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Abstract

Transcription factors (TFs) play a critical role in determining cell fate decisions by integrating 

developmental and environmental signals through binding to specific cis-regulatory modules 

and regulating spatio-temporal specificity of gene expression patterns. Precise identification of 

functional TF binding sites in time and space not only will revolutionize our understanding of 

regulatory networks governing cell fate decisions but is also instrumental to uncover how genetic 

variations cause morphological diversity or disease. In this review, we discuss recent advances in 

mapping TF binding sites and characterizing the various parameters underlying the complexity of 

binding site recognition by TFs.

Introduction

The production of the diverse and specialized cell types of multicellular organisms, 

which are encoded by the same DNA in an individual, is controlled by the precise 

spatial and temporal regulation of gene expression. Cis-regulatory elements (CREs), 

including promoters, enhancers, silencers, and insulators, modulate the spatial and temporal 

expression of genes via recruitment of trans-regulatory factors such as sequence-specific 

TFs, chromatin remodelers, and RNA polymerase II [1–9] (Figure 1). Identifying the CREs 

that precisely define expression activity of developmentally and physiologically important 

genes in time and space is a long-standing challenge in plant biology and can open new 

opportunities for accelerating genetic improvement of crops. Except for gene promoters that 

are located close to the transcription start sites (TSS), the other CREs, especially for large 

genomes, can be thousands or even millions of bases away from their target genes [10,11]. 

Moreover, although the sequence specificities and binding locations of many TFs are known, 

we lack adequate knowledge about the dynamics of TF-DNA interaction over time and 

space, nor do we understand the complexity of factors determining when and where binding 

sites are functional. All these make it difficult to accurately pinpoint the CREs controlling 

the expression pattern of a given gene. Rapid development in experimental techniques and 

computational methods in conjunction with intensive studies over the last two decades have 

advanced our knowledge on this topic, such as how TFs recognize a subset of CREs and 
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regulate the expression of proximally located or distal target genes and how paralogous TFs 

recognize non-identical binding sites in vivo [12–16]. In this review, we attempt to highlight 

the important progress that has been made in recent years for identifying TF-DNA binding 

sites at genome-scale and understanding the factors that contribute to TF DNA interaction.

TF recognition of DNA requires direct and indirect readout

Cocrystal structures of protein-DNA complexes contributed substantially to resolve how TFs 

physically bind to specific DNA sequences. These studies suggest that recognition of a short 

DNA sequence by a TF is achieved primarily through direct interactions between amino 

acid residues and the DNA base edges [17,18]. The physical contact of protein side-chains 

with the major or minor groove of the DNA helix is mainly established by hydrogen bonds, 

water-mediated hydrogen bonds, hydrophobic interactions, and/or π-interactions [17,18]. 

Although the direct interaction between TF amino acids and DNA bases, the so-called 

base readout, is critical for the formation of TF-DNA complexes, most TFs require a 

combination of base and shape readout (indirect readout), which is mainly driven by van der 

Waals interactions and electrostatic potentials, to achieve DNA-binding specificity [18,19]. 

In other words, most TFs need to recognize local or global structural changes within the 

DNA as well as direct physical or water-mediated binding with DNA bases to accurately 

pinpoint their specific target sites [20,21] (Figure 2). Accordingly, models incorporating 

DNA structure information predict TF-DNA binding sites at higher accuracy than models 

that use sequence information alone [19,22]. For example, using a collection of genome-

wide binding sites for 216 A. thaliana TFs created by an in vitro TF binding site assay called 

DNA affinity purification sequencing (DAP-seq), binding site models were generated for 

each TF by a random forest machine learning approach that combined DNA shape features 

with syntax sequences in a shape-based regressor [23]. The models improved the prediction 

of target sites for all the TFs tested, and the features defined by the shape-based regressor 

could reliably pinpoint most of the distinct target sites for different TFs within the same 

structural family [23].

Experimental advances in identifying transcription factor binding sites 

(TFBS)

Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) is 

widely used for the identification of binding sites of a given TF in vivo [11,24] (Table 

1). However, ChIP-seq data are limited by several intrinsic factors. Chromatin shearing 

by sonication is an irreproducible process that creates DNA fragments with variable sizes 

leading to generation of broad regions of read enrichment (“peaks”) where the resolution is 

often insufficient for precise mapping of binding sites [25]. Crosslinking is another intrinsic 

limiting step in ChIP-seq experiments, leading to generation of low signal-to-noise ratio 

peaks, false-positive binding sites, and masking of epitopes by the surrounding crosslinked 

proteins [26]. Moreover, systematic and broad enrichment of non-targeted TFs across 

ChIP-seq datasets may confound the proper interpretation of ChIP-seq data [27]. Several 

new approaches have been developed to tackle the limitations of ChIP-seq (Table 1). 

