total number of TC exposures during
the study period, a proxy for TC exposure propensity (Table S.5 of the Supplementary material). This
suggests that communities that are frequently hit may adapt in ways that decrease respiratory health impacts
(e.g., bury power lines to decrease power outages, thereby decreasing risk for those dependent on electric-
powered respiratory devices). Although few strong associations are detected for the county socioeconomic
and demographic features, we find that predominately white communities tend to experience fewer TC-
attributable COPD hospitalizations (Table S.5 of the Supplementary material).

3.3. Sensitivity analyses

We conduct a range of sensitivity analyses for both the causal and predictive components of our model
(Section S.8 of the Supplementary material). For the causal models, we evaluate sensitivity to our definition
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of TC exposure and to specification of K. Because we have cumulative TC precipitation data only for
years prior to 2012, we fit predictive models restricted to years 2011 and earlier and include a restricted
cubic spline on cumulative precipitation as a predictor. In short, we find that our causal models are robust
to these specifications and that precipitation is weakly, if at all, associated with the acute health impacts
of TCs after adjusting for other factors.

4. DIScUSSION

We have proposed and implemented an integrated causal and predictive modeling framework for system-
atically characterizing and predicting the health impacts of TCs in the United States, in order to inform
pre-storm strategic preparedness efforts. This work offers several contributions to the existing literature on
TC epidemiology. First, we have used a standardized causal inference approach to estimate county-level
TC-attributable excess mortality and excess respiratory, COPD, and CVD hospitalizations (with uncertain-
ties) in the Medicare population for nearly all Atlantic-basin TCs 1999-2015. These excess event estimates
provide a more complete picture of TC health burdens than post-storm surveillance efforts or single-storm
studies. We have also found that, controlling for a number of demographic and meteorological predictors,
the maximum sustained windspeed experienced by a county is a strong predictor of its TC-attributable
increases in adverse health events, potentially providing insight into strategies to minimize future TC
health burdens. Our predictive models may also be useful for identifying specific communities facing the
highest risk from future TC, which is critical to avert the most severe health consequences. Finally, this
modeling approach can be used analogously in the context of other extreme weather and climate events,
including heat waves, droughts, floods, and wildfire smoke exposures.

Methodologically, a limitation of our model is the need for user-specification of the number of latent
factors, K. While methods exist for data-driven selection of K (Bhattacharya and Dunson, 2011), they
are prohibitively computationally burdensome for our application, and sensitivity analyses suggest that
our results are robust to the choice of K. Substantively, more detailed data on the multi-dimensional
TC exposures and pre-TC preparatory measures would improve the predictive ability of our models and
provide greater insight into how to minimize TC health burdens. For instance, flooding is a common and
often devastating TC-related exposure. While a county-level binary indicator of TC flooding is available
(Anderson and others, 2020), this is insufficient for understanding the impact of floods, which tend to be
highly localized. Additionally, mandatory prestorm evacuation orders may be a critically influential factor
in the health impacts of a TC; however, to our knowledge, evacuation data have never been systematically
compiled on a multi-storm scale. To minimize the health threats presented by climate and weather disasters,
we must continue to collect, compile, and analyze richer data on these events.

5. SOFTWARE

R code to implement these analyses on a synthetic data set, along with complete documentation, is available
at https://github.com/rachelnethery/cyclones_icpm.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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