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 Abstract 

 Despite  much  progress,  image  processing  remains  a  significant  bottleneck  for  high-throughput  analysis  of  microscopy 
 data.  One  popular  platform  for  single-cell  time-lapse  imaging  is  the  mother  machine,  which  enables  long-term  tracking  of 
 microbial  cells  under  precisely  controlled  growth  conditions.  While  several  mother  machine  image  analysis  pipelines  have 
 been  developed  in  the  past  several  years,  adoption  by  a  non-expert  audience  remains  a  challenge.  To  fill  this  gap,  we 
 implemented  our  own  software,  MM3,  as  a  plugin  for  the  multidimensional  image  viewer  napari.  napari-MM3  is  a 
 complete  and  modular  image  analysis  pipeline  for  mother  machine  data,  which  takes  advantage  of  the  high-level 
 interactivity  of  napari.  Here,  we  give  an  overview  of  napari-MM3  and  test  it  against  several  well-designed  and 
 widely-used  image  analysis  pipelines,  including  BACMMAN  and  DeLTA.  Researchers  often  analyze  mother  machine  data 
 with  custom  scripts  using  varied  image  analysis  methods,  but  a  quantitative  comparison  of  the  output  of  different 
 pipelines  has  been  lacking.  To  this  end,  we  show  that  key  single-cell  physiological  parameter  correlations  and 
 distributions  are  robust  to  the  choice  of  analysis  method.  However,  we  also  find  that  small  changes  in  thresholding 
 parameters  can  systematically  alter  parameters  extracted  from  single-cell  imaging  experiments.  Moreover,  we  explicitly 
 show  that  in  deep  learning  based  segmentation,  “what  you  put  is  what  you  get”  (WYPIWYG)  -  i.e.,  pixel-level  variation  in 
 training  data  for  cell  segmentation  can  propagate  to  the  model  output  and  bias  spatial  and  temporal  measurements. 
 Finally,  while  the  primary  purpose  of  this  work  is  to  introduce  the  image  analysis  software  that  we  have  developed  over 
 the  last  decade  in  our  lab,  we  also  provide  information  for  those  who  want  to  implement  mother-machine-based 
 high-throughput imaging and analysis methods in their research. 
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 Introduction 

 The  mother  machine  [1]  is  a  popular  microfluidic  platform  for  long-term,  high-throughput  imaging  of  single  cells.  It  has 
 been  widely  adopted  as  a  standard  for  long-term  imaging  of  bacteria  such  as  Escherichia  coli  and  Bacillus  subtilis  [2]  ,  as 
 well  as  the  eukaryote  Schizosaccharomyces  pombe  [3,4]  .  In  the  mother  machine,  thousands  of  single  cells  are  trapped  in 
 one-ended  growth  channels  that  open  into  a  central  trench  (Figure  1.1).  The  cells  at  the  end  of  the  growth  channels 
 (“mother  cells”)  grow  and  divide  over  hundreds  of  generations,  while  their  progeny  are  successively  flushed  out  of  the 
 device  (Figure  1.2-1.3).  Data  gathered  from  the  mother  machine  has  brought  critical  insight  into  diverse  domains  such  as 
 aging  [1]  ,  single-cell  physiology  [5]  ,  starvation  adaptation  [6]  ,  antibiotic  persistence  [7]  ,  cell  differentiation  [8]  ,  and  the 
 mechanics of cell wall growth  [9]  (Figure 1.4). 

 Despite  the  progress  in  imaging  techniques  and  microfluidics,  image  processing  remains  a  major  bottleneck  in  the 
 analysis  pipelines.  The  unique  structure  of  the  mother  machine  device  enables  precise  control  of  growth  conditions  and 
 long-term  tracking  of  cells,  to  the  degree  that  cannot  be  achieved  by  traditional  tracking  of  cells  in  microcolonies  [11]  . 
 However,  automated  image  processing  is  essential  to  process  the  large  amounts  of  data  generated  by  these 
 high-throughput  experiments.  In  addition,  the  unique  structure  of  the  mother  machine  device  requires  a  specialized 
 workflow  to  select  and  track  individual  growth  channels.  As  experimentalists  often  need  to  extract  precise  statistics  over 
 multiple  generations  or  observe  rare  events,  the  analysis  workflow  must  be  modular  to  allow  inspection  and  curation  of 
 intermediate  results.  To  meet  these  needs,  numerous  mother  machine-specific  image  analysis  packages  have  been 
 introduced  in  the  last  few  years  [12–15]  ,  in  addition  to  general  image  analysis  packages  adaptable  to  the  mother  machine 
 workflow  [16–20]  .  Much  recent  work  has  been  catalyzed  by  advances  in  biomedical  image  analysis  with  deep 
 convolutional  neural  networks,  particularly  the  U-Net  architecture  [21]  .  Many  of  these  tools  [15,22]  have  been  designed 
 with  ease-of-use  and  accessibility  in  mind.  However,  they  can  still  present  a  steep  learning  curve  for  first-time  users.  In 
 addition,  as  the  outputs  of  these  pipelines  are  often  used  by  researchers  to  derive  biological  principles  based  on 
 correlations, it is important to understand the limitations of and differences between different image analysis methods. 
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 Figure  1:  Mother  machine 
 workflow,  schematic,  and 
 applications.  (1.1)  Mother 
 machine  schematic.  Growth 
 channels  flank  a  central  flow 
 cell  that  supplies  fresh  media 
 and  whisks  away  daughter 
 cells.  In  a  typical  experiment, 
 numerous  fields  of  view  (FOVs) 
 are  imaged  for  several  hours. 
 (1.2)  Fluorescence  images  of  E. 
 coli  strains  expressing 
 cytoplasmic  YFP  [1]  (left)  and 
 markers  for  the  replisome 
 protein  DnaN  and  division 
 protein  FtsZ  (right)  [10]  .  (1.3) 
 The  mother  machine  setup 
 allows  long-term  monitoring  of 
 the  old-pole  mother  cell  lineage 
 [1]  and  has  other  versatile 
 applications,  including  (1.4)  the 
 study  of  the  mechanical 
 properties  of  bacterial  cells  by 
 applying  controlled  Stokes 
 forces  [9]  . 
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 Box 1: Mother machine experimental workflow 
 Despite  the  well-appreciated  power  of  single-cell  time-lapse  imaging  approaches,  the  potential  user  base  remains  much 
 greater  than  the  number  of  researchers  directly  benefiting  from  the  technology.  A  primary  reason  for  this  discrepancy 
 between  demand  and  actual  adoption  is  the  perceived  cost  in  time  and  resources  of  investment  in  the  required  core 
 technology:  microfluidics  and  high-throughput  image  analysis.  Until  a  few  years  ago,  setting  up  a  typical  microfluidic  system 
 for the first time took several years of training and trial-and-error, along with significant resources, for most individual labs. 

 Running  a  mother  machine  experiment  requires  the  following  steps:  (1)  fabricating  a  mold  for  the  device,  (2)  assembling  the 
 device,  (3)  performing  time-lapse  microscopy,  and  (4)  analyzing  the  images  to  extract  time  traces  and  statistics.  To  our 
 knowledge,  steps  (1)  and  (4)  have  been  the  primary  bottlenecks  for  most  groups.  Here  we  give  a  brief  overview  of  the 
 experimental  workflow.  We  refer  interested  readers  to  our  previous  review  article  on  single-cell  physiology  [23]  ,  along  with 
 other recent reviews  [24,25]  and published protocols  [26]  , for a more extensive guide to single-cell imaging techniques. 

 Device  design  and  fabrication.  In  the  original  mother  machine  design  [1]  ,  narrow  channels  trap  bacterial  cells 
 perpendicular  to  a  larger  main  trench  through  which  fresh  medium  flows  (Figure  1.4).  Several  constraints  apply  to  the  design 
 of  the  device.  The  height  and  width  of  the  channels  should  match  the  dimensions  of  the  organism  under  study.  The  channels 
 must  be  large  enough  to  facilitate  the  loading  of  the  cells  and  allow  for  fast  diffusion  of  nutrients  to  mother  cells  at  the 
 channel  ends.  If  the  channels  are  too  deep,  cells  may  move  out  of  focus  and  potentially  overlap  in  the  z-direction,  both  of 
 which  impede  accurate  segmentation.  Similarly,  if  channels  are  too  wide,  cells  may  not  grow  in  a  single  file,  complicating 
 segmentation and tracking. Longer trenches will retain cells longer and allow more cells to be tracked per channel. 

 The  prohibitive  cost  of  mold  fabrication  in  clean  room  facilities  has  been  a  bottleneck  to  distributing  microfluidic  devices.  We 
 resolved  this  problem  using 
 an  epoxy-based  fabrication 
 technique  [27]  ,  allowing  us  to 
 easily  and  cheaply  create 
 replicative  molds.  Once  the 
 first  microfluidic  device  is 
 fabricated  in  the  clean  room, 
 the  epoxy  duplication  method 
 allows  us  to  reliably  create 
 and  distribute  high-fidelity 
 device  molds  at  a  fraction  of 
 the  cost  of  the  initial 
 fabrication.  Undergraduate 
 students  in  our  lab  routinely 
 perform  this  procedure.  To 
 assist  new  users  of  the 
 mother  machine,  we  include  a 
 detailed  procedure  for  the 
 duplication method at  [28]  . 