For example, ChIP-exo and ChIP-nexus improved the resolution of binding site maps by 

Hajheidari and Huang Page 2

Curr Opin Plant Biol. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



applying exonucleases to trim excess sequences [28]. CUT&RUN, CUT&Tag, and DamID 

use nucleases (micrococcal nuclease, Tn5 transposase, or DpnI) for DNA fragmentation and 

thus do not require crosslinking [29–31]. DamID further allows determination of transient 

TF-DNA interaction by introducing into cells the TF of interest fused to a bacterial DNA 

adenine methyltransferase followed by identifying the methylated adenines resulting from 

the TF binding events [29]. However, these methods also have specific drawbacks. For 

example, in DamID the target regions are broadly methylated and often do not have 

sufficient resolution to precisely localize the binding sites [32], while the high cost and 

technical complexity of ChIP-exo and ChIP-nexus limit their broad application [33,34].

In parallel to in vivo methods, several in vitro approaches have been widely used to identify 

TF-DNA sequence specificity and binding locations [11,15,35,36] (Table 1). In contrast to 

in vivo methods, in vitro methods such as protein binding microarrays (PBM), systematic 

evolution of ligands by exponential enrichment-sequencing (SELEX-seq), and DNA affinity 

purification sequencing (DAP-seq) are relatively fast, cost effective, and can be easily 

applied in a high-throughput manner. In PBM and SELEX-seq, TFs are exposed to synthetic 

DNA oligonucleotides, while DAP-seq employs fragmented genomic DNA and captures 

genomic features such as DNA methylation pattern and the flanking regions of core motifs 

[15,35–39]. Compared to ChIP-seq, DAP-seq identifies binding sites on genomic DNA that 

are directly bound by the TFs and can potentially disentangle the cooperative action of a 

given TF with other TFs or with other cofactors from its individual activity [40]. However, 

it is important to consider that most in vitro methods lack cellular chromatin context, 

which is critical for binding site availability and TF-DNA binding in vivo. Moreover, given 

that in vitro methods mostly use TFs expressed in vitro or by non-native cell systems, 

they usually cannot capture the effect of post-translational modifications (PTMs) of TFs 

on DNA binding affinity [9,41]. But the effect of PTM such as phosphorylation can 

be achieved by phosphomimetic (asparagine/glutamine) or phospho-negative substitutions 

(alanine/phenylalanine) [42]. To tackle these constraints of traditional in vitro methods, 

some modified methods have recently been developed (Table 1). For example, Hook et 

al. developed the nuclear extract protein-binding array (nextPBM) to address the lack of 

PTMs and interaction partner/partners of TFs in genome-wide binding assays [41]. In this 

method, the nuclear extract is directly incubated on the microarray, an antibody specific to 

the TF of interest is applied, and the DNA targets of the TF are detected by measuring the 

fluorescence signal from a fluorophore-conjugated secondary antibody. Besides introducing 

chromatin context experimentally, DNA binding information from in vitro methods can be 

combined with data from ATAC-seq, DNase-seq or MNase-seq that identifies tissue- or 

cell-type specific accessible chromatin regions (ACRs) to provide reliable predictions for 

TF-DNA binding sites in vivo [15].

In vitro methods typically expressed TF proteins using expression vectors carrying coding 

sequence of each TF fused to an affinity tag. This is a major obstacle for the application 

of these methods to non-model organisms where vector collections harboring TFs are 

not readily available. To circumvent this bottleneck, Baumgart et al. (2021) generated a 

clone-free DAP-esq method called multi-DAP-seq [37]. In multi-DAP-seq, the CDS, cDNA, 

or genomic DNA from prokaryotic cells are used directly for PCR amplification with 

primers harboring all the required sequences for the in vitro transcription and translation. 
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During translation, biotinylated lysines are incorporated into the protein sequence and 

biotin-tagged TF proteins are purified using streptavidin-coated beads along with the bound 

DNA sequences. However, it is important to note that incorporating biotinylated lysines in 

the protein sequences may lead to changes in protein conformation and potentially alter the 

DNA binding specificity and/or affinity.

