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Abstract
Globally, over 103 million individuals are afflicted by CKD, a silent killer claiming the lives of 1.2 million people
annually. CKD is characterized by five progressive stages, in which dialysis and kidney transplant are life-saving
routes for patients with end stage kidney failure. While kidney damage impairs kidney function and derails BP
regulation, uncontrolled hypertension accelerates the development and progression of CKD. Zinc (Zn) deficiency
has emerged as a potential hidden driver within this detrimental cycle of CKD and hypertension. This review article
will (1) highlight mechanisms of Zn procurement and trafficking, (2) provide evidence that urinary Zn wasting can
fuel Zn deficiency in CKD, (3) discuss howZn deficiency can accelerate the progression of hypertension and kidney
damage in CKD, and (4) consider Zn supplementation as an exit strategy with the potential to rectify the course of
hypertension and CKD progression.
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Introduction
Globally, an estimated 103 million individuals (1 in 10)
are burdened with CKD,1 a life-threatening condition
that has catapulted to the 11th leading cause of global
deaths.2 CKD is commonly diagnosed by an estimated
GFR of ,60 ml/minute per 1.73 m2 or albuminuria
lasting for $3 months. While CKD progressively
worsens in five stages, the National Institute of
Diabetes and Digestive and Kidney Diseases reports
that approximately 90% of people in stages 1–3 are
unaware of their condition,3 earning CKD the grave
moniker of being a silent killer.4 In addition to a host of
comorbidities, the looming risk of CKD-related deaths
and adverse cardiovascular events increases greatly
with each stage.4 By stage 5, patients with kidney
failure require renal replacement therapy (dialysis or
kidney transplant) for life support. Of note, 85% of US
patients on the transplant waiting list require a kid-
ney,5 further highlighting an urgent need for effective
therapeutic strategies to halt the progression of CKD to
end stage kidney failure.

A major risk factor of the development of CKD is
uncontrolled hypertension.6,7 Chronically elevated BP
damages the kidneys; meanwhile, kidney damage im-
pairs kidney function and derails BP control. This self-
perpetuating cycle of kidney damage and hyperten-
sion accelerates CKD progression. Despite the clinical
use of potent antihypertensive drugs, uncontrolled BP
persists in up to 90% of patients with CKD6-9. As an
alternative strategy to address this critical demand, the
National Institutes of Health Joint National Committee
recommended a concurrent dietary approach to lower

BP10 in hopes of improving both cardiovascular and
kidney health.
CKD is commonly accompanied by a deficiency in

the essential dietary micronutrient, zinc (Zn). Several
factors contribute to reduced serumZn levels in patients
with CKD11-18 including (1) dietary protein restriction,
(2) decreased caloric intake, (3) intestinal malabsorption,
(4) hyperuricemia, (5) impaired kidney reabsorption
and subsequent urinary wasting, (6) elevated fecal ex-
cretion, and (7) hemodialysis. It is worth noting that
patients with CKD are often in the elderly population19

and are onmultiple medication regimens that alter taste
sensation,20 thus contributing to Zn deficiency through
decreased caloric intake. In addition to the mechanisms
noted above, Zn redistribution can also contribute to Zn
deficiency in CKD. Specifically, a study noted recruit-
ment of Zn from both bone and plasma into the bone
marrow to stimulate the production of new blood cells
in animal models of CKD.21

As the impact of Zn in CKD onset and progression
is now being more investigated, Zn supplementation
may be recognized as an effective therapeutic strat-
egy. However, progress in integrating Zn supple-
mentation into clinical practice will remain difficult
until the interplay between Zn homeostasis, kidney
function, and BP regulation is better defined. This
review article will (1) highlight mechanisms of Zn
procurement and trafficking, (2) provide evidence
that urinary Zn wasting can fuel Zn deficiency in
CKD, (3) discuss how Zn deficiency can accelerate
the progression of hypertension and kidney damage
in CKD, and (4) consider Zn supplementation as an
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exit strategy with the potential to rectify the course of
hypertension and CKD progression.