 Experiment  setup.  The  first  step  of  making  the  mother  machine  device  is  to  pour  PDMS  (polydimethylsiloxane)  onto  a 
 master  mold,  cure  it,  and  remove  it  from  the  mold.  Holes  are  punched  in  the  cut  devices  at  the  inlet  and  outlet  of  the  central 
 channel  to  connect  tubing  for  fresh  medium  (inlet)  and  waste  removal  (outlet)  before  plasma  treatment  (Figure  1.1).  Plasma 
 treatment  covalently  bonds  the  PDMS  device  to  a  glass  cover  slide  or  dish  to  be  mounted  on  the  microscope.  BSA  (bovine 
 serum  albumin)  passed  through  the  device  passivates  the  surface.  In  our  setup,  we  load  cells  to  the  growth  channels  in  the 
 device  via  a  custom  centrifuge  [28]  (Figure  S1).  Growth  medium  is  passed  through  the  device  using  a  syringe  pump.  The 
 medium  flow  should  be  fast  enough  to  clear  dead  cells  or  biofilms  in  the  device,  but  slow  enough  that  the  device  does  not 
 delaminate.  Mounting  the  device  on  an  inverted  microscope  requires  a  custom  stage  insert  for  long-term  imaging.  The 
 microscope temperature must be controlled tightly. 

 Data  analysis.  Most  mother  machine  image  analysis  workflows  share  the  following  steps:  pre-processing  the  acquired 
 images,  including  identification  and  cropping  of  cell  traps,  cell  segmentation,  and  cell  tracking.  Cell  segmentation  is  the  most 
 difficult  and  crucial  step,  as  adjacent  cells  must  be  separated  from  each  other  and  from  device  features.  After  accurate 
 segmentation,  the  one-dimensional  structure  of  the  mother  machine  -  which  constrains  the  cells  to  move  only  in  one  direction 
 along the length of the trap without bypassing each other - makes cell tracking relatively simple. 
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 This  article  consists  of  three  parts.  First,  for 
 first-time  users,  we  provide  a  brief 
 walkthrough  on  implementing  the  mother 
 machine  in  research  (Box  1),  including  how 
 to  duplicate  microfluidic  devices  at  no  cost 
 using  epoxy  replicas  and  troubleshoot 
 common  image  analysis  problems.  Next,  we 
 introduce  MM3  [29]  ,  a  fast  and  interactive 
 image  analysis  pipeline  for  mother  machine 
 experiments  that  we  have  developed  and 
 used  internally  for  over  a  decade.  Our  latest 
 version  is  a  Python  plugin  for  the 
 multidimensional  image  viewer  napari  [30]  . 
 Finally,  we  compare  the  accessibility, 
 performance,  and  robustness  of  various 
 current  image  analysis  platforms.  In  order 
 to  trust  analysis  results,  researchers  should 
 understand  the  limitations  of  their  chosen 
 method.  With  this  in  mind,  we  show  that 
 “what  you  put  is  what  you  get”:  both 
 classical  and  deep  learning-based 
 segmentation  methods  are  highly  sensitive 
 to  user-determined  threshold  values.  As 
 exact  cell  boundaries  may  be  difficult  to 
 distinguish  by  eye,  these  values  are  difficult 
 to  set  definitively,  and  can  systematically 
 alter  the  output  of  the  analysis.  Fortunately, 
 we  find  that  key  single-cell  physiological 
 parameter  correlations  and  distributions  are 
 robust  to  the  choice  of  analysis  method. 
 However,  interpreting  and  comparing  the 
 results of different analyses requires care. 

 Results 
 Mother  machine  image  analysis  with 
 napari-MM3 
 Analysis  of  time-lapse  imaging  experiments 
 requires  dedicated  software  due  to  the 
 sheer  volume  of  data  produced.  For 

 instance,  an  experiment  tracking  aging  might  require  imaging  50  fields  of  view  (Figure  1.1)  every  two  minutes  for  a  week, 
 producing  a  quarter  of  a  million  images  comprising  hundreds  of  gigabytes  of  data.  While  the  experimental  methods  for 
 mother  machine  experiments  have  become  increasingly  accessible,  image  analysis  tools  have  lagged  behind.  Typically, 
 labs  using  the  mother  machine  have  developed  their  own  customized  analysis  pipelines.  Many  available  tools  require 
 programming  experience,  familiarity  with  command  line  tools,  and  extensive  knowledge  of  image  analysis  methods.  They 
 are  also  often  fine-tuned  for  specific  experimental  setups  and  difficult  for  the  average  user  to  adapt.  Finally,  existing 
 workflows  frequently  require  users  to  move  between  multiple  interfaces  such  as  ImageJ,  MATLAB,  the  command  line, 
 Python  scripting,  and  Jupyter  notebooks.  Newer  deep  learning  approaches  are  more  versatile  than  traditional  computer 
 vision  methods.  Still,  they  bring  new  issues  for  novices:  users  may  need  to  construct  their  own  training  data  and  train  a 
 model,  requiring  a  new  set  of  tools  and  technical  expertise,  and  manual  annotation  of  training  data  is  susceptible  to 
 human error and bias. 

 These  considerations  guided  us  in  the  development  of  our  in-house  analysis  tool.  In  building  MM3,  we  sought  to  provide 
 modularity  and  extensive  interactivity  while  minimizing  unnecessary  user  intervention.  MM3  aims  to  be  a  complete  and 
 flexible  solution  for  mother  machine  image  analysis,  taking  raw  images  and  producing  readily  graphable  cell  data,  while 
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 Figure 2: MM3 workflow and example images. 
 (2.1)  The  MM3  image  analysis  pipeline  takes  raw  mother  machine  images  and 
 produces  cell  objects.  Processes  (rounded  rectangles)  are  modular;  multiple 
 methods  are  provided  for  each.  (2.2)  Example  images  from  the  processing  of  one 
 growth  channel  in  a  single  FOV.  The  growth  channel  is  first  identified,  cropped, 
 and  compiled  in  time.  All  cells  are  segmented  (colored  regions).  Lineages  are 
 tracked  by  linking  segments  in  time  to  determine  growth  and  division  (solid  and 
 dashed lines, respectively), creating cell objects. 
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 accommodating  both  machine  learning-based  and  traditional  computer  vision  techniques.  It  supports  phase  contrast 
 and  fluorescence  images,  and  has  been  tested  with  different  species  (bacteria  E.  coli  and  B.  subtilis  ,  yeast  S.  pombe  ), 
 mother  machine  designs,  and  optical  configurations.  The  modular  pipeline  architecture  allows  flexible  use  of  mid-stream 
 outputs  and  straightforward  troubleshooting  (for  instance,  while  M.  mycoides  is  too  small  to  segment  with  traditional 
 microscopy methods  [31]  , we were able to obtain growth rate measurements by running the first half of the pipeline). 

 MM3  reflects  the  culmination  of  several  iterations  of  our  in-house  mother  machine  analysis  software  developed  over  the 
 past  decade  .  Before  MM3,  we  developed  our  image  analysis  pipeline  in  C++  [1]  and  MATLAB  [32]  .  Eventually,  Python 
 became  enormously  popular,  and  we  began  MM3  as  a  set  of  Python  scripts  run  from  the  command  line  [33]  .  However, 
 the  command-line-based  interface  had  several  drawbacks.  The  interface  was  more  difficult  for  users  unfamiliar  with  the 
 command  line  or  programming.  It  also  had  limited  interactivity.  As  a  result,  troubleshooting  was  difficult  and  required 
 modifying  the  source  code  to  display  image  output  at  intermediate  steps  or  manually  inspecting  output  files  in  ImageJ. 
 This made the user repeatedly move back and forth between different windows and applications, slowing the analysis. 

 These  drawbacks  motivated  us  to  convert  MM3  into  a  plug-in  for  the  Python-based  interactive  image  viewer  napari  [30]  . 
 napari  provides  an  N-dimensional  display  ideal  for  visualizing  multichannel  time-lapse  data.  It  offers  built-in  annotation 
 tools  and  label  layers  to  compare  and  annotate  segmentation  masks  and  tracking  labels.  It  also  provides  a  Python 
 interpreter,  allowing  users  to  move  easily  between  the  viewer  interface  and  the  underlying  data  objects.  For  the  best 
 usability,  we  designed  the  napari-MM3  plug-in  to  allow  the  user  to  run  the  entire  pipeline  without  leaving  the  napari 
 interface. 

 Figure  3:  napari-MM3  interface.  The  napari  viewer  enables  interactive  analysis  of  mother  machine  data  with  real-time  feedback  and 
 fast  debugging.  Raw  data  shown  is  from  MG1655  background  E  coli  expressing  the  fluorescence  protein  YPet  fused  to  the  replisome 
 protein DnaN  [10]  . 

 Image analysis via napari-MM3 consists of four steps (Figure 3). 
 1.  Crop raw images and compile them into stacks corresponding to individual growth channels. 
 2.  Choose channel stacks to be (a) analyzed, (b) used as templates for background subtraction, or (c) ignored. 
 3.  Segment cells. 
 4.  Construct  cell  lineages.  napari-MM3  treats  individual  cells  in  the  lineages  as  objects  that  can  be  plotted  directly 

 or converted to another data format. 

 We elaborate on these steps as follows. 
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 1. Channel detection and curation 
 The  first  section  of  the  napari-MM3  pipeline  takes  in  raw  micrographs  and  returns  image  stacks  corresponding  to  one 
 growth  channel  through  time.  napari-MM3  detects  channels  using  a  wavelet  transform  and  then  aligns  them  over  time  to 
 correct  for  stage  drift  and  vibration.  The  aligned  growth  channels  are  saved  as  unique  image  stacks  with  all  time  points 
 for  a  given  growth  channel  and  color  channel.  As  not  all  growth  channels  contain  cells,  napari-MM3  auto-detects 
 channels  as  full  or  empty  based  on  the  time  correlation  of  the  y-profile  of  the  growth  channel.  The  auto-detected  growth 
 channels and their classifications are then displayed in the napari viewer for the user to inspect and modify as needed. 