The rapid development of single cell RNA-seq (scRNA-seq) methods has enabled in-depth 

exploration of gene expression profiles of cell types and developmental trajectories in many 

tissues or organs. However, the datasets themselves do not directly address how various cell 

types arise. Moudgil et al. recently developed the single-cell calling cards (scCC) approach 

that simultaneously provides transcriptome and TF binding profiles at single-cell resolution 

[43]. In this method, a TF fused to the hyperactive piggyback (HyPBase) transposase 

integrates the self-reporting transposons (SRTs) near the TF binding sites. The genomic 

location of SRTs were found using the transcriptome profiles, leading to cell-type-specific 

mapping of SRTs in combination with the transcript expression profiles in the same cell 

[43]. Such approach allows discovery of key factors involved in developmental dynamics 

and transitions between cell types. The most concerning drawback is that the integration of 

transposon into the target gene may lead to alteration of target gene expression including 

silencing (Table 1).

Given that the accessibility of binding sites for most TFs, including cell-type specific TFs, is 

supposed to be a prerequisite for precise gene targeting (Figure 1 and 2), ACRs are expected 

to vary in a cell-type specific manner over time and space. This property can be used to infer 

TF-DNA interaction dynamics. Single cell chromatin accessibility datasets are especially 

informative for this purpose: because the accessibility profiles that are specific to cell types 

or cell states covering a wide range of developmental trajectories could be found without 

the generation of transgenic lines, it is possible to observe chromatin dynamics and predict 

TF-DNA interaction underlying the developmental trajectories of a wide range of tissues in 

many plant species [6,44,45]. Marand et al. (2021) profiled 72,090 nuclei across six maize 

organs to explore chromatin accessibility and nuclear gene expression using scATAC-seq 

and scNucRNA-seq, respectively. Integrated analysis of ACRs and gene expression from 

single nuclei showed a similar pattern of ACRs and gene expressions across thousands of 

genes, suggesting that ACRs are overlapping with regions containing CREs for the genes 

and could be a good proxy for active transcription in maize organs [6]. Approximately 

31% of ACRs showed a cell-type specific pattern, where they were notably hypomethylated, 

highly associated with active enhancers, and greatly enriched with TF motifs compared to 

non-cell-type specific ACRs or controls. In contrast to studies that used bulk tissues or 

organs and reported a scarcity of dynamic chromatin in plants, this and other single cell 

studies showed a substantial level of cell-type specific pattern of chromatin dynamics and 

provide an important basis for identifying cell-type specific CREs [44,45].
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Mechanisms contributing to TF-DNA binding specificity beyond the core 

motifs

TFs bind preferentially at genomic regions harboring sequences that match the short 

in vitro binding motifs usually 5–11 bp long [46]. However, genome-wide analysis 

demonstrated that among the numerous motif-containing sequences present in the genome 

only a small fraction (~1%) are bound by TFs [46,47]. This suggests that the motif 

sequences alone do not provide sufficient information for directing TFs to their target 

sites [48]. Over the past few decades, many studies have been designed to uncover 

how TFs precisely distinguish motifs containing their genuine binding sites from other 

regions containing similar sequences. These studies identified multiple factors underlying 

target recognition, including chromatin environment, sequence and structural features of 

regions flanking the core recognition sequences, combinatorial action of TFs and cofactors, 

nuclear compartmentalization of regulatory DNA sequences (three dimensional genome 

architecture), PTMs of TFs, and DNA base modifications such as 5’-methylcytosine 

[9,12,15,48–53] (Figure 2).

In the nucleus of eukaryotic cells, long strands of genomic DNA are organized in a higher 

order structure called chromatin. DNA wraps around histone proteins to create nucleosomes, 

the fundamental unit of chromatin, and nucleosomes are found in a continuum of 

compactness between the densely packed heterochromatin and lightly packed euchromatin 

(Figure 1 and 2). The stable and compact structure of chromatin in eukaryotes constructs 

an inherent barrier that is not only critical for maintaining genome stability by suppressing 

transposon activation but is also required for inhibiting improper cell fate and developmental 

transitions [1,54]. Reducing the physical compaction of chromatin to make chromatinized 

DNA accessible for regulatory factors is a prerequisite for many DNA-based processes 

such as DNA replication, DNA repair, recombination, and transcription [1,55]. Thus in 

eukaryotes, the evolution of the intrinsically repressive chromatin structure occurred in 

parallel to the evolution of mechanisms such as epigenetic marks, chromatin remodelers, 

histone variants, and pioneer TFs to regulate accessibility of chromatin regions [1,54,56,57].

