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Abstract

Scavenger receptor type B I (SR‐BI), the major receptor for high‐density
lipoprotein (HDL) mediates the delivery of cholesterol ester and cholesterol

from HDL to the cell membrane. SR‐BI is implicated as a receptor for entry of

severe acute respiratory syndrome coronavirus type 2 (SARS‐CoV‐2). SR‐BI is
colocalized with the angiotensin‐converting enzyme 2 (ACE2) increasing the

binding and affinity of SARS‐CoV‐2 to ACE2 with subsequent viral

internalization. SR‐BI regulates lymphocyte proliferation and the release of

pro‐inflammatory cytokines from activated macrophages and lymphocytes.

SR‐BI is reduced during COVID‐19 due to consumption by SARS‐CoV‐2
infection. COVID‐19‐associated inflammatory changes and high angiotensin II

(AngII) might be possible causes of repression of SR‐BI in SARS‐CoV‐2
infection. In conclusion, the downregulation of SR‐BI in COVID‐19 could be

due to direct invasion by SARS‐CoV‐2 or through upregulation of pro‐
inflammatory cytokines, inflammatory signaling pathways, and high circulat-

ing AngII. Reduction of SR‐BI in COVID‐19 look like ACE2 may provoke

COVID‐19 severity through exaggeration of the immune response. Further

studies are invoked to clarify the potential role of SR‐BI in the pathogenesis of

COVID‐19 that could be protective rather than detrimental.
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1 | BACKGROUND

Scavenger receptor (SR) was first identified in 1970 by
Brown and Goldstein as a receptor of oxidized low‐
density lipoprotein (oxLDL) that promotes the

development of foam cells from activated macrophages
and is linked with the pathogenesis of atherosclerosis.1

SRs involve different integral membrane proteins and
extracellular domains that are ligands for lipoproteins,
phospholipids, cholesterol esters, apoptotic cells,
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proteoglycans, carbohydrates, and ferritin.1 Later on, SRs
were classified from A‐J according to their biological
functions and structures.2

SR type B I (SR‐BI) have a trans‐membrane region,
cytosolic part, and central domain which mediate ligand
recognition. The central region is involved in trafficking
and signal transduction.2 SR‐BI gene is located on
chromosome 4, which is regulated by the immune
response, infections, and metabolic disorders.1 SR‐BI
also binds bacteria, viruses, and damage‐associated
molecular patterns (DAMPs).3 SR‐BI is highly expressed
in the liver and adrenal cortex that mediate cholesterol
uptake for bile synthesis and steroidogenesis respec-
tively4 (Figure 1).

SR‐BI is the major receptor for high‐density lipo-
protein (HDL) and mediates the delivery of cholesterol
ester and cholesterol from HDL to the cell membrane.
Other lipids like triglycerides, phospholipids, and lipo-
philic molecules can also be transferred by HDL.1,2

Selective lipid uptake depends mainly on the SR‐BI‐HDL
complex since lipid‐poor HDL has low affinity to the SR‐
BI and is released back into the circulation5 suggesting
the HDL‐dependent effect for uptake of lipids through
SR‐BI. Shen et al.5 observed that SR‐BI is regarded as a
regulator of cholesterol content in the plasma membrane
and promotes the uptake of fat‐soluble vitamins. In
addition, SR‐BI is considered a potential site for viral
entry into host cells.5 These pleiotropic and multiple
functions of SR‐BI eventually affect vascular inflamma-
tion, platelet function, and programmed cell death.5,6

Moreover, SR‐BI has an important role in the process
of inflammation by modulating the HDL effect on fat‐
induced inflammation in obesity through the regulation
expression of peroxisome proliferators activated recep-
tors (PPARs).7 Aldossari et al.8 found that SR‐BI plays an
imperative role in macrophage activation by recognition
of charged particles. Interestingly, SR‐BI is involved in
various types of infections, it is regarded as receptor entry
for mycobacterium and hepatitis C virus (HCV).9