 2. Cell segmentation 
 napari-MM3  offers  two  methods  for  cell  segmentation,  one  using  traditional  computer  vision  techniques  and  the  other 
 using  deep  learning.  The  non-learning  method  utilizes  Otsu’s  method  to  apply  a  binary  threshold  to  separate  cell  objects 
 from  the  background.  It  then  labels  the  isolated  cells  and  uses  a  random  walker  algorithm  [34]  to  fill  out  the  cell 
 boundaries.  This  method  is  fast  but  optimized  for  specific  mother  machine  designs  and  phase  contrast  imaging  of 
 bacteria.  It  also  requires  accurate  background  subtraction  of  phase  contrast  images  (Box  2),  to  ensure  that  the  presence 
 of  the  channel  border  does  not  interfere  with  cell  detection.  The  supervised  learning  method  uses  a  convolutional  neural 
 net  (CNN)  with  the  U-Net  architecture  [21,22,35]  .  The  napari  viewer  can  be  used  to  construct  training  data,  with  the 
 option  to  import  existing  Otsu  or  U-Net  segmentation  output  as  a  template.  The  neural  net  can  then  be  trained  directly 
 from  napari,  with  the  option  to  check  the  performance  of  the  model  in  the  napari  viewer  after  successive  rounds  of 
 training. 

 Box 2: Segmentation via Otsu’s method 
 The  Otsu  segmentation  method  first  aligns  the  growth  channel  of  interest  with  an  empty  background  channel  by  computing 
 the  orientation  that  maximizes  the  pixel-wise  cross-correlation.  The  empty  channel  is  then  subtracted  from  the  full  channel, 
 and  the  image  is  inverted.  This  background  subtraction  step  is  essential,  as  it  removes  the  dark  image  of  the  PDMS  device, 
 which  will  otherwise  interfere  with  segmenting  the  (dark)  cells.  Otsu’s  method  [36]  is  applied  to  find  the  binary  threshold  value 
 that  maximizes  the  inter-region  variance.  We  then  apply  a  Euclidean  distance  transform,  wherein  each  pixel  is  labeled  with  its 
 distance  to  the  dark  region.  The  image  is  thresholded  again,  and  a  morphological  opening  is  applied  to  erode  links  between 
 regions.  Small  objects  and  objects  touching  the  image  border  are  removed.  Each  region  is  labeled,  and  the  labels  are  used  to 
 seed a random walker algorithm  [34]  on the original image. 

 3. Cell tracking and lineage reconstruction 
 Finally,  napari-MM3  links  segmented  cells  in  time  to  define  a  lineage  of  cell  objects,  using  a  simple  decision  tree  based 
 on  a  priori  knowledge  of  binary  fission  and  the  mother  machine.  Tracking  produces  a  dictionary  of  cell  objects  containing 
 relevant  information  derived  from  the  cell  segments,  including  the  cell  lengths  and  volumes  over  time,  cell  elongation 
 rate,  and  generation  time.  Plotting  and  additional  analysis  can  then  be  done  with  the  user’s  tool  of  choice.  Statistics  can 
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 be  directly  extracted  from  the  cell  objects,  or  the  cell  objects  can  be  converted  into  a  .csv  file,  a  pandas  DataFrame,  or  a 
 MATLAB structure. We provide a Jupyter notebook demonstrating this analysis at  [37]  . 

 Additional features and future extensions 
 napari-MM3  offers  several  additional  modules  supplemental  to  the  main  processing  pipeline,  including  methods  for 
 fluorescence  image  analysis  and  U-Net  training  data  construction  and  model  training.  Integrated  fluorescence  signal  and 
 fluorescence  per  cell  area  and  volume  for  each  timepoint  can  be  extracted  using  the  “Colors”  module.  napari-MM3  also 
 includes  a  module  for  the  detection  and  tracking  of  fluorescent  spots  or  “foci.”  For  example,  we  have  used  it  to  track 
 fluorescently  labeled  replisome  machinery  in  bacteria  in  order  to  measure  the  timing  and  synchrony  of  DNA  replication 
 initiation  [2,10]  .  Lastly,  U-Net  segmentation  training  data  can  be  constructed  by  manual  annotation  of  raw  images  in  the 
 napari  viewer.  napari-MM3  offers  the  option  to  construct  training  data  with  existing  Otsu  or  U-Net  segmentation  data  as 
 a  template.  This  allows  the  user  to  iteratively  train  a  model,  correct  mistakes  in  its  output,  and  use  the  modified  output  as 
 input  for  the  next  round  of  training.  We  also  provide  a  Jupyter  notebook  covering  training  data  construction  and  model 
 training at  [37]  . 

 Going  forward,  we  plan  to  add  support  for  additional  segmentation  and  tracking  modalities  [18,38]  .  We  will  also 
 incorporate  support  for  additional  organisms  such  as  the  budding  yeast  S.  cerevisiae.  Finally,  we  plan  to  take  advantage 
 of napari’s interactive display to add interactive data visualization and plotting  . 

 Performance test of napari-MM3 
 To  evaluate  the  speed  of  napari-MM3,  we  timed  the  processing  of  a  typical  dataset  (Table  1).  Using  consumer-grade 
 hardware,  a  single-channel  stack  consisting  of  several  hundred  time  frames  can  be  processed  in  less  than  five  seconds, 
 and  a  typical  experiment  consisting  of  25  GB  of  imaging  data  can  be  processed  in  under  an  hour.  These  metrics  are  on 
 par with those reported by other recently published mother machine software  [15,22,39]  . 
 Table  1:  Performance  metrics  for  napari-MM3.  Processing  times  were  measured  on  an  iMac  with  a  3.6  GHz  10-Core  Intel  Core  i9 
 processor  with  64  GB  of  RAM  and  an  AMD  Radeon  Pro  5500  XT  8  GB  GPU.  Tensorflow  was  configured  to  use  the  AMD  GPU 
 according  to  [40]  .  The  GPU  was  used  in  U-Net  training  and  segmentation  steps.  The  dataset  analyzed  is  from  [10]  and  consists  of  26 
 GB  of  raw  image  data  (12  hours,  262  time  frames,  2  imaging  planes,  34  FOVs,  and  ~35  growth  channels  per  FOV).  Note  that  while  the 
 Otsu  segmentation  method  is  slightly  faster  than  the  U-Net,  it  also  requires  a  background  subtraction  step,  such  that  the  total 
 runtimes of the two methods are comparable  . 

 Testing napari-MM3 on other published datasets 
 We  tested  napari-MM3  on  several  publicly  available  mother  machine  datasets:  three  from  experiments  on  E.  coli 
 provided  with  the  mother  machine  image  analysis  tools  DeLTA,  MoMA  and  BACMMAN  [15,22,41]  and  one  from  C. 
 glutamicum  provided  with  the  software  molyso  [13]  .  We  were  able  to  process  all  4  datasets  with  minimal  adjustments  to 
 the  default  parameter  values  (Methods).  We  quantified  the  performance  of  MM3  on  each  dataset  by  comparing  the 
 output  of  the  MM3  segmentation  to  manually  determined  ground  truth  masks  from  a  subset  of  each  dataset  (Table  2).  To 
 evaluate  the  segmentation  quality,  we  computed  the  Jaccard  index  (JI)  [42,43]  at  an  IoU  threshold  of  0.6  (Methods).  The 
 software  performed  well  on  the  Ollion  et  al.,  Sachs  et  al.  and  Jug  et  al.  datasets  with  JI  of  0.98,  0.98  and  1  respectively. 
 Segmentation  was  notably  worse  on  the  Lugagne  et  al.  dataset,  with  JI  of  0.92.  However,  we  observed  that  the  majority 
 of  segmentation  errors  in  the  Lugagne  et  al.  dataset  arose  from  misclassification  of  cells  near  the  channel  opening, 
 where determining cell boundaries is often more difficult. 
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 Channel 
 detection 

 Background 
 subtraction 

 Segmentation 
 (Otsu) 

 Segmentation 
 (U-Net) 

 Tracking  Total 
 (Otsu) 

 Total (U-Net) 

 Frame processing time  N/A  2 ms  4 ms  5.3 ms  N/A  N/A  N/A 

 Channel stack processing time 
 (262 time frames) 

 N/A  0.54 sec  1.14 sec  1.4 sec  0.7 sec  3.1 sec  2.1 sec 

 FOV processing time (35 
 channels) 

 14.1 sec  17.5 sec  36.5 sec  46 sec  46.7 sec  2 min  1.7 min 

 Exp. processing time (26 GB, 34 
 FOVs, ~20,000 cells) 

 3.2  min  9.9 min  20.6 min  26 min  26.4 min  60 min  55 min 
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 Comparison with other image analysis software 
 We  also  tested  napari-MM3’s  usability  and  performance  against  other  popular  software.  We  began  by  surveying  a  range 
 of  existing  mother  machine  image  analysis  tools  (Table  3).  Some  early  analysis  pipelines  used  one-dimensional 
 segmentation  methods  [13,41]  ,  which  perform  adequately  when  cells  are  tightly  confined  in  the  growth  channels.  In 
 recent  years,  many  excellent  general-purpose  CNN-based  cell  segmentation  tools  have  also  been  developed  [16–19,44]  , 
 which may be extended to process mother machine data. 

 Table  2:  Testing  napari-MM3  on  external  datasets.  Quality  of  segmentation  masks  produced  by  running  napari-MM3  on  a 
 subset  of  published  datasets  from  other  groups  [13,15,22,41]  .  As  exact  boundaries  are  difficult  to  determine  by  eye,  we 
 considered  a  cell  to  be  correctly  segmented  if  the  Intersection  over  Union  of  the  predicted  mask  and  ground  truth  mask  was 
 greater than 0.6 (Methods). To evaluate the quality of the segmentation, we report the Jaccard index  [42,43]  . 