Chromatin environment and genome organization govern TF-DNA binding

Comparison of genome-wide TF binding datasets with chromatin accessibility profiles 

revealed relatively high overlap between ACRs with TF binding motifs [7,58] (Figure 1). 

Chromatin accessibility is commonly measured in genome-wide scale using DNase-seq, 

FAIRE-seq, ATAC-seq, and MNase-seq. ACRs in plants with small genome size are mostly 

located within 2 kb upstream of the gene bodies, and higher percentage of distal ACRs 

(dACRs) are found for increased genome size. However, increased level of dACRs is 

not directly proportional to genome size [59]. For example, around 6% of ACRs of A. 
thaliana (135 Mbp genome) are dACRS located more than 2 kb away from the nearest gene, 

whereas the percentage of dACRs in Z. mays (~2365 Mbp genome) is around 32.5% [5]. 

Lu et al. analyzed the genome and epigenomes of 13 plant species and found that genic 

and proximal ACRs of active genes, which are within 2kb from the nearest gene, were 

marked by H3K4me3, H3K56ac, and/or H3K36me3. They also reported that genes flanking 
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H3K56ac dACRs are usually highly expressed, suggesting that the H3K56ac marked dACRs 

might be predictive of active enhancers with functional TF binding sites [5] (Figure 1).

Beyond the regulatory functions of the genome modulated by nucleotide sequences in 

linear space, the three-dimensional (3D) genome organization also contributes to the 

fine tuning of genome functions (Figure 2). The 3D genome is highly dynamic in 

response to environmental signals and developmental cues and regulates gene expression 

predominantly through long-range chromatin interactions [60]. In maize, 3D genome 

organization contributes to transcriptional regulation of two agronomically important genes, 

teosinte branched1 (tb1) and UNBRANCHED3 (UB3), via chromatin loops that bring distal 

enhancers to the close proximity of tb1 and UB3 promoters [61–63]. High resolution and 

accurate identification of chromatin loops connecting ACRs to genes at the single cell level 

can provide a 3D view of functional CREs and TFs responsible for cell fate specification 

[6,53,64,65].

Cooperative actions between TFs

Cooperative action of TFs is a widespread mechanism that leads to diversification of 

DNA binding affinity and specificity and subsequently functional complexity of TFs in 

eukaryotes [12,24,40,66,67] (Figure 2). For example, it is long known that the cooperative 

action of MADS-box TFs, which is critical for floral organ specification, mediates their 

unique DNA binding specificity and affinity. However, our knowledge about how the 

combinatorial action of MADS-box TFs determines floral organ identity at the systems 

level is still limited [40,68]. Lai et al. recently used a combination of sequential DAP-seq 

with ChIP-seq and RNA-seq to explore genome-wide binding sites of the heterodimeric and 

heterotetrameric complexes of SEPALLATA3 (SEP3) and AGAMOUS (AG), as well as the 

SEP3 homooligomer [40]. They showed that SEP3 and SEP3-AG targeted distinct binding 

sites but also had many overlapping binding targets. Furthermore, the tetrameric SEP3-AG 

complex exhibited increased DNA binding affinity throughout the genome compared to the 

dimeric SEP3Δtet-AG complex while placing a greater restriction on the spacing between the 

DNA-binding motifs, resulting in more efficient binding of the tetrameric complex to some 

regions that were weakly accessible to the dimeric SEP3Δtet-AG complex. Another example 

of cooperative TF action comes from the AUXIN RESPONSE FACTOR (ARF) family of 

TFs, through which the phytohormone auxin controls almost all aspects of plant growth and 

development. Recent studies suggest that spacing, direction, and order of the DNA binding 

motifs by the ARF homo- and heterodimers play a key role in differential binding affinity 

and specificity of the ARF subfamilies [66,69].