However, deficiency of SR‐BI did not affect the disease
severity and high cholesterol enhances bacterial and viral
burdens in the lung independent of SR‐BI expression.9–11

A recent pandemic viral infection caused by severe
acute respiratory syndrome coronavirus type 2 (SARS‐
CoV‐2) leads to the development of coronavirus disease
(COVID‐19).12,13 SARS‐CoV‐2 exploits angiotensin‐
converting enzyme 2 (ACE2) as an entry point. Down-
regulation of ACE2 induces the release of pro‐
inflammatory cytokines and upregulation of angiotensin
II (AngII).14 These changes may lead to hypercytokine-
mia and the development of cytokine storm with the
progression of acute lung injury (ALI) and acute
respiratory distress syndrome (ARDS) (Figure 2).15

Of interest, SARS‐CoV‐2 infection may induce
dyslipidemia and the development of dysfunctional
HDL due to the involvement of SR‐BI in the pathogenesis
of COVID‐19.16 Therefore, the objective of the present
review was to find the possible role of SR‐BI in SARS‐
CoV‐2 infection.

2 | ROLE OF SR ‐BI IN VIRAL
INFECTIONS

It has been reported that increased expression of SR‐BI is
linked with higher susceptibility to HCV. Entry of HCV
into the cells required SR‐BI as an entry point into host
cells through a PH‐dependent mechanism.17 Many
reports suggest that HDL can promote entry of HCV
via interaction with SR‐BI, though HDL did not
modulate the interaction between HCV and SR‐BI.17

Alteration of SR‐BI intra‐cytoplasmic domain reduces
HCV infectivity without effect on the binding capacity at
the extracellular domain.17 SR‐BI together with CD81
tetraspanin and claudin‐1 increases the penetration of
HCV through endocytosis of viral particles.17 Therefore,
antibodies directed against SR‐BI inhibit the entry of
HCV in the permissive cells.18 Nevertheless, HCV can
enter the host cells in presence of neutralizing antibodies
through ApoB‐containing lipoproteins.19

Relevant, the influenza virus can bind pulmonary SR‐
BI causing pulmonary inflammation through down-
regulation of lung epithelial SR‐BI, which is important

FIGURE 1 The biological role of scavenger receptor type B I
(SR‐BI). Free cholesterol (FC) from peripheral tissues bind to high‐
density lipoprotein (HDL), through lecithin cholesterol acyl
transferees (LCAT) and cholesterol ester transferase protein
(CETP) form very‐low‐density lipoprotein (VLDL). HDL through
SR‐BI improves steroidogenesis in the adrenal cortex and liberates
cholesterol ester (CE) to the liver.
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for the recruitment of immune cells during inflamma-
tion.20 This finding suggests the protective effect of SR‐BI
influenza virus‐induced pulmonary inflammation.
Therefore, activation of SR‐BI could be a therapeutic
modality against the severity of influenza virus infection.
Though, quercetin which promotes the expression of
SR‐BI21 is regarded as an inhibitor for entry of H5N1 and
can be used as a prophylactic and therapeutic natural
agent against influenza virus infection.22,23

Moreover, the reduction of HDL and other lipopro-
teins are correlated with the severity of dengue hemor-
rhagic fever due to the activation of SR‐BI by flavivirus.24

SR‐BI facilitates the entry of flavivirus which interacts
with ApoA1.24 This verdict proposed that ApoA1 drives
flavivirus to interact with SR‐BI and subsequent entry.
Besides, SR‐BI is also acting as a receptor for entry of the
Zika virus.25 This observation could explain the altera-
tion in lipid and lipoprotein metabolism in dengue
patients.

These findings suggest the potential role of SR‐BI in
the viral entry of different viral infections, and targeting
this receptor may attenuate viral entry and infectivity.