 Dataset  Correctly segmented cells  False positives  False negatives  Jaccard index 

 Ollion et al. (BACMMAN)  [15]  228  4  1  0.98 

 Lugagne et al. (DeLTA)  [12,22]  247  22  1  0.92 

 Sachs et al. (molyso)  [13]  247  4  0  0.98 

 Jug et al. (MoMA)  [41]  80  0  0  1 

 In  this  work,  we  only  tested  mother-machine-specific  pipelines.  In  particular,  we  constrained  our  analysis  to  DeLTA  and 
 BACMMAN,  two  excellent  open-source  mother  machine-specific  pipelines  offering  2D  segmentation  and  cell  tracking, 
 which  are  also  well-documented  and  actively  maintained.  BACMMAN  [15]  performs  2D  segmentation  via  traditional 
 computer  vision  methods  similar  to  those  implemented  in  napari-MM3  and  has  recently  added  support  for  CNN-based 
 segmentation  as  well  [45]  .  DeLTA  [12,22]  uses  the  U-Net  architecture  for  channel  detection,  cell  segmentation,  and  cell 
 tracking,  with  a  mother  machine-specific  and  general  agar  pad  mode.  We  used  BACMMAN,  DeLTA,  and  napari-MM3  to 
 analyze  the  same  published  dataset  [10]  consisting  of  E.  coli  MG1655  grown  in  minimal  growth  medium  (MOPS  0.4% 
 glycerol  +  11  amino  acids  with  ~60  minute  doubling  time)  [10]  .  Data  processed  in  napari-MM3  was  separately 
 segmented  with  U-Net  and  traditional  computer  vision  methods.  We  found  that  the  pre-trained  mother  machine  model 
 provided  with  DeLTA  did  not  generalize  well  to  our  data.  However,  after  training  a  new  model  with  representative  data,  we 
 achieved accurate segmentation. 

 Table  3:  Overview  of  mother-machine  image  analysis  tools.  A  comparison  of  several  published  imaging  methods.  ‘2D’  or  ‘1D’ 
 segmentation  indicates  whether  the  cells  are  labeled  in  an  image  and  analyzed  in  two  dimensions,  or  projected  onto  a  vertical 
 axis  and  analyzed  in  one  dimension.  Several  tools  support  the  use  of  deep  learning  (in  place  of  or  in  addition  to  classical 
 computer vision techniques). 
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 Software  Implementation  Segmentation  Deep learning support 

 BACMMAN  [15]  / DistNet  [38]  ImageJ plugin  2D   

 DeLTA  [12,22]  Python package  2D   

 napari-  MM3  [33]  , this work  napari plug-in  2D   

 SAM  [39]  MATLAB  2D 

 MMHelper  [14]  ImageJ plugin  2D 

 molyso  [13]  Python package  1D 

 MoMA  [41]  ImageJ plugin  1D 
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 We  compared  the  distributions  and  correlations  of  key  physiological  parameters  generated  by  each  analysis  tool, 
 motivated  by  our  standard  approach  to  single-cell  physiology  [5,10,32,47]  .  First,  we  confirmed  that  all  four  analysis 
 methods  yield  essentially  identical  correlations  between  cell  length  at  birth  (S  B  )  vs.  (a)  generation  time  (τ),  (b)  elongation 
 rate  (λ),  and  (c)  the  length  added  between  birth  and  division  (Δ)  (Figure  4.3).  Next,  we  compared  the  distributions  of 
 various  physiological  parameters.  The  CV  (coefficient  of  variation)  of  a  physiological  parameter  distribution  is  often  taken 
 to  reflect  the  tightness  of  the  underlying  biological  control.  We  have  previously  found  [2,32]  that  the  CVs  of  a  set  of 
 physiological  parameters  (birth  length,  division  length,  length  added  between  divisions,  growth  rate,  generation  time,  and 
 septum  position)  are  invariant  across  growth  conditions  in  E.  coli  and  B.  subtilis  ,  and  that  the  hierarchy  of  CVs  is 
 preserved  across  the  two  evolutionarily  divergent  species  [2,32]  .  Here,  we  confirmed  that  the  distributions  of  these 
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 Figure  4:  Comparison  of  various  image  analysis  approaches.  (4.1)  A  time  series  of  a  typical  cell  growing  in  a  nutrient-rich 
 medium.  The  birth  size,  division  size,  and  added  size  are  indicated.  (4.2)  The  adder  principle  ensures  cell  size  homeostasis  via 
 passive  convergence  of  cell  size  to  the  population  mean.  (4.3)  We  analyzed  multiple  datasets  from  our  lab  using  MM3,  DeLTA,  and 
 BACMMAN,  and  obtained  robust  correlations  between  birth  length,  doubling  time,  elongation  rate,  and  added  length. 
 Representative  results  from  one  dataset  [10]  for  MG1655  background  E.  coli  grown  in  MOPS  glycerol  +  11  amino  acids  are  shown, 
 with  9,000  -  13,000  cells  analyzed  depending  on  the  method.  (4.4)  Distributions  of  key  physiological  parameters  are  independent  of 
 the analysis methods. The data and code used to generate this figure are available at  [46] 
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 physiological  parameters  are  independent  of  the  analysis  methods  (Figure  4.4).  In  particular,  the  hierarchy  of  CVs  is 
 preserved  by  all  three  methods  tested.  Last,  while  in  this  dataset  the  old-pole  “mother”  cells  showed  signs  of  aging  (in 
 particular, a reduced elongation rate), this aging phenotype is strain- and condition-dependent (Figure S3). 

 Systematic discrepancies in cell segmentation outputs 

 While  we  found  that  the  correlations  between  physiological  parameters  were  preserved  across  the  different  analysis 
 methods  (Figure  4.3),  we  also  observed  systematic  discrepancies  in  the  results  obtained  by  different  methods,  including 
 cell  length  at  birth  (S  b  ),  length  at  division  (S  d  ),  and  length  added  between  birth  and  division  (Δ)  (Figure  4.4).  In  particular, 
 napari-MM3’s  classical  segmentation  method  systematically  generated  larger  cell  masks  than  napari-MM3  U-Net, 
 DeLTA,  and  BACMMAN  (Figure  4.4).  We  focused  on  the  discrepancies  between  the  two  MM3  outputs.  Although  the 
 deviation  between  the  two  masks  may  not  appear  significant  when  individual  masks  are  inspected  by  eye  (Figure  5.1, 
 Figure  S2),  the  classical  method  yields  cells  that  are  5%-10%  larger  at  each  time  point  than  those  returned  by  the  U-Net 
 method  when  averaging  over  an  entire  experiment  with  tens  of  thousands  of  cells  tracked  (Figure  5.2).  Cell  birth  and 
 division  times  are  also  systematically  shifted  in  the  classical  method,  as  the  expanded  cell  boundaries  lead  the  algorithm 
 to split cells 1-2 time frames later on average. 

 The  root  of  this  discrepancy  is  as  follows.  Exact  cell  boundaries  are  difficult  to  distinguish  by  eye,  and  the  classical 
 methods  tested  here  require  the  user  to  set  threshold  values  that  can  systematically  alter  the  measured  cell  size.  Indeed, 
 both  MM3  and  BACMMAN’s  non-learning  method  (which  also  uses  Otsu  thresholding  and  a  watershed  /  diffusion 
 algorithm)  -  output  different  cell  masks  with  their  ‘default’  parameter  settings.  On  the  other  hand,  binary  U-Net 
 segmentation  methods,  such  as  those  implemented  in  napari-MM3  and  DeLTA,  tend  to  output  smaller  cell  sizes  because 
 the  model  must  leave  a  gap  between  cells  so  that  they  are  not  stitched  together  (note  this  is  not  a  fundamental  limitation 
 of  U-Net,  but  a  consequence  of  our  implementation:  see,  e.g.  [17]  or  [38]  for  more  complex  approaches  which  avoid  this 
 issue). 

 WYPIWYG (“What You Put Is What You Get”) in deep-learning-based image analysis 

 Given  that  classical  methods  are  clearly  sensitive  to  this  threshold  tuning,  we  predicted  that  deep-learning  approaches 
 would  also  be  impacted  [42,48]  .  We  chose  the  recent  cutting-edge  segmentation  model  Omnipose  and  separately 
 trained  it  on  masks  derived  from  the  aforementioned  Otsu  segmentation  output  and  masks  from  the  napari-MM3  U-Net 
 segmentation  output.  We  chose  Omnipose  as  it  assigns  different  labels  to  different  cells,  and  can  thus  segment  cells 
 with  contiguous  boundaries,  in  contrast  to  MM3  or  DeLTA’s  U-Net  implementations.  Indeed,  we  found  that  the 
 systematic  discrepancy  in  the  training  masks  propagated  to  the  output  of  the  trained  models:  the  Omnipose  model 
 trained  on  larger  Otsu  masks  generated  larger  masks  upon  evaluation  with  the  same  data,  while  the  Omnipose  model 
 trained  on  smaller  U-Net  masks  output  smaller  masks  (Figure  5.3).  In  computer  science,  the  phrase  “Garbage  in, 
 garbage  out”  denotes  the  concept  that  undesirable  attributes  in  the  input  to  a  program  will  propagate  to  the  output 
 [49,50]  .  Here  we  propose  a  related  notion  WYPIWYG,  or  “what  you  put  is  what  you  get”.  That  is,  at  least  for  our  setup, 
 systematic  differences  in  training  data  masks  lead  the  model  to  learn  different  threshold  intensity  values  and  thus  to 
 systematically  output  larger  or  smaller  masks.  We  emphasize  this  result  does  not  reflect  a  flaw  in  Omnipose  -  whose 
 performance we found impressive - but rather a well-studied feature of machine learning methods in general  [48]  . 