TF-DNA binding and post-translational modifications

PTMs of TFs are critical for targeting the TFs to the desired subcellular compartments and 

for regulating their transcriptional activity, especially for many TFs involved in hormone 

signaling responses [70]. PTMs may also alter DNA binding affinity of the TF (Figure 1 and 

2). For example, the TF WRKY33, involved in disease resistance by regulating camalexin 

biosynthesis, is phosphorylated by the mitogen-activated protein kinases (MAPKs) and 

CALCIUM-DEPENDENT PROTEIN KINASES (CPKs). Whereas MAPKs phosphorylate 

the C-terminus of WRKY33 and promote its transactivation activity, CPKs phosphorylate 
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the N-terminus of WRKY33 and enhance its DNA-binding affinity, which is required for the 

full activity of WRKY33 in camalexin biosynthesis [9].

Intrinsically disordered regions of TFs contribute to binding specificity of orthologous TFs

Recent studies have shown that low-affinity TF binding sites, which can evolve rapidly, 

are vital in fine tuning binding specificity of TFs and developmental robustness in plants 

and animals [11,71]. Crocker et al. [72] suggest an inverse correlation between sequence 

affinity and specificity: whereas high-affinity binding sites are targeted by multiple TFs 

from the same family, clusters of low-affinity binding sites provide higher specificity for 

a unique TF within a family and thus leading to recognition of non-identical binding sites 

by paralogous TFs [14]. Intrinsically disordered regions (IDRs) of TFs, which exhibit low 

similarity between distant orthologs, also play an important role in guiding the TFs to 

broad target regions in which DNA binding domains recognize their sequence motifs [73]. 

Importantly, the whole IDR but not a specialized domain within it contributes to the binding 

specificity of the TFs. Therefore, IDRs likely provide another mechanism besides clusters of 

low-affinity binding sites that contribute to the binding specificity of related TFs.

Conclusion and future perspectives

Recent studies have demonstrated that many features beyond the core sequence motifs are 

critical for TF binding site recognition, and incorporating these features has improved 

models for binding site prediction. However, the current measurements of TF-DNA 

interactions are mostly qualitative, so going forward it is important to develop techniques 

and models that provide quantitative information that can be linked to quantitative 

measurements of gene expression. Although technological and methodological advances 

have substantially reduced the required time and cost of large-scale experiments for 

identifying TF binding sites, the catalog of TF binding sites remains incomplete even in 

the model plant A. thaliana and very limited in many plants including important crop 

species. Moreover, different isoforms of TFs may show diverse binding specificities [74], so 

systematic assessment of TFs splicing variants require special attention.

Wide applications of single cell genomics approach in many plant species have started 

to uncover factors that drive developmental dynamics, cell type transitions and evolution. 

Integrating single cell or nuclei transcriptomes and chromatin dynamics with TF binding site 

assays will revolutionize our understanding of gene regulatory networks underlying plant 

development and response to the environment.
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Figure 1. 
A model of tissue- or cell-type specific transcriptional regulation by distal enhancer 

containing multiple TF binding sites in plants. The enhancer located in an open chromatin 

region and harboring multiple TF motifs recruits sequence-specific TFs, which in turn 

leads to the recruitment of the Mediator complex, chromatin remodeling factors (ChRFs), 

general transcription factors (GTFs) and RNA polymerase II (RNAPII). Recent genome-

wide studies in plants have suggested that active and inactive enhancers as well as genes can 

be defined by unique chromatin features and DNA methylation patterns. In this model, the 

insulator blocks unwanted interaction of the active enhancer with the depicted inactive gene. 

Post-translational modifications, including phosphorylation (P), may play an important role 

in TF-DNA binding. CG methylation represents DNA methylation in CG context. H3K56ac, 

histone H3 acetylation at lysine 56; H3K9ac, histone H3 acetylation at lysine 9; H3K27ac, 

histone H3 acetylation at lysine 27; H3K36me3, histone H3 tri-methylation at lysine 36; 

H3K4me1, histone H3 mono-methylation at lysine 4; H3K4me3, histone H3 tri-methylation 

at lysine 4; H3K27me3, histone H3 tri-methylation at lysine 27. Histone methylation and 

acetylation marks are represented by circle and square, respectively.

Hajheidari and Huang Page 13

Curr Opin Plant Biol. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Schematic overview of mechanisms contributing to TF-DNA binding specificity and affinity.
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Table 1.

In vivo and in vitro methods to identify TF-DNA binding sites.