3 | SR ‐BI AND IMMUNOLOGICAL
RESPONSE

In general, SRs are cell surface proteins expressed by
macrophages, monocytes, hemocytes, and other immune
cells. SRs exhibit ligand binding properties, recognizing
various ligand types like microbial constituents and
recognition and DMRPs.26 SRs play an integral role in
the regulation of innate immunity by acting as pattern
recognition receptors (PRRs) for DMRPs mediating
phagocytosis by macrophages.27 Some SRs are regarded

as a coreceptor for the activation of toll‐like receptors
(TLRs) and the release of pro‐inflammatory cytokines in
response to DMRPs.27

SR‐BI, which has a structural similarity to CD36, is
mainly expressed in the dendritic cells and macro-
phages.28 SR‐BI had been reported to increase bacterial
virulence through the uptake and binding of bacterial
pathogens.29,30 Feng et al.31 illustrated that deficiency of
SR‐BI causes impairment of lymphocyte homeostasis and
induction of autoimmune disorders in experimental
models. SR‐BI regulates lymphocyte proliferation and
the release of pro‐inflammatory cytokines from activated
macrophages and lymphocytes.31 Of note, SR‐BI stimu-
lates endothelial nitric oxide synthase (NOS) in presence
of HDL and induces endothelial apoptosis in the absence
of HDL.32 As well, SR‐BI inhibits B lymphocyte
proliferation and negatively regulates IgM production
and cytokine production.33 Guo et al.34 demonstrated
that SR‐BI may prevent septic and endotoxin‐induced
death by inhibiting pro‐inflammatory cytokine produc-
tion from macrophages.

Concerning the imperative role of SR‐BI in adaptive
immune response, different studies revealed that defi-
ciency of SR‐BI enhances lymphocyte proliferation, the
release of pro‐inflammatory cytokines and imbalance of
interferon‐gamma (INF‐γ) production in relation to the
anti‐inflammatory cytokine interleukin 4 (IL‐4) with 3‐4
fold increase of activated B and T lymphocytes.31 These
changes due to deficiency of SR‐BI trigger autoimmune
disturbance with the elevation of circulating auto-
antibodies and deposition of immune complexes in renal
glomeruli.31

Zhu and colleagues found that deficiency of SR‐BI
attenuates the suppressant effect of HDL on the
lymphocytes and the expression of TLR9 which enhances

FIGURE 2 Role of the renin‐angiotensin
system (RAS) in COVID‐19. severe acute
respiratory syndrome coronavirus type 2 (SARS‐
CoV‐2) binds angiotensin‐converting enzyme 2
(ACE2) as an entry‐point, downregulation of
ACE2 induces the release of pro‐inflammatory
cytokines and upregulation of angiotensin II.
Angiotensin‐converting enzyme inhibitors
(ACEIs) and angiotensin II receptor blockers
(ARBs) increase the expression of ACE2.
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B lymphocyte proliferation.33 Entertainingly, SR‐BI
inhibits macrophage activation by suppressing TLR4
and NF‐κB, thus a deficiency of SR‐BI provokes macro-
phage activation and release of pro‐inflammatory cyto-
kines.35,36 Indeed, SR‐BI regulates lymphocyte cellular
cholesterol content which controls lymphocyte activa-
tion.31 Similarly, Zheng et al.37 illustrated that SR‐BI
maintains T cell development and thymic regeneration.
It has been shown that thymic involution impairs T cell
development and adaptive immune response that
increases the risk of various types of infections.38

Likewise, small HDL via stimulation of SR‐BI produces
protective effects against inflammation, oxidative stress,
and cell death.39 Though, large HDL via inhibition of SR‐
BI induces detrimental effects on inflammation and
oxidative stress.31 This finding suggests the HDL‐
dependent effect of the protective SR‐BI (Figure 3).

Taken together, these findings anticipated that SR‐BI
has an immunoregulatory function by modulating B and
T lymphocytes functions as well as macrophage function
causing inhibition of the release of pro‐inflammatory
cytokines and the development of autoimmune
disorders.