Mechanisms of Zn Procurement and Trafficking
The human body contains 2–3 g of Zn, with the largest

fractions found in the skeletal muscle (approximately 50%)
and bone (approximately 30%)13,16,22 (Figure 1). Lower Zn
fractions are also present in the following tissues: kidney,
prostate, liver, gastrointestinal (GI) tract, skin, lung, brain,
heart, and pancreas16,23,24 (Figure 1). Three major routes en-
able Zn entry into the human body12,25,26: (1) inhalation
through the lungs, (2) penetrance through the skin, and (3) in-
gestion through the GI tract. Notably, these organ systems
are also responsible for Zn loss. Approximately 0.8–2.7 mg
Zn/day are excreted in the feces23 while 500–600 mg Zn/day
are excreted in sweat.27 The kidneys also regulate Zn excretion
as urinary losses amount to 500–800 mg/day.28

While the amount required to replenish lost Zn is primarily
obtained by adequate dietary intake and proper intestinal
absorption, kidney reabsorption is also critical for Zn
procurement14,29,30 (Figure 2). Zn trafficking to target organs
subsequently occurs through the serum, where it primarily
circulates bound to plasma proteins such as albumin, mac-
roglobulins, and transferrin31 (Figure 2). Serum Zn levels in
healthy individuals vary from 12 to 16 mM, which corre-
sponds to , 0.1% of total body Zn.32 However, caution is
advised when interpreting serum Zn levels because many
factors affect plasma Zn concentration32-38—including sex,
age, time of the day, meal consumption, medications (thia-
zides, oral contraceptive use), pregnancy, and inflammation.

Cellular uptake of Zn constitutes an efficient homeostatic
control mechanism that prevents excess serum Zn levels.12,16,23

Cellular Zn homeostasis is mediated by three main families of
Zn transport proteins (Figure 2). The Zrt-, Irt-like protein family
facilitates entry of Zn into the cytosol while Zn-binding metal-
lothioneins bind intracellular Zn. Intracellular Zn serves as a
cofactor for the catalytic activity and structural integrity of over
300 proteins, including those involved in macromolecule syn-
thesis and cell division39-41. Finally, Zn transporters facilitate
exit of unbound, cytosolic Zn into organelles.

Evidence That Urinary Zinc Wasting Can Fuel Zinc
Deficiency in CKD
The World Health Organization has deemed Zn

deficiency a global health crisis, affecting 31% of the
population.42,43 While Zn deficiency is well-documented in
patients with CKD,14,17,44-48 it is worth acknowledging that
the following factors are associated with Zn deficiency: veg-
etarian diets, older age, diabetes, diuretics, inflammatory
diseases, and digestive disorders. Thus, parsing out whether
Zn deficiency is a cause or consequence of CKD is quite
complicated given the aforementioned confounding factors
in patients with CKD.Multiple mechanisms can contribute to
Zn deficiency in patients with CKD, including low dietary
intake and increased Zn excretion.18,49,50 A cross-sectional
study examining 145 patients at different stages of CKD
(stages 1–4) found that serum Zn levels decreased with
CKD progression, whereas serum levels of copper, iron,
and selenium did not.48 In a case-control study of patients
on maintenance hemodialysis, average serum Zn levels were
significantly lower (69.2 mg/dl617.29) than those in healthy
controls (82.9 mg/dl614.75).44 Although dialysis may con-
tribute to Zn deficiency,51 it should be noted that abnormal-
ities in Zn metabolism develop before end stage kidney
failure and the initiation of dialysis.47

The progressive decline in serum Zn levels observed in
patients with CKD is partially fueled by a newly uncovered
phenomenon—urinary Zn wasting (Figure 3). In a cohort
study, patients with CKD (regardless of stage) exhibited
lower plasma Zn levels (606 mg/L6106.3 versus 664.1 mg/
L6101.2), accompanied by higher urinary Zn excretion
(612.4 mg/day6425.9 versus 479.2 mg/day6293) than pa-
tients without CKD.14 A decline in GFR correlated with
enhanced urinary Zn wasting. A sharp increase in urinary
Zn was observed at stage 3, when most patients receive a
CKD diagnosis. Although hypertension contributes to CKD,
hypertensive patients without CKD also had higher urinary
Zn excretion than normotensive controls. This indicates that
hypertension, in the absence of CKD, can independently
promote urinary Zn excretion. Interestingly, these patients
were at greater risk of experiencing CKD development
within 3 years.14 Taken together, these critical findings in-
dicate that Zn deficiency, accelerated by urinary Znwasting,
is both an early warning sign for the decline in kidney
function and a hidden driver of CKD progression.