 Discussion 
 In  this  study,  we  introduced  a  modular  and  interactive  image  analysis  pipeline  for  mother  machine  experiments,  and 
 compared  its  effectiveness  to  other  existing  tools.  Unlike  its  predecessors,  napari-MM3  is  equipped  with  an  intuitive  and 
 modular  interface,  making  it  highly  accessible  to  new  users.  Our  main  goal  is  to  lower  the  barrier  to  entry  in  image 
 analysis, which has been a primary obstacle in adopting the mother machine, and ultimately increase its user base. 

 Finally,  we  discuss  common  challenges  faced  by  users  new  to  high-throughput  image  analysis  and  give  our  prescriptions 
 for overcoming them. 

 Validating results 

 We  showed  that  distributions  and  correlations  in  key  cell  cycle  parameters  are  invariant  to  the  choice  of  analysis  pipeline, 
 provided  that  care  is  taken  in  parameter  adjustment  and  postprocessing.  However,  this  parallel  processing  of  data  is  not 
 feasible for every experiment. Instead, we suggest users can validate their results in the following ways: 
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 1.  A  qualitative  “eye  test”  is  an  important  first  step:  one 
 should  always  visually  inspect  one’s  data.  Often,  this  may  be 
 sufficient  to  establish  whether  the  analysis  is  operating  as 
 expected. 

 2.  When  a  more  quantitative  and  systematic  approach  is 
 needed,  the  user  can  compare  the  output  of  their  analysis  to  a 
 subset  of  manually  annotated  ‘ground  truth’  images. 
 Quantitative  measures  such  as  the  Jaccard  index,  F  1  score  or 
 dice  coefficient  may  be  used  [42,43]  .  These  metrics  are 
 particularly  useful  for  comparing  the  results  of  different 
 parameter  choices  in  a  given  method,  allowing  the  user  to 
 determine  the  combination  that  yields  the  most  accurate 
 segmentation or tracking results. 

 3.  Verify  that  the  averages  calculated  from  single-cell 
 measurements  match  the  results  of  population-level  control 
 experiments. 

 4.  When  possible,  filter  for  subsets  of  the  data  that  are 
 likely  to  reflect  accurate  segmentation  and  continuous 
 tracking,  such  as  cell  lineages  that  are  continuously  tracked 
 for the duration of the experiment. 

 Choosing an image analysis tool 
 For  many  years,  published  and  well-documented  pipelines  for 
 mother  machine  image  analysis  were  scarce,  and  existing 
 software  required  extensive  parameter  reconfiguration, 
 knowledge  of  image  processing  techniques,  and  programming 
 experience  to  use  effectively.  In  recent  years,  advances  in 
 deep  learning  have  contributed  to  a  rapidly  growing  set  of 
 image  analysis  tools  that  perform  cell  segmentation  and 
 tracking. 

 Inspired  by  previous  reviews  [42,51]  ,  we  make  the  following 
 suggestions for new users selecting a tool: 

 1.  Tools  that  are  actively  maintained,  with  an  easy  way  to 
 contact  the  developer,  will  be  more  likely  to  work  well  and  will 
 be easier to troubleshoot than others. 

 2.  Detailed  documentation  and  tutorials  are  valuable,  and 
 will  allow  the  user  to  troubleshoot  the  software  without  direct 
 guidance from the developers. 

 3.  Depending  on  the  user’s  level  of  comfort  with  coding, 
 it  may  be  beneficial  to  choose  a  tool  that  is  implemented 
 through  a  graphical  user  interface  and  does  not  require 
 additional  programming.  Moreover,  even  for  programmers,  we 

 found  within  our  lab  that  introducing  interactivity  when  necessary  dramatically  expedited  the  data  analysis 
 process. 

 4.  Full  stack  (vertically  integrated)  tools  that  cover  the  entire  analysis  pipeline  may  save  time  and  work,  relative  to 
 those which only perform a portion of the needed analysis. 

 5.  It  is  worthwhile  to  engage  with  the  online  community  around  the  tool,  if  one  exists.  We  have  found  the  image.sc 
 forum  [52]  valuable in the past, in particular for help with napari. 

 6.  Consider  whether  the  tool  is  open  source  or  requires  a  license.  With  regard  to  this  point,  we  encourage  tool 
 developers  to  avoid  proprietary  software  such  as  MATLAB,  which  may  not  be  accessible  to  all  users.  The 
 open-source  Java-based  image-processing  program  ImageJ  [53]  has  been  a  dominant  tool  in  biological  image 
 analysis  for  many  years.  The  recent  growth  of  image  analysis  and  machine  learning  tools  in  Python  makes  napari 

 11 

 Figure  5:  Effect  of  systematic  deviation  in  segmentation 
 output  from  different  methods.  5.1.  Otsu  /  random  walker 
 and  U-Net  segmentation  masks.  The  classical  method 
 systematically  yields  masks  that  are  5%-10%  larger  than  the 
 other  methods.  5.2.  We  confirmed  that  this  discrepancy 
 occurs  consistently  across  the  cell  cycle.  5.3  We  trained  the 
 Omnipose  model  on  masks  generated  by  either 
 napari-MM3-Otsu  or  napari-MM3-U-Net  separately.  5.4.  The 
 systematic  discrepancy  in  the  training  data  masks 
 propagated to the output of the trained models. 
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 [30]  an attractive alternative to ImageJ. 

 Traditional computer vision vs. deep learning methods 
 A  key  choice  many  users  will  face  is  whether  to  use  deep  learning-based  or  traditional  methods  for  image  analysis.  The 
 field  has  increasingly  shifted  toward  deep  learning  methods,  and  this  shift  will  likely  accelerate.  While  traditional 
 computer  vision  methods  remain  useful,  deep  learning-based  methods  have  a  clear  advantage  in  their  ability  to 
 generalize quickly to new datasets. 

 In  our  lab,  we  have  found  that  traditional  computer  vision  techniques  perform  excellently  on  cell  segmentation  and 
 tracking  in  the  mother  machine,  subject  to  constraints  on  the  experimental  setup.  However,  such  methods  often  require 
 extensive  reconfiguration  or  fail  entirely  when  applied  to  data  obtained  under  new  biological  conditions  (different 
 organisms,  different  cell  morphology)  and  imaging  conditions  (varied  illumination,  microscope  setup).  Our  own 
 non-learning  segmentation  method  performs  well,  provided  that  cells  are  tightly  confined  in  the  mother  machine 
 channels  and  do  not  move  substantially.  Prior  to  the  adoption  of  deep  learning  methods,  this  requirement  necessitated 
 the  design  of  different  devices  for  cells  grown  in  different  growth  conditions,  as  the  cell  width  in  some  E.  coli  strain 
 backgrounds varies with the population growth rate. 

 By  contrast,  the  key  strength  of  deep  learning  approaches  is  their  ability  to  generalize  to  new  conditions  -  whether  to 
 different  illumination  conditions,  different  types  of  input  images  (phase  contrast,  brightfield,  fluorescence)  or  different 
 organisms  and  cell  types  entirely.  The  main  barrier  to  adoption  of  learning-based  methods  remains  the  construction  of 
 training  data,  which  can  be  tedious  and  time-consuming.  A  training  data  set  of  50  -  100  images  comprising  several 
 hundred  cells  can  be  constructed  in  a  few  hours  and  will  achieve  passable  segmentation  on  representative  data. 
 However,  larger  training  sets  on  the  order  of  thousands  of  images  are  preferable,  and  will  yield  improved  model  accuracy 
 and  generalizability.  The  time  needed  for  annotation  can  be  reduced  by  seeding  the  data  with  masks  generated  by 
 classical  methods  -  or  iteratively  seeding  with  U-Net  output  -  and  then  refining  the  masks  further  by  hand.  Model 
 performance  and  generalizability  can  often  be  significantly  improved  by  augmenting  training  data  via  manipulations  such 
 as  rotating  or  shearing,  distorting  the  intensity  profile,  and  adding  noise.  Nonetheless,  we  have  found  that  even  with 
 extensive  data  augmentation,  applying  the  U-Net  segmentation  to  new  experimental  configurations  or  imaging 
 conditions  often  requires  retraining  the  model  on  an  expanded  dataset  with  more  representative  data.  Ultimately,  deep 
 learning  methods  are  only  as  good  as  the  data  they  are  trained  on,  and  are  most  likely  to  fail  when  training  data  is 
 insufficient,  mislabeled,  or  not  representative.  Going  forward,  sharing  of  training  sets  and  models  [54]  between  different 
 groups can facilitate progress and aid reproducibility. 

 In  addition  to  deep  learning-based  segmentation,  learning-based  cell  tracking  in  the  mother  machine  has  been 
 implemented  recently  by  multiple  groups  [12,38]  .  For  cells  growing  unconstrained  on  2D  surfaces  such  as  agar  pads, 
 U-Net  tracking  dramatically  outperforms  traditional  methods  [12]  .  On  the  other  hand,  for  steady-state  growth  in  the 
 mother  machine  where  cells  are  confined  and  constrained  to  move  in  one  dimension,  we  have  not  found  a  significant 
 difference  between  the  performance  of  deep  learning-based  tracking  and  the  non-learning  tracking  method  implemented 
 in  MM3.  In  both  cases,  errors  in  tracking  nearly  always  arise  from  errors  in  segmentation.  Nonetheless,  deep 
 learning-based  tracking  may  offer  an  advantage  in  cases  where  cells  may  move  substantially  along  the  length  of  the 
 channel, or undergo dramatic morphological changes such as filamentation. 

 Ultimately,  for  groups  with  existing  analysis  pipelines  fine-tuned  for  specific  organisms  under  specific  imaging  conditions 
 to  perform  simple  tasks  such  as  segmentation  and  1D  tracking,  there  may  be  little  incentive  to  switch  to  deep  learning 
 methods.  However,  for  users  looking  to  develop  a  new  pipeline  or  analyze  more  complex  data,  the  power  and  generality 
 of deep learning tools will make them the method of choice. 