4 | SR ‐BI AND ACUTE LUNG
INJURY (ALI)

SR‐BI is highly expressed in lung alveolar cells involved
in the regulation of lung innate immune response and
glucocorticoid‐induced lymphocyte apoptosis.40,41 A
recent experimental study illustrated that lung SR‐BI
attenuates lipopolysaccharide (LPS)‐induced ALI in mice
through increasing clearance of LPS.42 Baranova et al.43

showed that variant SR‐BI increases the risk of LPS‐
induced acute kidney injury. Moreover, short and long‐
term exposure to ozone increases the risk of pulmonary
inflammation and ALI via the generation of DAMPs

which recognize PRRs like SRs and TLR4 in lung
macrophages.44 SR‐BI can reduce ozone‐induced pulmo-
nary inflammation and ALI by enhancing the clearance
of DAMPs and promoting lung alveolar macrophage
efferocytosis.44,45 This finding proposes a protective role
of SR‐BI against ozone‐induced ALI.

Moreover, long‐term human exposure to the ozone or
cigarette smoke downregulates the expression of lung
alveolar SR‐BI and reduction of vitamin E with increased
susceptibility to the risk of oxidative stress injury and
exacerbation of underlying chronic pulmonary disor-
ders.46 SR‐BI is necessary for the transport of vitamin E
from plasma into the cells and deficiency of SR‐BI
increases vitamin E plasma levels twofold with a
reduction of its concentrations in the tissues mainly in
the lungs.47 Likewise, SR‐BI increases intestinal absorp-
tion of vitamin E48 and regulates its biliary secretion and
enterohepatic absorption.48 Thus, vitamin E deficiency
increases the expression of SR‐BI.49

Notoriously, cigarette smoke reduces the expression
of SR‐BI through the induction of p38 mitogen‐activated
protein kinase (p38MAPK) and the Akt pathway which
inhibits the expression of SR‐BI.50 Cigarette smoke‐
induced oxidative stress can modulate the functional
capacity to take vitamin E, with subsequent reduction of
lung alveolar vitamin E concentration.51 Of note, CD36
and SR‐BI share a similar homology and ligands mainly
for oxLDL, which reduce the binding of HDL to SR‐BI,
which reduces HDL‐mediated effects. Of interest, oxLDL
and other mediators of oxidative stress deviate from the
accumulation of modified lipoproteins in the macro-
phages via CD36.52 Lei et al.53 revealed that oxidative
stress is regarded as an important factor in the
development of ALI. These observations suggest that
downregulation of lung SR‐BI due to different reasons
may increase the risk of ALI and the progression of
severe inflammatory changes (Figure 4).

5 | SR ‐BI AND COVID ‐19

Alveolar SR‐BI plays an imperative role in the entry of
SARS‐CoV‐2 since silencing of SR‐BI by a specific
antagonist inhibits entry of SARS‐CoV‐2.54–56 HDL may
facilitate entry of SARS‐CoV‐2 through activation of SR‐
BI.55 It has been demonstrated that the receptor‐binding
domain (RBD) of SARS‐CoV‐2 directly interacts with
HDL, so the antibody against the HDL‐binding site
reduces SARS‐CoV‐2 entry.57 Therefore, SARS‐CoV‐2
may bind SR‐BI directly or indirectly through interaction
with HDL. To the point, SR‐BI is colocalized with ACE2
which increases SARS‐CoV‐2 binding and affinity to the
ACE2 with subsequent viral internalization.57,58 SR‐BI

FIGURE 3 High‐density lipoprotein (HDL)‐dependent effect
of scavenger receptor type B I (SR‐BI).

