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E D I TO R I A L

A song of iron and oxygen: Hypoxic pulmonary vasoconstriction
and gas exchange in chronic obstructive pulmonary disease

Iron has been around since shortly after the Big Bang and has been

present on planet Earth from the start, forming much of its core and

crust, where it has served as a prima essentia of life since before

the Great Oxidation Event ∼2.4 billion years ago (Bailey & Poole,

2022; Sheftel et al., 2012). Iron is involved in numerous physiological

mechanisms, including hypoxic vasoconstriction, a phylogenetically

ancient vascular reflex conserved across all vertebrates, thus present

in fish gills and amphibian skin, in addition to the lungs of most reptiles,

birds and mammals (Russell et al., 2008). In Mammalia, it manifests

as hypoxic pulmonary vasoconstriction (HPV), which ensures the pre-

servation of fetal oxygenation during placental gestation by reducing

blood flow through the non-ventilated lungs. HPV also plays important

roles postnatally in relationship to several extreme physiological and

clinical phenomena, helping to restore the matching of pulmonary

perfusion to ventilation when hypoxic regions in the lung develop.

There is a renewed interest in the mechanisms and (mal)adaptability

of HPV in humans, highlighted in recent publications focused on static

apnoea and high-altitude acclimatization (Jernigan et al., 2021; Kelly

et al., 2022; Subedi et al., 2022). These studies have confirmed the

modulatory significance of iron on HPV, providing clues to the limits of

physiological adaptation to terrestrial extremes that have translational

relevance for mechanisms of disease. As outlined below, impaired

HPV and changes in iron homeostasis are both prominent features in

chronic obstructive pulmonary disease (COPD), and the recent studies

thus shed light on putative mechanisms of impaired pulmonary gas

exchange in this condition.

The site of HPV is pulmonary vascular smooth muscle (PVSMCs),

notably in arterial vessels, and encompasses three interconnected

steps: (1) physiological sensing of reduced alveolar (not blood) oxygen

tension; (2) initial PVSMC contraction; and (3) subsequent modulation

of PVSMC contraction (Smith & Schumacker, 2019). Together, these

steps lead to a characteristic biphasic response, with an initial increase

in pulmonary vascular resistance that peaks within 5 min and a more

gradual increase that reaches a sustained maximum at 30–60 min

(Figure 1a). Phase 1 consists of steps 1 and 2 and depends on the

formation of free radicals and associated reactive oxygen species

(ROS) that trigger PVSMC contraction through local intracellular

effects and by a superoxide anion-mediated reduction in the vascular

bioavailability of NO (Figure 1b). Step 3 occurs during phase 2 and
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largely dependson changes in the geneexpressionof hypoxia-inducible

factors (HIFs), with a subsequent release of vasoactive substances

within the pulmonary vasculature (Figure 1c). Of note, all three steps

involve altered redox status and are thus susceptible to changes in

iron homeostasis, but an apparent paradox is at play here. Thus,

although both hypoxia per se and iron loading increase ‘free catalytic’

(i.e. ferrous) iron (Fe2+) (Bailey et al., 2022), which one would expect

to enhance PVSMC contraction (Figure 1b), free catalytic iron also

functions to reduce PVSMC contraction by increased degradation

of HIF through effects on prolyl hydroxylase domain enzymes

(Figure 1c).

In two recent studies, one from the UBC-Nepal Expedition,

conducted at The Pyramid International Laboratory at 5050 m, and

the other the GLOBAL REACH 2018 study, conducted at 4300 m

in Cerro de Pasco, Peru, a 220 mg i.v. iron(III)-hydroxide sucrose

infusion blunted the HPV response to ascent in lowlanders, Sherpa

and Andeans (Patrician et al., 2022; Willie et al., 2021). Although

ascent caused a reduction in serum iron, transferrin and transferrin

saturation (Willie et al., 2021), no measurements of free catalytic iron

or other measures of redox status were made in the two studies,

and it remains to be documented that iron loading by this approach

causes an increase in free catalytic iron in the pulmonary vascular

bed. However, when considering the aforementioned ‘push and pull’ of

iron homeostasis on HPV, the results might be interpreted to reflect

that rather than driving the final steady-state response,NOscavenging

primarily functionshermetically to titrate theeffects ofHIF-dependent

pathways on pulmonary vascular resistance, to fine-tune regional

ventilation–perfusionmatching (Figure 1d).