 Should users worry about the systematic discrepancy in segmentation results between different methods? 

 Given  the  5%-10%  variance  in  the  segmented  bacterial  cell  size  is  comparable  to  the  CVs  of  several  physiological 
 parameters  (Figure  4),  should  researchers  be  concerned  about  the  robustness  of  their  results?  The  answer  depends  on 
 the purpose of the image analysis. 

 If  the  research  critically  relies  on  the  absolute  cell  size,  such  as  cell-size  control  [10,32]  ,  the  researcher  must  be  aware  of 
 inherent  limitations  to  the  accuracy  of  spatial  measurements  from  cell  segmentation.  These  arise  in  part  from  the 
 difficulty  of  consistently  distinguishing  cell  boundaries  by  eye.  Once  a  threshold  is  chosen,  the  choice  will  affect  all 
 analyzed  cells  systematically.  This  limitation  applies  to  both  deep  learning  (through  the  construction  of  training  data)  and 
 traditional  computer  vision  methods  (through  the  manual  input  of  a  threshold  value).  For  cell  segmentation,  the 
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 uncertainties  are  typically  comparable  to  the  pixel  size  of  the  images,  rather  than  optical  resolutions.  For  example,  the 
 pixel  size  in  the  images  in  Figure  5  is  0.065  µm  (for  the  camera  pixel  size  6.5  µm  and  100X  magnification),  which  is 
 non-negligible  for  many  commonly  cultured  bacterial  cells  with  submicron  cell  widths  -  e.g.,  Enterobacterales  , 
 Pseudomonas  ,  Bacillus  subtilis,  and  Caulobacter  crescentus  .  For  most  commercially  available  cameras  and  objective 
 lenses  used  in  quantitative  bacterial  cell  biology,  10%  should  be  taken  as  a  conservative  lower  bound  for  uncertainty 
 when comparing absolute spatial measurements of bacterial cell size. 

 Indeed,  researchers  should  be  particularly  careful  when  comparing  absolute  measurements  of  cell  size,  e.g.,  at  division 
 or  initiation  of  chromosome  replication  obtained  by  different  groups  using  different  image  analysis  methods.  While 
 absolute  temporal  measurements  are  more  robust  than  spatial  measurements  (Figure  4.4),  the  differences  in  spatial 
 measurements  can  propagate  to  the  measured  timing  of,  e.g.,  cell  division.  For  instance,  we  observed  that  the  classical 
 method  stitched  cells  together  for  slightly  longer  than  the  U-Net  method  did  (Figure  5.2),  but  as  this  shift  applied  equally 
 to birth and division, it did not affect the average cell generation time (Figure 4.4). 

 Fortunately,  the  examples  mentioned  above  are  extreme  cases.  For  instance,  the  pixel-size  uncertainties  will  reflect  a 
 smaller  proportion  of  the  cell  size  when  imaging  larger  cells  such  as  yeast  or  mammalian  cells.  Even  in  our  research  on 
 single-cell  bacterial  physiology  [2,10,32]  ,  we  find  that  correlations  and  relative  changes  are  more  likely  to  be  robust  than 
 absolute  spatial  measurements  to  the  choice  of  analysis  method  (Figure  4)  .  Furthermore,  different  applications  of 
 deep-learning  based  image  analysis,  such  as  high-throughput  phenotypic  classification  [55]  will  be  much  more  robust  to 
 the pixel-size uncertainties in image segmentation results. 

 Generating robust and unbiased segmentation results 

 We  have  shown  that  both  traditional  computer  vision  and  deep  learning  methods  are  susceptible  to  biases  introduced  by 
 imprecise  thresholding  and  human  error.  How,  then,  can  more  precise  cell  boundaries  be  determined?  For  non-learning 
 methods,  thresholds  could  be  calibrated  against  data  from  alternate  imaging  methods  such  as  fluorescence  or 
 brightfield.  For  learning  methods,  one  promising  technique  is  the  generation  of  synthetic  training  data  [56]  .  This  method 
 also  has  the  advantage  that  new  training  datasets  can  be  instantaneously  for  different  imaging  conditions  or  cell  types, 
 once  the  appropriate  parameters  have  been  determined.  For  deep  learning  methods,  metrics  which  lead  the  model  to 
 recognize  cell  interiors  or  centers  [18,38,57]  may  yield  more  robust  results  than  binary  pixel-level  classification.  Once  cell 
 centers  are  known,  boundaries  can  be  determined  relatively  easily  via  classical  watershed  or  random  walker  diffusion 
 algorithms. 

 Conclusion and recommendations 

 Here,  we  presented  a  guide  to  first-time  users  of  the  mother  machine,  introduced  our  updated  image  analysis  software, 
 and  validated  it  against  existing  tools.  napari-MM3  provides  a  simple  and  modular  user-friendly  interface,  which  we 
 believe  makes  it  uniquely  accessible  and  valuable  to  novice  users.  By  lowering  the  barrier  to  entry  in  image  analysis  - 
 the key bottleneck in mother machine adoption - we aim to increase the user base of this powerful tool dramatically. 

 After  testing  two  other  well-constructed  mother  machine  image  analysis  pipelines,  we  concluded  that  all  four  methods 
 (BACMMAN,  DeLTA,  MM3  Otsu  &  MM3  U-Net)  yielded  consistent  and  reproducible  results,  up  to  previously  discussed 
 limitations  of  segmentation  algorithms.  Thus,  for  users  already  comfortable  with  a  given  pipeline,  there  is  no  strong 
 incentive  to  switch  to  a  new  one.  However,  the  different  pipelines  do  have  markedly  different  user  interfaces.  DeLTA  is  set 
 up  to  provide  a  simple  “one-shot”  analysis,  in  which  image  preprocessing,  channel  detection,  segmentation,  and 
 tracking  are  performed  in  sequence  with  minimal  user  input.  This  arrangement  simplifies  the  analysis  process,  especially 
 for  first-time  users.  In  particular,  it  can  be  helpful  for  users  who  want  to  quickly  verify  that  the  software  will  serve  their 
 purpose,  before  investing  more  time  in  setting  up  and  running  the  analysis.  On  the  other  hand,  the  intermediate  steps  in 
 the  pipeline  are  less  accessible,  which  may  make  debugging  and  troubleshooting  more  involved.  BACMMAN,  like 
 napari-MM3,  is  more  modular  than  DeLTA.  This  modularity  can  aid  troubleshooting  and  improves  versatility,  but 
 configuration  can  be  time  consuming.  With  napari-MM3,  we  attempted  to  strike  a  balance  between  these  two 
 well-designed  and  well-performing  tools,  while  taking  advantage  of  the  fast-growing  next-generation  image  analysis 
 platform  napari.  napari-MM3  attempts  to  infer  or  pre-set  as  many  parameters  as  possible,  while  the  napari  interface 
 makes  midstream  output  easily  accessible.  We  have  been  using  MM3,  and  more  recently  napari-MM3,  for  over  a  decade 
 since  our  introduction  of  the  mother  machine  in  2010,  and  we  will  continue  to  actively  maintain  and  improve  it  in  the 
 coming years. 
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 The  mother  machine  setup  has  become  increasingly  accessible  to  researchers  in  recent  years,  through  the  distribution  of 
 molds  and  the  publication  of  in-depth  protocols  and  open-source  image  analysis  software.  At  the  same  time,  new 
 variations  of  the  device  have  found  diverse  applications,  including  bacterial  starvation  [6]  and  genetic  screening  [58,59]  . 
 Clearly,  the  combination  of  microfluidics  with  high-resolution  time-lapse  imaging  remains  powerful  among  single-cell 
 techniques. We hope that this article will prove useful to mother machine veterans and first-time users alike. 
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 Methods 

 Resources 

 ●  napari-M  M3 Github repository  [61]  . 
 ○  Contains installation instructions and video tutorial. 

 ●  Jupyter notebook demonstrating analysis of MM3 output data.  [37] 
 ○  A notebook providing functions for postprocessing and plotting of the napari-MM3 output 

 ●  Protocols for device fabrication and loading  [28] 
 ●  Raw and processed data analyzed in this manuscript  [46] 

 Getting started with napari-MM3 

 napari-MM3  is  implemented  entirely  in  Python  and  can  be  accessed  on  Github  [61]  ,  along  with  documentation  covering 
 installation  and  usage.  It  will  run  on  a  standard  Mac,  PC,  or  Linux  machine.  We  recommend  using  the  Anaconda  Python 
 distribution to simplify installation. 

 Imaging conditions 

 The  data  analyzed  in  Figures  4  and  5  (originally  published  in  [10]  )  was  obtained  on  an  inverted  microscope  (Nikon  Ti-E) 
 with  Perfect  Focus  3  (PFS3),  100x  oil  immersion  objective  (PH3,  numerical  aperture  =  1.45),  and  Obis  laser  488LX 
 (Coherent  Inc.,  CA)  as  a  fluorescence  light  source,  and  an  Andor  NEO  sCMOS  (Andor  Technology)  camera.  The  laser 
 power was 18 mW. The exposure time was 200 ms for phase contrast imaging and 50 ms for fluorescence. 