4 of 11 | ALKAZMI ET AL.



promotes the cholesterol content of cells and the
formation of lipid rafts, which could enhance SARS‐
CoV‐2 infectivity.59

Depletion of cell membrane cholesterol may inhibit
SARS‐CoV‐2 infection60 therefore; cholesterol‐lowering
drugs like statins may reduce SARS‐CoV‐2 infectivity.60

Wei and colleagues proposed that inhibition of SR‐BI
may reduce HDL‐mediated SARS‐CoV‐2 entry, while
overexpression may increase SARS‐CoV‐2 entry and
infectivity.61 However, the interaction between SARS‐
CoV‐2 and SR‐BI is mediated and enhanced by the
presence of ACE2 since SARS‐CoV‐2 affects SR‐BI only
in tissues with higher expression of ACE2 like the lung.61

The interaction between SARS‐CoV‐2 and SR‐BI are not
well defined and further studies are needed to confirm
this relationship. In the lower respiratory tract mainly at
alveolar cells, both SR‐BI and ACE2 are highly
expressed62 which increases the risk of COVID‐19
pneumonia.

Remarkably, ACE2 is highly expressed in patients
with obesity and metabolic syndrome increases the risk
for COVID‐19.63,64 Likewise, SR‐BI is highly expressed in
patients with hypertension and cardiovascular diseases.65

Therefore, higher expression of SR‐BI and ACE2 in
cardio‐metabolic disorders may increase the risk of
SARS‐CoV‐2 infectivity and COVID‐19 severity.55 Thus,
targeting SR‐BI could be a promising therapeutic strategy
to reduce SARS‐CoV‐2 since SR‐BI antagonist ITX5601
an approved agent for HCV, powerfully attenuates SARS‐
CoV‐2 entry in vitro.55 However, ITX5601 increases the
level of HDL66 which is regarded as a potential site for
the binding of SARS‐CoV‐2.

Importantly, SR‐BI hampers macrophage activation
through restrain of TLR4 and NF‐κB, preventing macro-
phage activation and release of pro‐inflammatory cyto-
kines.35,67 Abnormal immune response and dysregulated
interferon in COVID‐19 trigger the development of
macrophage activation syndrome (MAS).68 In turn,
MAS provokes the release of pro‐inflammatory cytokines
and multiorgan injury. Therefore, activation of SR‐BI
may inhibit the development of MAS in COVID‐19.

SR‐BI like ACE2 is protective rather than harmful in
COVID‐19; it has been shown that recombinant ACE2 is
of therapeutic value in the management of COVID‐19.69

SR‐BI is not ultimately increasing SARS‐CoV‐2 entry
unless ACE2 is present, and like ACE2, SR‐BI binds but
does not internalize SARS‐CoV‐2 entry. Therefore, over-
expression of SR‐BI could be protective by neutralization
of SARS‐CoV‐2, since SR‐BI has a potent neutralizing
effect against the influenza virus.20 Consumption and
exhaustion of SR‐BI during SARS‐CoV‐2 infection
contribute to the development of dyslipidemia which is
linked with COVID‐19 severity.16 These elusive findings
implicate SR‐BI in the pathogenesis of SARS‐CoV‐2
infection, and further studies are recommended to
confirm the protective effect of SR‐BI in COVID‐19.

6 | SR ‐BI AND INFLAMMATORY
SIGNALING PATHWAYS IN
COVID ‐19

The chronic inflammatory milieu in cardio‐metabolic
disorders can induce the development of dysfunctional
HDL, which in turn induces the release of pro‐
inflammatory cytokines through activation macro-
phages.70,71 High circulating dysfunctional HDL activates
macrophage CD36 and suppresses expression of SR‐BI
which reduces cholesterol efflux capacity and increases
cholesterol deposition within the macrophages through a
CD36‐dependent mechanism.70 Suppression and induc-
tion of SR‐BI and CD36 respectively by dysfunctional
HDL are mediated by activation of MAPK and PPAR‐γ.70