Method Input TF source Time Relative 
cost

Advantages Disadvantages References

ChIP-seq Cross-linked 
chromatin

Endogenous or in 
vivo expressed 
recombinant 
protein

4–5 
days

medium Can be applied for 
a wide range of 
organisms

Low resolution of 
binding site maps; 
prone to false 
positive and false 
negative errors; low 
signal-to-noise ratio 
peaks

[25–27]

ChIP-exo Cross-linked 
chromatin

Endogenous or in 
vivo expressed 
recombinant 
protein

4–5 
days

high High resolution of 
binding site maps

High technical 
complexity

[28, 34]

ChIP-nexus Cross-linked 
chromatin

Endogenous or in 
vivo expressed 
recombinant 
protein

4–5 
days

high High resolution of 
binding site maps

High technical 
complexity

[28, 33]

CUT&RUN Native 
chromatin

Endogenous or in 
vivo expressed 
recombinant 
protein

2 days medium High resolution of 
binding site maps; 
high signal-to-noise 
ratio peaks

No published report 
for plant TFs

[30]

CUT&Tag Native 
chromatin

Endogenous or in 
vivo expressed 
recombinant 
protein

2 days medium High resolution of 
binding site maps; 
high signal-to-noise 
ratio peaks

No published report 
for plant TFs

[31]

DamID Native 
chromatin

In vivo expressed 
recombinant 
protein

4–5 
days

high Identification of 
transient TF-DNA 
interactions

Low resolution of 
binding site maps

[29, 32]

scCC RNA In vivo expressed 
recombinant 
protein

2 days medium Simultaneous measure 
of transcriptome and 
TF binding profiles at 
the single-cell level

Low resolution of 
binding site maps; 
possible modification 
or silencing of target 
gene expression 
due to transposon 
integration

[43]

nextPBM Randomized 
synthetic 
DNA

Endogenous or in 
vivo expressed 
recombinant 
protein

2-3 
days

medium Captures the effect of 
TF-protein interactions 
and post-translational 
modifications on DNA 
binding specificity and 
affinity

Lack of endogenous 
genome sequence 
and chromatin 
context

[41]

PBM Randomized 
synthetic 
DNA

In vitro or 
nonnative cell 
expressed 
recombinant 
protein

2 days low Identifies binding 
sequence motifs in 
a high-throughput 
manner

Lack of endogenous 
genome sequence 
and chromatin 
context

[15, 38]

SELEX-seq Randomized 
synthetic 
DNA

In vitro or 
nonnative cell 
expressed 
recombinant 
protein

2 days low Identifies binding 
sequence motifs in 
a high-throughput 
manner

Lack of endogenous 
genome sequence 
and chromatin 
context

[15, 35]

DAP-seq Genomic 
DNA

In vitro or 
nonnative cell 
expressed 
recombinant 
protein

2 days low High resolution of 
binding site maps in 
endogenous genome 
context; high signal-to-
noise ratio peaks; can 
be easily performed 
in a high-throughput 
manner; can be used 
to dissect the direct 
and indirect binding 

Lack of chromatin 
context

[15, 36, 39]
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Method Input TF source Time Relative 
cost

Advantages Disadvantages References

sites and disentangle 
the cooperative action 
of TFs

Multi-DAP-
seq

Genomic 
DNA

In vitro or 
nonnative cell 
expressed 
recombinant 
protein

2 days low Can be applied to 
non-model organisms; 
high resolution of 
binding site maps in 
endogenous genome 
context; high signal-to-
noise ratio peaks; can 
be easily performed 
in a high-throughput 
manner

Lack of chromatin 
context; potential 
modification of DNA 
binding specificity 
and/or affinity due 
to incorporation of 
biotinylated lysine 
into the TF protein 
sequence

[37]

Curr Opin Plant Biol. Author manuscript; available in PMC 2023 August 01.


	Abstract
	Introduction
	TF recognition of DNA requires direct and indirect readout
	Experimental advances in identifying transcription factor binding sites TFBS
	Mechanisms contributing to TF-DNA binding specificity beyond the core motifs
	Chromatin environment and genome organization govern TF-DNA binding
	Cooperative actions between TFs
	TF-DNA binding and post-translational modifications
	Intrinsically disordered regions of TFs contribute to binding specificity of orthologous TFs

	Conclusion and future perspectives
	References
	References
	Figure 1.
	Figure 2.
	Table 1.