In COPD, chronic hypoxaemia is an independent predictor of death

and is notoriously difficult to manage (Martinez et al., 2006). It evolves

owing to airway, alveolar and pulmonary vascular abnormalities,

causing an uneven distribution of alveolar ventilation relative to

perfusion. In this regard, HPV functions to match perfusion to

the uneven ventilation, thus preventing or alleviating hypoxaemia

according to studies based on the classical multiple inert gas

elimination technique conducted in patients with stable COPD of

various severities (Agusti et al., 1990; Barberà et al., 1996). The lungs

of stable COPD patients with resting hypoxaemia are dominated by

areas with low ventilation–perfusion ratios, indicating impaired HPV
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F IGURE 1 Effects of iron loading on hypoxic pulmonary vasoconstriction (HPV). (a) Time course of the change in pulmonary vascular
resistance (PVR) in response to alveolar hypoxia (blue) and the presumed time course of the response upon additional iron loading (red). (b) During
phase 1, hypoxia increases the formation of free radicals and associated reactive oxygen species (ROS) primarily in complex III of themitochondria,
where they thenmove from the intermembrane space to the cytosol, where the superoxide anion (O⋅−

2
) is converted to freely diffusible hydrogen

peroxide (H2O2). In pulmonary smoothmuscle cells (PVSMCs), H2O2 activates phospholipase C, leading to production of inositol
1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), both of which facilitate Ca

2+ release from the sarcoplasmic reticulum. The H2O2 also
contributes by directly activating ryanodine receptors, and the increase in intracellular Ca2+ ultimately leads to contraction of the PVSMCs.
Furthermore, O⋅−

2
also contributes to this by reducing the vascular bioavailability of NO through oxidative annihilation. Upon iron loading, the

presence of excess ‘free catalytic’ ferrous iron (Fe2+) leads to increased lipid-derived free radicals [lipid-derived alkoxyl (LO•) and lipid
hydroperoxides (LOOH)] through the Fenton reaction, further exacerbating NO scavenging and increasing PVSMC contraction in response to
hypoxia. (c) Phase 2 is driven by an upregulation of hypoxia-inducible factor (HIF) gene expression. The prolyl hydroxylase domain (PHD) enzymes
regulate the stability of HIF in response to oxygen availability. During normoxia with a normal Fe2+ concentration, prolyl hydroxylase domain
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(Wagner et al., 1977). This is supportedby in vitro studiesonpulmonary

vascular specimens obtained from lungs of patients with mild-to-

moderate and severe COPD, undergoing either lung resection or lung

transplantation, in which HPV has been reported to be weaker in

hypoxaemic than in non-hypoxaemic COPD patients (Peinado et al.,

2002, 2013). Furthermore, during COPD exacerbations, which are

characterizedby an acute and sustainedworsening of symptoms, hypo-

xaemia is associated with greater perfusion of poorly ventilated areas

(Barberà et al., 1997). These findings thus support the failure ofHPV as

a unifying mechanism of hypoxaemia, both in stable COPD and during

acute exacerbations.

The impact of iron-redox homeostasis on HPV remains to be

investigated directly in COPD (Cloonan et al., 2017), but it is worth

noting that despite both systemic anaemic and non-anaemic iron

deficiency being common in COPD, the lung tissue of COPD patients

consistently exhibits increases in iron content and iron-binding

molecules (Silverberg et al., 2014). This is further exaggerated during

acute exacerbations, probably driven by increased iron sequestration

within the lung tissue and vasculature (Cloonan et al., 2017). Although

no studies have yet reported free catalytic iron levels in blood or

lung tissue, either in stable COPD or during acute exacerbations,

we postulate that disrupted iron homeostasis is a likely catalyst that

drives the shift from a non-hypoxaemic to a hypoxaemic phenotype in

COPD.

Collectively, the available studies at present indicate the importance

of taking an integrated physiological approach, by combining findings

and concepts from the extreme, the classical, the healthy and the ill, to

determine precisely how iron and its ancient gaseous partner oxygen,

both formed in dying stars billions of years ago, contribute to the

impairment of HPV in COPD.
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