In COVID‐19, high pro‐inflammatory cytokines may
inhibit the expression of SR‐BI directly or through
induction development of dysfunctional HDL which acts
mainly on CD36 rather than SR‐BI. Cao et al. found that
SARS‐CoV‐2 through direct activation of macrophages
triggers upregulation of PPAR‐γ and MAPK72 which may
affect the functional capacity of anti‐inflammatory SR‐BI
in the lung. Though, PPAR‐γ modulates hepatic SR‐BI
and thereby could be a protective mechanism against the
progression of atherosclerosis in diabetic patients.73

MAPK affects the functional capacity of SR‐BI.74

Therefore, high MAPK and dysregulated PPAR‐γ could

FIGURE 4 Role scavenger receptor type B I (SR‐BI) in acute
lung injury (ALI) and immunoregulation. SR‐BI through
antioxidant and anti‐inflammatory effects suppress the release of
pro‐inflammatory cytokines and oxidative stress, thereby inhibiting
the development of acute lung injury (ALI). SR‐BI modulates B and
T lymphocyte functions as well as macrophage function.
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impair the function and expression of SR‐BI causing
dyslipidemia and abnormal immune response.

During the pathogenesis of SARS‐CoV‐2 infection,
node‐like receptor family pyrin domain‐containing pro-
tein 3 (NLRP3) inflammasome is activated with the
release of inflammatory molecules and pro‐inflammatory
cytokines.75 Mounting of innate immune response by
activated NLRP3 inflammasome is associated with
COVID‐19 severity by exaggeration of the immune
response toward SARS‐CoV‐2 infection.75 It has been
reported that activated NLRP3 inflammasome can inhibit
the expression of SR‐BI, so inhibition of NLRP3
inflammasome improves uptake of cholesterol via
upregulation of SR‐BI.76 Thus, NLRP3 inflammasome
could be a potential link between the downregulation of
SR‐BI and COVID‐19 severity.

Furthermore, high mobility group box 1(HMGB1)
is regarded as a DAMP signal for TLR4 to trigger the
release of pro‐inflammatory cytokines mainly IL‐6 and
tumor necrosis factor (TNF‐α).77 HMGB1 is activated
during SARS‐CoV‐2 infection leading to hyperinflam-
mation and the development of cytokine storm.78 A
retrospective study comprised 121 COVID‐19 patients,
of whom 40 were severe compared to 81 mild ones,
showed that HMGB1 serum level was higher in
patients with severe COVID‐19.78 Extracellular
HMGB1 promotes the translocation of LDL by enhan-
cing the expression of endothelial SR‐BI causing
endothelial dysfunction and the development of
atherosclerosis.79 These findings proposed that
HMGB1 overexpression in COVID‐19 might be a
potential cause of endothelial injury through the
LDL‐SR‐BI‐dependent pathway.

Of interest, the expression of NF‐κB during the
inflammatory process inhibits the expression of SR‐
BI.80 NF‐κB inhibitors like aspirin to improve the
expression of SR‐BI and abrogate macrophage activa-
tion.80 In COVID‐19, NF‐κB is directly stimulated by
SARS‐CoV‐2 leading to an exaggeration of the inflamma-
tory process with the development of various complica-
tions.81 Thus, aspirin may be effective in COVID‐19 by
reducing coagulopathy and inhibiting activated NF‐κB.82

These observations illustrated that exaggerated NF‐κB
activity in SARS‐CoV‐2 infection could be a possible
cause of the downregulation of SR‐BI in COVID‐19.

In the bargain, CD147 is regarded as a potential for
binding and entry of SARS‐CoV‐2, and inhibition of
CD147 by azithromycin may reduce the pathogenesis of
SARS‐CoV‐2 infection.83 It has been reported that oxLDL
stimulates the expression of CD147, while HDL inhibits
its expression through the activation of SR‐BI.84 Interest-
ingly, inhibition expression of CD147 through HDL‐SR‐
BI may reduce CD147‐dependent SARS‐CoV‐2 entry and

infection. Moreover, SR‐BI mediates the action of the
protective effects of sphingosine‐1 phosphate (S1P)
against endothelial dysfunction and dyslipidemia.85

Reduction of S1P serum level is linked with COVID‐19
severity.86 Therefore, the reduction of S1P in COVID‐19
could be due to the inhibition of SR‐BI by a high level of
pro‐inflammatory cytokines.