 Image analysis for software comparison 

 For  the  software  comparison  in  Figure  4,  we  analyzed  a  dataset  from  [10]  consisting  of  E.  coli  MG1655  expressing  a 
 fluorescent  protein  YPet  fused  to  the  replisome  protein  DnaN.  The  cells  were  grown  in  MOPS  minimal  medium  +  glycerol 
 and  11  amino  acids.  The  dataset  was  analyzed  end-to-end  starting  from  the  raw  .nd2  file  with  BACMMAN,  DeLTA,  and 
 MM3.  For  analysis  with  DeLTA,  we  used  the  provided  channel  detection  and  tracking  models  but  trained  a  new  model  on 
 our  own  data  for  segmentation.  For  segmentation  with  BACMMAN,  we  used  the  standard  non-learning  phase  contrast 
 segmentation  method  ‘MicrochannelPhase2D’.  Postprocessing  of  the  output  of  each  pipeline  was  done  in  Python.  For 
 each pipeline, we filtered for cells whose mothers and daughters were also tracked. 

 The code and data to reproduce the plots in Figure 4 are available at  [37]  and  [46]  , respectively. 

 For  the  comparison  of  Otsu  and  U-Net  outputs  from  Omnipose  in  Figure  5,  we  trained  Omnipose  with  a  learning  rate  of 
 .01  without  a  pre-trained  model.  We  used  the  same  set  of  1000  randomly  selected  images  for  both  Otsu  and  U-Net,  the 
 only  difference  coming  from  the  labeled  masks  themselves.  Both  models  were  trained  until  the  loss  dipped  below  0.9 
 (390  epochs  for  U-Net,  210  epochs  for  Otsu).  In  some  cases,  the  model  “hallucinated”  cells  along  the  channel  features. 
 We excluded these images from the final analysis. 

 Analysis of external datasets 

 The  external  datasets  were  preprocessed  as  follows:  Ollion  et  al.,  Jug  et  al.  and  Sachs  et  al.  datasets  were  rotated  1-2 
 degrees  to  align  the  channels  vertically.  Ollion  et  al.,  Sachs  et  al.  and  Lugagne  et  al.  datasets  were  cropped  to  remove 
 imaging artifacts from the main trench. 

 The  parameter  values  used  for  analysis  of  each  dataset  are  shown  in  Table  S1.  In  general,  the  optimal  parameter  values 
 for  the  compilation  and  subtraction  steps  depend  on  the  size  of  device  features  as  well  as  the  optical  resolution  and 
 camera  pixel  size,  while  the  optimal  segmentation  parameters  depend  on  cell  size  as  well  as  pixel  size  and  optical 
 resolution.  Finally,  the  tracking  parameters  are  either  sensitive  to  the  imaging  frequency  and  the  single-cell  elongation 
 rate  (growth  ratios  and  lost  cell  time),  or  the  spatial  position  of  the  cells  in  the  frame  (“y  cutoff”).  The  output  cell  size  is 
 sensitive  to  the  “Otsu  threshold  scale”  parameter,  so  care  should  be  taken  when  adjusting  this  value.  In  addition,  the 
 growth  length  and  growth  area  ratio  parameters  may  filter  out  fast-  or  slow-growing  cells  if  they  are  set  too  close  to  1. 
 The remaining parameters will not impact the output statistics. 
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 Each  dataset  was  processed  in  its  entirety  with  napari-MM3.  To  evaluate  the  segmentation  quality,  we  selected  1-2 
 representative  traps  (comprising  50-100  time  steps)  and  constructed  ground-truth  masks  for  these  images.  On  this 
 subset,  we  computed  the  Jaccard  index  [43]  as  the  ratio  of  true  positives  (correctly  identified  cells)  to  the  sum  of  true 
 positives,  false  positives  (identified  cells  which  were  not  present  in  the  ground  truth  data)  and  false  negatives  (ground 
 truth  cells  which  were  not  identified  by  the  segmentation).  The  segmentation  and  ground  truth  masks  were  determined  to 
 be  matching  if  their  Intersection  over  Union  value  was  at  least  0.6.  Note  that  two  masks  become  indistinguishable  to  the 
 human eye at IoU 0.8 and higher  [18,42]  . 

 The  output  JSON  file  and  kymographs  showing  reconstructed  cell  lineages  from  each  sample  datasets  are  available  at 
 [46]  , along with JSON files containing the parameter values used for each step of the analyses. 
 Table  S1:  MM3  parameter  values  for  processed  external  datasets  .  Parameters  which  were  changed  from  the  default  values  are 
 shaded  in  yellow.  Ollion  et  al.,  Jug  et  al.  and  Sachs  et  al.  datasets  were  segmented  with  the  non-learning  method,  while  the  Lugagne 
 et al. dataset was segmented using the U-Net method. 

 Default value  Ollion et al.  Lugagne et al.  Jug et al.  Sachs et al. 

 Compile 
 Channel width (px)  10  20  10  10  10 

 Channel separation (px)  45  90  45  45  45 

 Subtract  Align pad (px)  10  10  10  10  10 

 Segment 

 1st opening (px)  2  3  N/A  3  3 

 Distance threshold (px)  2  3  N/A  3  3 

 2nd opening (px)  1  2  N/A  1  2 

 Otsu threshold scale  1  1.2  N/A  1.0  1.0 

 Min object size (px  2  )  25  25  25  25  25 

 Track 

 Growth length ratio (min, max)  (0.8, 1.3)  (0.9, 1.5)  (0.8, 1.3)  (0.8, 1.3)  (0.8, 1.3) 

 Growth area ratio (min, max)  (0.8, 1.3)  (0.9, 1.5)  (0.8, 1.3)  (0.8, 1.3)  (0.8, 1.3) 

 Lost cell time (frames)  3  3  3  3  3 

 New cell y cutoff (px)  150  300  150  150  150 

 U-Net model training 

 Training  data  was  augmented  as  described  below  to  aid  the  generalizability  of  the  model.  We  trained  the  U-Net  model 
 using  a  binary  cross-entropy  loss  function,  with  pixel-wise  weighting  to  force  the  model  to  learn  border  pixels  [21,22]  . 
 The  model  was  trained  using  the  Adam  optimizer  with  a  learning  rate  of  10  -4  ,  a  dropout  rate  of  50%,  a  batch  size  of  8 
 samples, a patience (early stopping value) of 50 epochs and a train-test split of 90-10. 

 Overview of the MM3 pipeline 

 Channel compilation and designation 

 The  first  section  of  the  MM3  pipeline  takes  in  raw  micrographs  and  returns  image  stacks  corresponding  to  one  growth 
 channel over time. Further pipeline operations are then applied to these stacks. 

 A  standard  mother  machine  experiment  consists  of  thousands  of  images  across  multiple  fields  of  view  (FOVs)  and  many 
 time  points.  Images  are  first  collated  based  on  the  available  metadata.  MM3  expects  TIFF  files  and  looks  for  metadata  in 
 the TIFF header and from the file name. 

 All  images  from  a  particular  FOV  are  analyzed  for  the  location  of  channels  using  the  phase  contrast  plane.  Channel 
 detection  is  performed  using  a  wavelet  transform,  in  which  a  mask  is  made  which  is  applied  across  all  time  points. 
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 Channels  are  cropped  through  time  using  the  masks  and  saved  as  unique  image  stacks  that  include  all  time  points  for  a 
 given channel and imaging plane. MM3 saves channel stacks in TIFF format. 

 MM3  attempts  to  compile  all  channels.  However,  not  all  channels  contain  cells,  and  some  channels  may  have 
 undesirable  artifacts  from  the  device  preparation.  It  is,  therefore,  desirable  to  only  process  certain  channels  for  analysis. 
 Consequently,  MM3  auto-detects  empty  and  full  channels  based  on  the  time  correlation  of  the  y-profile  of  the  channel 
 (empty  channels  are  highly  correlated  in  time,  while  channels  containing  cells  are  not).  The  autodetected  channels  and 
 their  classifications  are  then  displayed  in  the  napari  viewer  for  the  user  to  inspect  and  modify  as  needed.  The  user  may 
 also  manually  select  empty  channels  free  of  artifacts  to  be  used  as  templates  for  phase  or  fluorescence  background 
 subtraction. 

 Background subtraction 

 MM3’s  Otsu  segmentation  method  requires  background  subtraction  of  phase  contrast  images.  The  subtraction  ensures 
 that  the  presence  of  the  channel  border  does  not  interfere  with  detection  of  cells.  To  this  end,  we  overlay  the 
 previously-identified  empty  channels  on  the  full  channels  to  be  subtracted.  The  two  channels  are  aligned  such  that  the 
 cross-correlation  of  overlaid  pixels  is  maximized.  After  the  inversion  of  the  image,  this  leaves  the  cells  as  the  only  bright 
 objects  on  a  dark  background.  Good  alignment  of  the  device  features  in  the  empty  and  full  channel  is  essential  here. 
 Imperfect  alignment  will  leave  artifacts  in  the  subtracted  image,  which  interfere  with  later  steps,  and  is  a  common  failure 
 point  for  this  method.  Note  that  the  subtraction  step  necessitates  the  presence  of  some  empty  channels  in  each 
 experiment. The U-Net segmentation does not require background subtraction. 

 Cell segmentation 

 Cell  segmentation  is  the  first  of  the  two  major  tasks  in  the  image  analysis  pipeline.  Segmentation  receives  channel  stacks 
 and  produces  8-bit  segmented  image  stacks.  Typically,  segmentation  is  done  using  the  phase  contrast  time-collated 
 stack. 