Does Zinc Deficiency Accelerate the Detrimental
Cycle of Hypertension and Kidney Damage in CKD?
The kidneys are essential in the maintenance of salt-water

balance and, subsequently, BP control. Because this critical

Figure 1. Zinc distribution in organs (clockwise). Brain (11 mgZn/
gram, 0.6%), lungs (17 mg Zn/gram, 0.5%), heart (27 mg Zn/gram,
0.3%), spleen (15 mg Zn/gram, 0.1%), kidneys (55 mg Zn/gram, 0.6%),
skeletal muscles (51 mg Zn/gram, 50%), hair/skin/nails (279 mg
Zn/gram, 4.7%), bone (100 mg Zn/gram, 37%), blood vessels (6.81 mg
Zn/gram, 1.5%), pancreas (33.3mgZn/gram, 0.2%), liver (58mg Zn/gram,
3.4%), stomach (13.4 mg Zn/gram, 0.5%), and eyes (1.3 mg Zn/gram,
,0.01%).
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homeostatic function is impaired in the setting of CKD, up
to 90% of patients experience comorbid hypertension.6-9

Notably, resistant hypertension is a common clinical prob-
lem, and CKD poses one of the greatest risks of developing
treatment-resistant hypertension.52 The prevalence of
hypertension increases with advanced CKD stages, with
nearly 100% of patients experiencing hypertension in

stage 5.53 This stark reality creates a detrimental cycle in
which kidney damage causes hypertension, thus further
worsening damage to the kidneys. Hypertension in patients
with CKD has many etiologies including a hyperactive
renin-angiotensin-aldosterone system, reduced GFR, altered
vascular reactivity, overactivity of the sympathetic nervous
system, and increased Na1 retention.6 As CKD progresses,
BP becomes increasingly Na1-sensitive due to the
fluid retention caused by salt intake. We present that the
disruption of renal Na1 excretory function that causes
Na1 retention is fueled by Zn deficiency54 (Figure 3).
This overlooked culprit may consequently promote the
self-perpetuating cycle of hypertension and kidney damage
(Figure 3) that accelerates CKD progression to end stage
kidney failure.
Zn is an essential micronutrient present in the diet and

readily available as a supplement. The recommended di-
etary allowance of Zn is approximately 11 mg/day for men
and approximately 8 mg/day for women,55 with an in-
creased Zn demand (approximately 10–15mg) during phys-
iological states of growth such as pregnancy or puberty.31,55

Zn supports numerous aspects of cellular metabolism, and
the coronavirus disease 2019 pandemic has highlighted the
utility of Zn in immune function.56,57 While Zn’s role in both
vascular58,59 and cardiac functions31,60 is well established, its
impact on kidney function is less known.31 Our laboratory
recently established a regulatory role for Zn in renal Na1

reabsorption by the distal nephron.54 Although most of
Na1 is reabsorbed in the proximal tubule, renal Na1 han-
dling is fine-tuned in the distal nephron. Specifically, this
nephron segment precisely integrates local changes in uri-
nary Na1 with hormonal signals to modulate Na1 excre-
tion, thus maintaining salt-water balance. This sequence of
physiological events culminates in BP control.
In CKD, however, distal nephron function is impaired,61

resulting in three of five patients with salt-water retention,
thereby fueling the initiation and persistence of hyperten-
sion.62 Our preclinical findings provide evidence that Zn
deficiency alone causes kidney damage63 and is sufficient to
induce hypertension as a direct consequence of impaired

Figure 2. Normal zinc handling. MTs, metallothioneins; ZIPs, Zrt-, Irt-like proteins; ZnTs, Zn transporters.

Figure 3. Zinc deficiency can accelerate the detrimental cycle of
hypertension and kidney damage in CKD. Zn deficiency is partially
fueled by a newly uncovered phenomenon—urinary Zn wasting. Zn
deficiency alone causes kidney damage and is also sufficient to in-
duce hypertension. This overlooked culprit drives renal Na1 retention
and can consequently promote the self-perpetuating cycle of hy-
pertension and kidney damage that accelerates CKD progression to
end stage kidney failure.
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renal Na1 excretory function.54 Specifically, mice fed a Zn-
deficient diet exhibited hypertension with a concurrent re-
duction in urinary Na1 excretion.54 Consistent with higher
Na1 reabsorption activity in the distal nephron, thiazide
treatment promoted natriuresis and importantly restored
BP control.54 Mice fed a Zn-deficient diet also exhibited
multiple markers of kidney damage including oxidative
stress, renal fibrosis, and albuminuria.63,64 These same path-
ological events likely occur in the context of CKD. However,
future studies are necessary to (1) identify renal Zn-sensitive
pathways that drive hypertension and accelerate CKD pro-
gression and (2) explore strategies using Zn supplementa-
tion to provide an offramp from this detrimental cycle of
hypertension and kidney damage.