These observations revealed that activated inflamma-
tory signaling pathways during SARS‐CoV‐2 infection
might be the underlying cause of dysfunctional SR‐BI in
COVID‐19 (Figure 5). Further studies are requiring
verifying the effects of these inflammatory signaling
pathways on the expression and function of SR‐BI.

7 | SR ‐BI AND COAGULOPATHY
IN COVID ‐19

Severe SARS‐CoV‐2 infection is associated with profound
coagulopathy including massive intravascular thrombo-
sis and disseminated intravascular coagulation (DIC).87

COVID‐19‐induced coagulopathy is reflected by high
D‐dimer which mirrors underlying fibrinogen/fibrin
degradation products. The underlying mechanism of
COVID‐19‐induced coagulopathy is not fully understood
however, immune dysregulation, hypoxia, platelet hyper-
activity, endothelial dysfunction, and pro‐inflammatory
cytokines might be the proposed mechanisms.87 SR‐BI
has a critical role in the regulation of coagulation

FIGURE 5 Inhibition of scavenger receptor type B I (SR‐BI) in
COVID‐19. Severe acute respiratory syndrome coronavirus type 2
(SARS‐CoV‐2) through activation of node‐like receptor family pyrin
domain‐containing protein 3 (NLRP3) inflammasome, nuclear
factor kappa B (NF‐κB), high mobility group box 1(HMGB1) and
mitogen‐activated protein kinase (MAPK) induces the release of
pro‐inflammatory cytokines which inhibit SR‐BI. As well, pro‐
inflammatory cytokines together with activation of MAPK and
NLRP3 inflammasome induce the formation of dysfunctional HDL,
which also inhibits the expression of SR‐BI.
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homeostasis since deficiency of SR‐BI increases the risk
of pulmonary embolism and deep vein thrombosis.88 SR‐
BI improves endothelial NOS and release of NO which
has anti‐atherogenic and anti‐thrombotic effects.88 As
well, HDL‐SR‐BI controls endothelial function through
the enhancement release of antithrombotic S1P and
prostaglandin I2.89

SR‐BI is highly expressed on the platelets and plays
an important role in the inhibition of platelet hyperreac-
tivity through the reduction of cholesterol membrane
content of platelets.90 Ma et al.91 observed that deficiency
of platelet SR‐BI in mice increases platelet cholesterol
content and hyper‐activity causing thrombosis. These
findings revealed that SR‐BI may protect against throm-
bosis and cardiovascular complications in patients with
dyslipidemia. In this sense, dyslipidemia has been shown
to be correlated with COVID‐19 severity.92 Thus, abnor-
mal function of SR‐BI due to abnormal inflammatory
disorders in COVID‐19 might be a potential cause of
dyslipidemia in COVID‐19.

Moreover, platelet‐mediated thrombotic events have
been observed to induce immunomodulatory effects
during influenza virus infection.93 Therefore, expression
of SR‐BI could mitigate platelet‐induced abnormal
immune response in COVID‐19. Furthermore, HDL
through activation of SR‐BI induces fibrinolysis in
patients with diabetes mellitus.94 Wright et al illustrated
that the fibrinolytic pathway is highly inhibited in
COVID‐19 and increases the risk of thromboembolic
disorders.95

Taken together, the expression of SR‐BI prevents
thromboembolic disorders and other coagulopathy
events in COVID‐19 through modulation of platelet
function, coagulation, and fibrinolytic pathways
(Figure 6).