 MM3  has  two  methods  for  segmentation:  a  “standard”  method  and  a  supervised  learning  method.  The  standard  method 
 uses  traditional  image  analysis  techniques,  specifically  background  subtraction,  Otsu  thresholding,  morphological 
 operations,  and  watershed  algorithms.  As  the  standard  method  may  require  fine-tuning  of  parameters,  the  napari  plugin 
 allows  the  user  to  quickly  preview  the  effect  of  tuning  morphological  parameters  and  threshold  value  on  the 
 segmentation  output,  without  having  to  process  the  entire  dataset.  The  Otsu  segmentation  method  first  aligns  the 
 channel  of  interest  with  an  empty  background  channel  by  computing  the  orientation,  which  maximizes  the  pixel-wise 
 cross-correlation.  The  empty  channel  is  then  subtracted  from  the  full  channel,  and  the  image  is  inverted.  Otsu’s  method 
 is  then  applied  to  find  the  binary  threshold  value  which  maximizes  the  inter-region  variance  (or  equivalently,  minimizes 
 the  intra-region  variance).  We  then  apply  a  Euclidean  distance  transform,  in  which  each  pixel  is  labeled  with  its  distance 
 to  the  dark  region.  The  image  is  thresholded  again,  and  a  morphological  opening  is  applied  to  erode  links  between 
 regions.  Small  objects  and  objects  touching  the  image  border  are  removed.  Each  region  is  labeled,  and  the  labels  are 
 used  to  seed  a  random  walker  algorithm  [34]  on  the  original  image.  As  implemented  in  MM3,  this  “standard”  method  has 
 three  adjustable  parameters:  the  first  opening  pixel  size,  second  opening  pixel  size,  distance  threshold  (i.e.  threshold 
 which  is  applied  to  the  distance  transformed  image,  in  pixels)  and  a  dimensionless  parameter  to  rescale  the 
 Otsu-determined threshold, if needed. 

 The  supervised  learning  method  uses  a  standard  U-Net  architecture  with  five  levels  [21]  .  The  model  outputs  a  cell  class 
 probability  between  0  and  1  for  each  pixel,  which  is  thresholded  at  0.5  to  obtain  a  binary  segmentation.  The  napari 
 viewer  can  be  used  to  construct  training  data,  with  the  option  to  import  existing  Otsu  or  U-Net  segmentation  output  as  a 
 template.  The  neural  net  can  then  be  trained  using  a  separate  widget,  with  the  option  to  check  the  performance  of  the 
 model  in  the  napari  viewer  after  successive  rounds  of  training.  We  found  that  applying  a  weighted  loss  depending  on 
 pixel  location  -  as  suggested  in  the  original  U-Net  paper  [21]  and  implemented  for  instance  in  DeLTA  [22]  -  sped  up 
 model  training  and  improved  segmentation  and  tracking.  Since  the  accurate  separation  of  adjacent  cells  is  vital  for  cell 
 tracking,  the  cost  of  misidentifying  pixels  between  bordering  cells  is  high.  We  initially  implemented  a  simple  binary 
 weight  map  where  pixels  between  cells  were  weighted  highly  and  all  others  pixels  relatively  lower.  We  later  added  a  more 
 complex  mapping,  drawing  directly  from  the  one  implemented  in  DeLTA  [12]  ,  where  weights  are  maximized  on  the 
 skeletons  [62]  of  the  cells  and  borders.  Intuitively,  this  weighting  tells  the  model  that  pixels  in  the  center  of  the  cell,  in 
 regions far from cells, and on the borders between cells are most important to predict accurately. 
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 Illumination  conditions  can  vary  across  laboratories,  microbial  species,  and  with  device  design.  To  aid  the  generalizability 
 of  the  U-Net  model,  on  specific  conditions,  we  augmented  the  training  data  with  various  morphological  techniques, 
 including  changing  magnification,  zooming  and  rotating,  and  Gaussian  noise  and  blur.  We  also  adapted  several 
 non-standard  operations  from  DeLTA,  one  which  performs  elastic  deformation  and  two  others  that  distort  image  contrast 
 to simulate changes in illumination within the field of view and between experiments. 

 Cell tracking 

 Tracking  segmented  cells  is  the  second  major  task  in  the  pipeline.  Tracking  involves  linking  cell  segments  in  time  in  order 
 to  define  a  lineage  of  cell  objects.  The  default  tracking  method  is  a  simple  decision  tree  based  on  a  priori  knowledge  of 
 binary  fission  and  the  mother  machine.  For  example,  cells  normally  grow  by  a  small  amount  between  time  intervals, 
 divide  into  two  similarly  sized  daughter  cells,  and  cannot  pass  each  other  in  the  channel.  The  tracking  method  accounts 
 for  the  absolute  positions  and  relative  ordering  of  cells  in  each  channel  over  time.  Specifically,  at  each  time  point  we 
 iterate  over  all  detected  regions  (potential  cells).  Based  on  their  relative  y  positions  in  the  channel  and  sizes,  each  is 
 linked  to  a  set  of  potential  descendants  /  ancestors.  When  two  cells  are  best  matched  to  the  same  region,  the  event  is 
 classified  as  a  division,  subject  to  constraints  on  the  size  of  the  regions.  This  tracking  implementation  is  similar  to  that 
 employed  by  BACMMAN  [15]  although  it  does  not  explicitly  take  into  account  relative  ordering  of  cells  in  the  channel.  It 
 contrasts with more complex optimization-based methods used by other mother machine software  [13,41]  . 

 The  lineage  tree  obtained  by  tracking  is  displayed  in  the  napari  viewer  in  the  form  of  a  kymograph,  in  which  the  x-axis 
 represents time, and cell linkages and divisions are indicated by forking lines. 

 Data output and analysis 

 Tracking  produces  a  dictionary  of  cell  objects  which  contains  relevant  information  derived  from  the  cell  segments.  This 
 includes,  but  is  not  limited  to,  birth  and  division  size,  growth  rate,  and  generation  time.  Each  object  is  identified  by  a  key 
 that  represents  the  FOV  and  channel  of  the  cell,  the  time  point  of  its  birth,  and  its  position  in  the  channel.  Since  each  cell 
 object  has  the  requisite  information  to  find  its  corresponding  position  in  the  channel  stacks,  the  objects  can  be  modified 
 and  extended  by  additional  analysis.  For  example,  the  corresponding  location  of  a  cell  in  a  fluorescent  image  stack  can 
 be  retrieved,  focus  detection  performed,  and  that  information  can  be  added  to  the  cell  object.  This  minimizes  the  burden 
 of rerunning previous sections of the pipeline for new sub-analyses. 

 Plotting  can  be  done  from  this  cell  object  dictionary  directly,  or  it  can  first  be  converted  to  a  .csv,  a  pandas  DataFrame, 
 or a MATLAB structure. We provide a Jupyter notebook  [37]  to illustrate how the data can be extracted and plotted. 

 Fluorescence analysis 

 Integrated  fluorescence  signal  and  fluorescence  per  cell  area  and  volume  for  each  timepoint  can  be  extracted  using  the 
 Colors module. 

 Focus tracking 

 The  focus  tracking  module  enables  the  identification  and  tracking  of  fluorescent  spots  or  ‘foci.’  This  module  has  been 
 used  in  our  lab  for  tracking  fluorescently  labeled  replisome  machinery  in  bacteria  in  order  to  measure  the  timing  and 
 synchrony  of  DNA  replication  initiation.  However,  it  may  be  applied  to  any  use  case  requiring  localization  and  tracking  of 
 intracellular  spots.  The  module  uses  a  Laplacian  convolution  to  identify  fluorescent  spots.  Foci  are  linked  to  the  cell 
 objects in which they appear. 

 U-Net training data annotation 

 Training  data  can  be  constructed  by  manual  annotation  of  raw  images  in  the  napari  viewer.  MM3  offers  the  option  to 
 construct  training  data  with  existing  (Otsu  or  U-Net)  segmentation  data  as  a  template.  This  allows  the  user  to  iteratively 
 train a model, correct mistakes in its output, and use the modified output as input for the next round of training. 
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 Figure S1. Inexpensive fabrication of cell loader with 3D printing. 

 An inexpensive device for loading cells into the mother machine. The construction involves 3D printing a custom holder/ 
 rotor for a 50mm WillCo dish, on which a mother machine is attached. The holder is printed in three parts (2 blades and a 
 central base) to account for 3D printers with small printing areas. This piece is then assembled and secured to a 
 Honeywell fan from which the original blade has been removed. CAD files and details of the fan centrifuge construction 
 are available at  [28]  . 
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 Figure S2: Evaluating segmentation output of napari-MM3 Otsu and U-Net methods 

 To  evaluate  the  quality  of  the  segmentation  masks  generated  by  MM3’s  Otsu  and  U-Net  segmentation  methods,  we 
 computed the Jaccard index  [42,51]  as a function of the intersection-over-union (IoU) threshold. 
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 Figure  S3:  Old-pole  aging  phenotype  is  strain  specific.  Cells  imaged  with  fluorescence  often  show  signs  of  aging  in  the 
 old-pole  “mother”  cell.  For  instance,  in  the  dataset  analyzed  in  Figure  4  (  E.  coli  MG1655  with  the  fluorescent  protein  YPet  fused 
 to  DnaN),  we  observed  systematic  differences  in  cell  elongation  rate  and  size  between  the  old-pole  cell  at  the  end  of  the  growth 
 channel  and  its  sisters,  which  inherit  the  new  pole  (top  center).  However,  this  asymmetry  is  not  universal.  Using  napari-MM3’s 
 Otsu  segmentation  method,  we  re-analyzed  previously  published  data  obtained  without  fluorescence  illumination  [32]  ,  and  found 
 that  the  old-pole  and  new-pole  cell  elongation  rates  varied  only  on  the  order  of  1%  (lower  center),  while  in  the  dataset  obtained 
 under  fluorescence  imaging,  the  old-pole  mother  cells  grow  7-10%  slower  than  the  new  pole  cells.  Cells  born  third  or  fourth  from 
 the  closed  end  of  the  channel  also  grow  slower  than  the  old-pole  mother  (right).  The  asymmetry  in  growth  rate  between  old-pole 
 and  new  pole  cells  persists  across  time  (right,  inset).  These  results  are  consistent  with  a  previous  survey  [63]  ,  which  found  that 
 most evidence for aging in  E. coli  comes from studies  utilizing fluorescent proteins for visualization. 
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