Can Zinc Supplementation Provide an Exit Strategy to
Rectify the Course of Chronic Kidney Disease and
Hypertension?
Current treatment strategies for hypertension in the CKD

population attempt to restore salt balance to lower BP.
Particularly, (1) low-salt diets are often recommended to
enhance the effects of ACE inhibitors and angiotensin re-
ceptor blockers9,65; (2) thiazide diuretics inhibit the distal
nephron Na1 reabsorption pathway to reduce Na1 reten-
tion mediated by the kidneys9; and (3) mineralocorticoid
receptor antagonists block aldosterone-stimulated reab-
sorption of Na1 by the distal nephron.9,66 Although these
treatment strategies exist as monotherapies to exploit renal
Na1 excretory function, even their use as combination
therapies (three or more antihypertensive drugs) often fail
to control BP in patients with CKD.52,62 Notably, these
antihypertensives also alter Zn homeostasis.67,68 A system-
atic review of eight clinical studies, which included patients
on antihypertensive therapy, reported reduced serum
Zn levels with daily doses of captopril (50–150 mg),
hydrochlorothiazide (12.5 mg), and losartan (50 mg).
Moreover, urinary Zn wasting was reported with the
use of captopril (50–75 mg), enalapril (20 mg), hydrochlo-
rothiazide (12.5–25 mg), furosemide (40 mg), and losartan
(50 mg). Further investigation is necessary to determine

the extent of this influence because study limitations
include small patient sample sizes and a lack of dietary
Zn intake reporting.
Zn supplementation is a potential therapeutic strategy

for many conditions because of its anti-inflammatory,
antifibrotic, and antioxidative properties in the body69-71.
Our findings reveal that Zn also exhibits anti-hypertensive
and reno-protective properties because of its critical role in
renal Na1 excretory function and BP regulation.54,63 There
is also evidence that Zn plays a protective role in other
organ systems relevant to BP, such as the vasculature and
heart. Specifically, the protective effects of Zn include pro-
moting cardiomyocyte redox balance and vascular integ-
rity.31 Interestingly, Zn supplementation in vitro led to the
complete restoration of the endothelial cell barrier,58,59,72

an effect not achieved with either calcium or magnesium
supplementation.
Collectively, our findings and others support future stud-

ies exploring Zn supplementation to disrupt the detrimental
cycle of hypertension and kidney damage burdening pa-
tients with CKD. Although clinical trial evidence in support
of Zn supplementation in patients with CKD is limited,
multiple preclinical studies have shown Zn to possess ben-
eficial renal and cardiovascular effects. In rodent models
of CKD, Zn supplementation slowed the progression of
diabetic nephropathy,73,74 with the antifibrotic effects of
Zn reducing renal morphologic changes. These positive
outcomes attenuated diabetes-induced proteinuria, a
well-known feature of CKD. Furthermore, the antioxidative
effects of Zn also protected against diabetes-induced aortic
damage and endothelial dysfunction.75 In the same manner
that Zn is cardio- and renoprotective in preclinical studies,
Zn supplementation likely exerts similar effects in patients
with CKD. However, insights from clinical investigation are
greatly needed.
In patients with CKD and low serum Zn levels, Zn sup-

plementation may be an effective therapeutic strategy to
prevent disease progression. While urinary Zn wasting oc-
curs in CKD, oral Zn supplementation is sufficient to increase
serumZn levels, even in patients on hemodialysis.76 Notably,
in patients with CKDand low serumZn, drugs containing Zn
weremore renoprotective, leading to a reduction in the risk of
disease progression or death by 62%.11 The authors credit
these outcomes to the anti-inflammatory and antioxidative
benefits of Zn. Although these findings seem encouraging,
there is a paucity of evidence directly demonstrating the
beneficial effects of Zn supplementation in the CKD popu-
lation. However, the therapeutic index of Zn supplementa-
tion should also be investigated because acute symptoms
after uptake of high doses of Zn include abdominal pain,
nausea, and vomiting. Additional effects include lethargy,
anemia, and neurologic disturbances such as dizziness.12

However, acute Zn intoxication is considered a rare event.12

Long-term, high-dose Zn supplementation interferes with the
uptake of copper. Hence, many of the toxic effects of Zn
uptake are in fact attributed to copper deficiency.12 Until
large-scale clinical trials are conducted, the fate of Zn
supplementation remains unknown in the vulnerable CKD
population. As such, future studies would provide data
directly examining Zn supplementation as a therapeutic
intervention—serving as an offramp from the road to end
stage kidney failure (Figure 4).

Figure 4. Zinc supplementation: A possible offramp from the road to
end stage kidney failure.
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