8 | SR ‐BI AND ANGIOTENSIN II
IN COVID ‐19

AngII is upregulated in COVID‐19 due to the down-
regulation of ACE2 by SARS‐CoV‐2. High circulating
AngII induces the release of pro‐inflammatory cytokines
and the development of ALI/ARDS.14,15 In addition,
AngII in COVID‐19 can trigger endothelial dysfunction
and vasoconstriction via inhibition of eNOS.15 Bian et al.
found that AngII induces a pro‐atherogenic effect via
provoking LDL transcytosis via endothelial barriers with
induction formation of endothelial reactive oxygen
species (ROS).96

It has been shown that AngII inhibits the expression
of endothelial SR‐BI, and Ang II type 1 receptor (AT1R)
blocker olmesartan can attenuate AngII‐induced down-
regulation of SR‐BI.97 The inhibitory effect of AngII on
the expression of SR‐BI is mediated through the
activation of phosphoinositide 3‐kinase (PI3K), protein
kinase B (PKB) also known as Akt, and Forkhead Box O1
(FOXO1) pathways.97 Of note, AngII‐induced ALI/ARDS
could be due to the downregulation expression of
protective lung alveolar SR‐BI.97 It has been shown that
Akt, PKB, and FOXO1 pathways are upregulated in
COVID‐19 leading to endothelial dysfunction and
metabolic disturbances.98 Normally, HDL inhibits the
expression of AngII and AT1R, so attenuates
AngII‐induced vascular inflammation.45,99 In SARS‐
CoV‐2 infection, HDL is reduced and correlated with
COVID‐19 severity.100 Low HDL in this condition may
facilitate the elevation of AngII level and the inhibitory
effects on SR‐BI.

Of interest, AngII provokes the expression of vascular
endothelial growth factor (VEGF) through the generation
of ROS.101,102 Dysregulated VEGF is highly activated in
COVID‐19 and linked with neuroinflammation.103,104 It
has been disclosed that under normal conditions VEGF
can regulate the localization of SR‐BI and trans‐
endothelial transport of HDL.68 As well, VEGF improves
the expression of SR‐BI, binding, and uptake of HDL
in the endothelial cells.68,105 Deregulated VEGF in
COVID‐19 reduces the expression of SR‐BI and con-
tributes to the development of dyslipidemia and the
progression of endothelial dysfunction.68,106

These verdicts indicate that high circulating AngII in
COVID‐19 could be a possible cause of abnormal
expression and activity of SR‐BI as well as dyslipidemia
(Figure 7).

Taken together, SR‐BI is inhibited during COVID‐19
due to binding and consumption by SARS‐CoV‐2
infection. In addition, COVID‐19‐associated inflamma-
tory changes and high AngII might be possible causes of
repression of SR‐BI in SARS‐CoV‐2 infection.

FIGURE 6 Role of scavenger receptor type B I (SR‐BI) and
coagulopathy in COVID‐19.
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9 | CONCLUSIONS

SR‐BI is colocalized with ACE2 and controls immunoin-
flammatory disturbances during different viral infections.
SR‐BI regulates innate immune response through the
regulation of macrophage activity and proliferation and
function of B and T lymphocytes. Inhibition of SR‐BI
triggers the development of abnormal immune response
and autoimmunity. SR‐BI is implicated as a receptor
for entry of SARS‐CoV‐2 and in the pathogenesis of
COVID‐19. Downregulation of SR‐BI in COVID‐19 could
be due to direct invasion by SARS‐CoV‐2 or through
upregulation of pro‐inflammatory cytokines, inflamma-
tory signaling pathways, and high circulating AngII.
Reduction of SR‐BI in COVID‐19 like ACE2 may provoke
COVID‐19 severity through exaggeration of the immune
response. Further studies are invoked to clarify the
potential role of SR‐BI in the pathogenesis of COVID‐19
that could be protective rather than detrimental.
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